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Abstract
Phylogenetic networks can represent evolutionary events that cannot be described
by phylogenetic trees. These networks are able to incorporate reticulate evolution-
ary events such as hybridization, introgression, and lateral gene transfer. Recently,
network-based Markov models of DNA sequence evolution have been introduced
along with model-based methods for reconstructing phylogenetic networks. For these
methods to be consistent, the network parameter needs to be identifiable from data
generated under the model. Here, we show that the semi-directed network parameter
of a triangle-free, level-1 networkmodel with any fixed number of reticulation vertices
is generically identifiable under the Jukes–Cantor, Kimura 2-parameter, or Kimura
3-parameter constraints.
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1 Introduction

Typically, the goal of a phylogenetic analysis is to find a tree that describes the evolu-
tionary relationships among a set of taxa. However, because trees, as directed graphs,
have acyclic skeletons, they cannot represent reticulate evolutionary events, such as
hybridization, introgression, and lateral gene transfer. Recognizing this limitation, it
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has become increasingly common to use phylogenetic networks in order to more accu-
rately describe the history of some sets of taxa (Bapteste et al. 2013). This increasing
attention to phylogenetic networks has led to many new results about the combina-
torial properties of phylogenetic networks (Huson et al. 2010; Gusfield 2014), (Steel
2016, Chapter 10), as well as to new methods for inferring phylogenetic networks
from biological data.

Many of these new methods for inferring phylogenetic networks are based on
constructing networks from small sets of inferred trees (Baroni et al. 2005; Huber
et al. 2011; Nakhleh et al. 2005; Yang et al. 2014) or adapting variants of maximum
parsimony and neighbor joining (Bryant and Moulton 2004; Jin et al. 2007). Several
others are model-based methods that are designed to infer various features of a species
networks from data generated by a network multispecies coalescent model. These
include, for example, the methods implemented in Phylonet (Than et al. 2008; Wen
et al. 2018) as well as SNaQ (Solís-Lemus and Ané 2016; Solís-Lemus et al. 2017)
and NANUQ (Allman et al. 2019). Now that network-based Markov models of DNA
sequence evolution have been developed (see e.g.Nakhleh 2011, §3.3), it seems natural
to use these models in order to add other model-based techniques to the set of tools
for network inference. However, in order to consistently infer a parameter using a
model-based approach, that parameter must be identifiable from some feature of the
model. The question of parameter identifiability is significant and has been explored for
several different phylogenetic models. For example, there are numerous identifiability
results for tree-based Markov models (Allman et al. 2011; Allman and Rhodes 2006;
Chang 1996; Rhodes and Sullivant 2012) and there are similar results for networks
that provide the theoretical justification for methods such as SNaQ (Solis-Lemus et al.
2020) and NANUQ (Baños 2019) mentioned above. In this work, we explore the
identifiability of the network parameter in network-based Markov models.

Formally, network-based Markov models are parameterized families of probability
distributions on n-tuples of DNA bases. The parameterization is derived by modeling
the process of DNA sequence evolution along an n-leaf leaf-labelled topological net-
work, which we call the network parameter of the model. Given an n-taxa sequence
alignment, a probability distribution in a network-based Markov model specifies the
probability of observing each of the possible 4n site-patterns at a particular site. Indeed,
in a model-based approach, an n-taxa sequence alignment is usually regarded as an
observation of n independent and identically distributed site-patterns. A sequence
alignment can therefore be viewed as an approximation of a probability distribution,
with the probability for each site-pattern being proportional to the number of times
it appears in the alignment. Given a collection, or class, of network-based Markov
models, the network parameter is identifiable if any expected site pattern probability
distribution p in the model belongs to at most one model in the class. Identifiability,
as just defined, is very strong and certainly not satisfied for any reasonable collection
of models. Thus, in practice, one often aims at proving that a parameter is generically
identifiable. If the network parameter of a class of models is generically identifiable
then a probability distribution p from one of the models almost surely belongs to no
other model in the class.

The generic identifiability of the tree and network parameters of several phyloge-
neticmodels has been shownby adopting techniques fromalgebraic geometry (Allman
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et al. 2011; Gross and Long 2017; Hollering and Sullivant 2020; Long and Kubatko
2018). These results apply to several types of mixture models, network models, and
multispecies coalescent models. Even though tree-based Markov models of sequence
evolution are naturally defined on rooted trees, in many of these works, the tree param-
eter is assumed to be an unrooted tree. The reason for this is that given an expected
site pattern probability distribution from a tree-based Markov model, the location of
the root of the tree is not identifiable [see, for example, Sect. 8.5 in Semple and Steel
(2003) or Chapter 15 in Sullivant (2018)]. Similarly, with network-based Markov
models, even though we define the models on rooted networks, we will only be able to
establish generic identifiability when the network parameter is assumed to be a semi-
directed network. Semi-directed networks are unrooted versions of rooted networks,
which retain information about which vertices are reticulation vertices (and which
edges are reticulation edges). In Gross and Long (2017), algebraic techniques were
used to show that the network parameter is generically identifiable when the underly-
ing Markov process is subject to the Jukes–Cantor (JC) transition matrix constraints
and the network parameter is assumed to be a semi-directed network with exactly one
cycle of length at least four. Recently, in Hollering and Sullivant (2020), this result
was extended using an algebraic matroid approach to include the Kimura 2-parameter
and Kimura 3-parameter constraints (K2P, K3P).

Theorem 1 (Gross and Long 2017; Hollering and Sullivant 2020) The network param-
eter of a network-basedMarkovmodel under the Jukes–Cantor (Gross andLong2017),
Kimura 2-parameter (Hollering and Sullivant 2020), or Kimura 3-parameter (Hol-
lering and Sullivant 2020) constraints is generically identifiable with respect to the
class of models where the network parameter is an n-leaf semi-directed network with
exactly one undirected cycle of length of at least four.

Still, these identifiability results only apply for networks with a single reticulation
vertex. In this paper, we prove the following, extending the results to triangle-free,
level-1 semi-directed networks, that is, triangle-free semi-directed networks where
every undirected cycle contains a single reticulation vertex.

Theorem 2 The network parameter of a network-based Markov model under the
Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints is generi-
cally identifiable with respect to the class of models where the network parameter is
an n-leaf triangle-free, level-1 semi-directed network with r ≥ 0 reticulation vertices.

To illustrate the implications of Theorem 2, suppose that p is an expected site pattern
probability distribution that belongs to a Markov model on a rooted phylogenetic
network N . If it is known that N is level-1 with triangle-free skeleton and r reticulation
vertices, then from p, it is possible (almost surely) to determine the unrooted skeleton
of N as well as which vertices (edges) are hybrid vertices (edges).

Our proof is largely combinatorial, as we are able to use the algebraic results for
small networks obtained inGross and Long (2017) andHollering and Sullivant (2020),
in addition to a few new ones, as building blocks. We begin in Sect. 2 by describing
more precisely themodelswe consider aswell as the algebraic approach to establishing
generic identifiability. In Sect. 3, we prove a few novel results about the algebra of
4-leaf level-1 networks and collect the other required algebraic results. In Sect. 4, we
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prove several combinatorial properties of level-1 phylogenetic semi-directed networks
that we will need to prove the main result. Finally, with these results in place, in Sect.
5, we prove Theorem 2.

2 Preliminaries

We begin this section by defining the graph theoretic terminology that we will use
throughout the paper. Then, in Sect. 2.2, we introduce network-based Markov models
on rooted networks, and in Sect. 2.3, we show that we can also define a network-
based Markov model on a semi-directed network. Finally, we describe the connection
between network-based Markov models and algebraic varieties and formally define
what it means for two networks to be distinguishable and precisely what it means for
the network parameter of a class of models to be generically identifiable.

2.1 Graph theory terminology

A (rooted binary) phylogenetic network N on a set of leaves X is a rooted acyclic
directed graph with no edges in parallel such that the root has out-degree two, each
vertex with out-degree zero has in-degree one, the set of vertices with out-degree zero
is X , and all other vertices either have in-degree one and out-degree two, or in-degree
two and out-degree one. The skeleton of a phylogenetic network is the undirected
graph that is obtained from the network by removing edge directions.

A vertex is a tree vertex if it has in-degree one and out-degree two. A vertex is a
reticulation vertex if it has in-degree two and out-degree one, and the edges that are
directed into a reticulation vertex are called reticulation edges. Let r(N ) denote the
number of reticulation vertices in network N . Since N is binary, it can be shown that it
has exactly 2|X |+2r(N )−1 vertices and |X |+2r(N )−1 internal vertices. A rooted
phylogenetic network with no reticulation vertices is a rooted phylogenetic tree.

The level of a phylogenetic network is themaximum number of reticulation vertices
in a biconnected component of the network. Of particular interest in this paper are
level-1 networks, which can also be characterized as phylogenetic networks where no
vertex belongs to more than one cycle in the network’s skeleton (Rossello and Valiente
2009).

More specifically, we will be concerned with a particular kind of level-one network,
in which only the reticulation edges are directed.

Definition 1 A semi-directed network is a mixed graph obtained from a phylogenetic
network by undirecting all non-reticulation edges, suppressing all vertices of degree
two, and identifying parallel edges.

Note that decidingwhether amixed graph, a graphwith some edges directed and others
undirected, is a semi-directed network can be done in quadratic time in the number of
edges [Corollary 4 of Huber et al. (2019)]. The unrooted skeleton of a phylogenetic
network is the skeleton of its associated semi-directed network (including leaf labels).

In a semi-directed network, the reticulation vertices are the vertices of indegree two
and the level is defined the same as for a rooted phylogenetic network. A triangle-free
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level-1 semi-directed network is a level-1 semi-directed network where every cycle in
the unrooted skeleton has length greater than three. We will also refer to level-1 semi-
directed networks with exactly one reticulation vertex as k -cycle networks, where k
is the length of the unique cycle in the unrooted skeleton.

We finish these preliminaries with one additional bit of graph theory terminology
that will be useful throughout. Let A ∪ B be a partition of X with A, B non-empty.
An edge e in a network N separates A and B if every path (not necessarily directed)
between any a ∈ A and b ∈ B contains e. If e separates A and B then we call e a
cut-edge and we say N has an A − B split.

2.2 Network basedMarkovmodels

We begin this section by describing a model of DNA sequence evolution along an
n-leaf rooted binary phylogenetic network. For the description below, we assume that
the network belongs to the set of tree-child networks (Cardona et al. 2007), which
contains the set of level-one networks. In a tree-child network, every internal vertex
has at least one child vertex that is either a tree vertex or a leaf.

Let N ′ be an n-leaf phylogenetic network and let ρ be the root of the network. Let
S4 be the set of 4 × 4 (row) stochastic matrices and let Δd be the dth dimensional
probability simplex, i.e. Δd := {p ∈ R

d : p ≥ 0,
∑d

i=1 pi = 1} ⊆ R
d . We

associate to each node v of N a random variable Xv with state space {A,G,C, T },
corresponding to the four DNA bases. The nodes of the network, including the interior
nodes, represent taxa, and the random variable Xv is meant to indicate the DNA base
at the particular site being modeled in the taxon at v.

Now, let π = (πA, πG , πC , πT ) ∈ Δ3 ⊂ R
4 be the distribution at the root with

πi = P(Xρ = i), and associate to each edge e = uv of N ′ a 4 × 4 transition
matrix Me ∈ S4 where the rows and columns are indexed by the elements of the state
space. With u a parent of v, the matrix Me

i, j is equal to the conditional probability
P(Xv = j |Xu = i). When N ′ is a rooted tree, the probability of observing a particular
n-tuple at the leaves of N ′ is straightforward to compute. Letting V (N ′) be the vertex
set of N ′, wefirst consider an assignment of states to the vertices of N ′ byφ : V (N ′) →
{A,G,C, T }where φ(v) is the state of Xv . Then, under the assumption of a tree based
Markov model, the probability of observing the assignment φ can be computed using
the distribution at the root and the transition matrices. Specifically, letting Σ(N ′) be
the set of edges of N ′, this probability is equal to

πφ(ρ)

∏

e=uv∈Σ(N ′)
Me

φ(u),φ(v).

The probability of observing a particular assignment of states at the leaves can be
obtained by marginalization, i.e. summing over all possible assignments of states to
the internal nodes. In particular, if ω ∈ {A,G,C, T }|X | is an assignment of states to
the leaves X of N ′ and φ(X ) is the restriction of φ to the entries corresponding to the
leaves of N ′, the probability of observing ω is then
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Fig. 1 On the left is an example of a phylogenetic network with stochastic transition matrices assigned to
each edge and reticulation parameters assigned to the two reticulation edges; we denote the edge transition
matrices using M(βi ) rather than Mei to indicate the dependence on the parameter βi . The transition
matrices all satisfy the Jukes–Cantor constraints. On the right is the semi-directed network obtained by
unrooting the network on the left. Each edge of the semi-directed network is labeled by a vector of Fourier
parameters. Reticulation edges are represented by dashed edges

∑

(φ : φ(X )=ω)

πφ(ρ)

∏

e=uv∈Σ(N ′)
Me

φ(u),φ(v).

When the rooted network N ′ contains at least one cycle in its skeleton, there is no
longer a unique path between each leaf and the root, and thus reticulation edge param-
eters are introduced. In this case, suppose N ′ has r reticulation vertices v1, . . . , vr .
Since each vi has in-degree two, there are two edges, e0i and e

1
i , directed into vi . Assign

a parameter δi ∈ (0, 1) to e1i and the value 1− δi to e0i . For 1 ≤ i ≤ r , independently
delete e0i , keeping e

1
i , with probability δi , otherwise, delete e1i and keep e

0
i . Intuitively,

the parameter δi corresponds to the probability that a particular site was inherited
along edge e1i . Encode this set of choices with a binary vector σ ∈ {0, 1}r where a
0 in the i th coordinate indicates that edge e0i was deleted. Since N ′ is assumed to be
a tree-child network, after deleting the r edges, the result is a rooted n-leaf tree Tσ .
Since there are four DNA bases and n leaves of the network, there are 4n possible
site-patterns, or assignment of states, that could be observed at the leaves of N ′. The
probability of observing the site-pattern ω is

pω =
∑

σ∈{0,1}r

(
r∏

i=1

δ
1−σi
i (1 − δi )

σi

)
∑

(φ : φ(X )=ω)

πφ(ρ)

∏

e=uv∈Σ(Tσ )

Me
φ(u),φ(v). (1)

While seemingly complicated, the above expression is a polynomial in the numeri-
cal parameters of the model: the root distribution, the entries of the transition matrices,
and the reticulation edge parameters. Thus the map defined by the network N ′

ψN ′ : θN ′ → Δ4n−1,

from the numerical parameter space θN ′ := Δ3 × (S4)
|Σ(N ′)| × (0, 1)r to the prob-

ability simplex Δ4n−1 is a polynomial map. The image of the map ψN ′ is called the
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model associated to N ′, denotedMN ′ . Note the modelMN ′ is the set of all possible
probability distributions obtained by fixing the network N ′ and varying the numerical
parameters. See Fig. 1 for an example of a network with its numerical parameters.

When we place no restrictions on the entries of the transition matrices (other than
that they are stochastic) the underlying substitution process is known as the general
Markov model. Network-based phylogenetic models with a general Markov substi-
tution process are studied for example in Casanellas and Fernández-Sánchez (2020).
However it is quite common in phylogenetics to consider models with additional con-
straints, effectively reducing the dimension of the parameter space θN ′ . For example,
in the Kimura 3-parameter DNA substitution model, the root distribution is uniform
and each transition matrix is assumed to have the following form, where the rows and
columns are indexed by the DNA bases A,G,C, T ,

⎛

⎜
⎜
⎝

α β γ δ

β α δ γ

γ δ α β

δ γ β α

⎞

⎟
⎟
⎠ .

In the Kimura 2-parameter model (K2P), and Jukes–Cantor models, additional restric-
tions are placed on the entries of the transitionmatrices (γ = δ for K2P andβ = γ = δ

for JC).
In order to not overload the word “model," we will refer to these restrictions on

the transition matrices as constraints. For example, we will refer to the image of ψN ′
under the Jukes–Cantor DNA substitution model as the model associated to N ′ under
the Jukes–Cantor constraints.

We end this section on network-based Markov models by noting that there exist
other natural extensions of tree-based Markov models. For example, in Francis and
Moulton (2018), the authors consider a network model adapted from Thatte (2013)
and are able to establish identifiability for the entire class of tree-child networks. The
stronger identifiability results come at the expense of somemodeling flexibility, but the
difference can illustrate the possible gains that can be made by considering different
processes.

2.3 Semi-directed networkmodels

In this section, we show how to associate amodelMN to a phylogenetic semi-directed
network N for the group-based models considered in this paper. We will see that for
a given set of constraints (JC, K2P, K3P), if N ′ is a phylogenetic network and N is
the semi-directed network attained from N ′ as in Definition 1, thenMN = MN ′ . We
start by showing that the model associated to a rooted network N does not depend on
the location of the root. Then, we show that the associated model does not change if
we suppress degree two vertices or remove parallel edges in the network. Thus, the
phylogenetic semi-directed network N contains all of the information necessary to
recover MN ′ .
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For a tree-based phylogenetic model under the Jukes–Cantor, Kimura 2-parameter,
or Kimura 3-parameter constraints, we may relocate the root and suppress vertices
of degree two without changing the underlying model [see, for example, Sect. 8.5 in
Semple and Steel (2003) or Chapter 15 in Sullivant (2018)]. That we can relocate the
root is easily observed since each of the transition matrices is symmetric and the root
distribution is uniform, so thatπi Mi, j = π j M j,i .To see that wemay suppress vertices
of degree two without changing the model, suppose the edges e and f are incident
to a vertex of degree two and that the Markov transition matrices Me and M f satisfy
the Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints. Then the
transition matrix MeM f will satisfy the same constraints, so we may suppress the
vertex of degree two and assign this transition matrix to the newly created edge to
obtain the same site pattern probability distribution from the model. These results
imply that the location of the root of the rooted tree parameter in a tree-based Markov
model cannot be identified from an expected site-pattern in the model. Or, viewed
another way, these results mean that we can associate a tree-based Markov model to
an unrooted tree and consider the tree parameter in a tree-based Markov model to be
an unrooted tree.

A similar result holds for the network-based Markov models considered in this
paper. For a fixed choice of parameters in a network model, the associated site pattern
probability distribution is the weighted sum of site-pattern probability distributions
from the constituent tree models. The weights are determined by the reticulation edge
parameters. Since relocating the root in each of the trees does not affect the treemodels,
the network model will remain the same if we relocate the root of the network and
redirect the edges in any way that preserves the direction of the reticulation edges. For
example, in the rooted network in Fig. 1, we could suppress the existing root vertex,
subdivide the edge directed into the leaf vertex labeled by z to create a new root, and
then redirect edges away from the new root in a way that preserves the directions of
the reticulation edges.

If a child of the root vertex is a reticulation vertex, then unrooting and suppressing
the root will may result in a pair of parallel reticulation edges in the semi-directed
network. However, under the JC, K2P, and K3P constraints, we may identify any
pair of parallel edges without altering the model. The reason for this is that the sets
of transition matrices under each of these constraints are closed under convex sums.
So if a network contains a set of parallel reticulation edges with transition matrices
Me and M f , we can replace these edges with a single edge with transition matrix
δMe + (1 − δ)M f and obtain the same site-pattern probability distribution in the
model, where δ is the reticulation edge parameter for the edge e.

Together, these arguments give us the following proposition.

Proposition 1 Let N ′
1 and N ′

2 be two tree-child phylogenetic networks with associ-
ated phylogenetic semi-directed networks N1 and N2. Under the JC, K2P, or K3P
constraints, if N1 = N2 then MN ′

1
= MN ′

2
.

Thus, the model associated to a rooted phylogenetic network is entirely determined by
the associated phylogenetic semi-directed network. Although we note that the argu-
ments above are specific to the JC, K2P, and K3P constraints, and similar arguments
might not work for other network-based Markov models.
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Proposition 1 suggests that we may regard the network parameter of a network-
based Markov model as a phylogenetic semi-directed network. Given a phylogenetic
semi-directed network N , we can determine the model MN by choosing any rooted
network N ′ for which N is the associated semi-directed network and definingMN :=
MN ′ . Therefore, for the rest of this paper,wewill assume that the network parameter of
each model is an n-leaf phylogenetic semi-directed network. Indeed, this is necessary
to obtain any identifiability results, as the location of the root in a rooted network is
not identifiable from an expected site pattern probability distribution in the model.

2.4 Markovmodels as algebraic varieties

In this paper, we prove generic identifiability using tools from combinatorics and
computational algebraic geometry. In order to understandMN = Im(ψN ) within an
algebraic-geometric framework, we consider the complex extension of ψN , which we
denote as ψ ′

N .
Let C[pω : ω ∈ {A,G,C, T }n] be the set of all polynomials on 4n variables with

coefficients in C. The ideal associated toMN is the set of polynomials that vanish on
the image of ψ ′

N , i.e.

IN := { f ∈ C[pω : ω ∈ {A,G,C, T }n] : f (p) = 0 ∀p ∈ Im(ψ ′
N )}.

The elements of IN are called phylogenetic invariants. Each polynomial in IN
vanishes on MN , that is, each polynomial yields zero when we substitute the entries
of any probability distribution p ∈ MN . Phylogenetic invariants are the defining
polynomials of the varietyVN associated toMN , which wewill refer to as the network
variety. Specifically,

VN := V(IN ) = {p ∈ C
4n : f (p) = 0 for all f ∈ IN }.

Elements of IN are polynomial relationships among the entries of p that hold for
all distributions p ∈ MN . If we look back at equation (1), it is reasonable to assume
that such relationships may be quite complicated since each probability coordinate
pω is parameterized by a polynomial that is the sum of 2r4(n+2r−1) terms. Because of
this, we perform a linear change of coordinates on both the parameter space and the
image space called the Fourier-Hadamard transform (Evans and Speed 1993; Hendy
and Penny 1996). After the transform, the invariants are expressed in the ring of q-
coordinates,

C[qω : ω ∈ {A,G,C, T }n].

As an example of how the Fourier-Hadamard simplifies the resulting algebra, for a tree-
based phylogenetic model, the parameterization of each q-coordinate is a monomial
in the Fourier parameters and the phylogenetic tree ideal is generated by binomials.
Working in the transformed coordinates is common when working with group-based
models and it is what enables us to compute the required network invariants. While the
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details of the Fourier-Hadamard transform are outside the scope of this paper, we give
here a brief description of how to parametrize a phylogenetic network model under
the Jukes–Cantor, Kimura 2-parameter, and Kimura 3-parameter constraints. More
details can be found in Sturmfels and Sullivant (2005) and Chapter 15 of Sullivant
(2018).

First, we will describe how to determine the Fourier parametrization of a phylo-
genetic tree, T . As in Sturmfels and Sullivant (2005) and Sullivant (2018), we begin
by identifying the four DNA bases with elements of the group Z2 × Z2 as follows
A = (0, 0), G = (1, 0), C = (0, 1) and T = (1, 1). Under the Kimura 3-parameter
constraints, there are then four Fourier parameters associated to each edge i , denoted
as aiA, a

i
G , a

i
C , and aiT (after transformation, the stochastic condition on the tran-

sition matrices forces aiA = 1). Letting ω be the site pattern (g1, g2, . . . , gn), the
parametrization is then given by

qω =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∏

e∈Σ(T )

ae∑
j∈Y g j

if
n∑

j=1

g j = 0

0 otherwise.

where Σ(T ) is the set of edges of T and Y − Z is the split induced by e in T . All
addition is in the group Z2 × Z2.

Notice that this is a monomial, in which there is one parameter associated to each
edge of the tree T . In order to parametrize a phylogenetic network, we take the sum
of the monomials corresponding to all 2r trees created by removing reticulation edges
from the network. Themonomials are weighted by the corresponding reticulation edge
parameters.

2.5 Generic identifiability

Amodel-based approach to network inference selects themodel from a set of candidate
models that best fits the observed data according to some criteria and returns the
network parameter of this model. In our setting, the observed data are the aligned
DNA sequences of the taxa under consideration, fromwhichwe construct the observed
site pattern probability distribution. In the ideal setting, if we had access to infinite
noiseless data generated by a network-based Markov model, then the observed site
pattern distribution would be equal to an expected site pattern distribution in the
model. Inferring the correct network parameter in this case would be as simple as
determining which model from a set of candidate models the site pattern probability
distribution belongs to. However, even in this idealized setting, it may be that the
observed site pattern distribution belongs to the models corresponding to two distinct
networks, making it impossible to determine which network produced the data. Thus,
a desirable theoretical property for a class of network models is that each distribution
in one of the models belongs to no other model, or that the network parameter be
identifiable.
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Let N be a set of leaf-labelled networks. More formally, the condition that the
network parameter is identifiable with respect to a collection of models {MN }N∈N
is equivalent to the condition that for all distinct N1, N2 ∈ N , MN1 ∩ MN2 = ∅,
meaning the two models do not intersect. Since this notion of identifiability is rather
strong, themore practical notion of generic identifiability is more commonly explored.

Definition 2 Let {MN }N∈N be a class of phylogenetic network models. The network
parameter is generically identifiable with respect to the class {MN }N∈N if given any
two distinct n-leaf networks N1, N2 ∈ N , the set of numerical parameters in θN1 that
ψN1 maps into MN2 is a set of Lebesgue measure zero.

To establish generic identifiability, we can use algebraic geometry by considering
the family of irreducible algebraic varieties {VN }N∈N , where VN is the network vari-
ety associated to N . Generic identifiability is then closely related to the concept of
distinguishability.

Definition 3 (Gross and Long 2017) Two distinct n-leaf networks N1 and N2 are
distinguishable if VN1 ∩VN2 is a proper subvariety of VN1 and VN2 , that is, VN1 � VN2

and VN1 � VN2 . Otherwise, they are indistinguishable.

Proposition 2 (Gross and Long 2017, Proposition 3.3) Let {MN }N∈N be a class
of phylogenetic network models. The network parameter of a phylogenetic network
model is generically identifiable with respect to {MN }N∈N if given any two distinct
n-leaf networks N1, N2 ∈ N , the networks N1 and N2 are distinguishable.

The condition that the network parameter be generically identifiable then amounts
to showing that for all N1, N2 ∈ N , the networks N1 and N2 are distinguishable, or
equivalently, VN1 � VN2 and VN1 � VN2 . Proving that this condition is satisfied can
then be done either by explicit computation of the ideals associated to N1 and N2 (as
in Gross and Long (2017)), or by arguing that certain phylogenetic invariants must
exist [as in Hollering and Sullivant (2020)].

3 Distinguishability of 4-leaf semi-directed networks

Our aim is to prove Theorem 2, by showing that any two distinct n-leaf r -reticulation
triangle-free level-1 semi-directed networks are distinguishable. In order to show this,
we will require a number of results concerning 4-leaf networks which we prove in
Lemma 1 below.

Up to leaf relabeling, there are six different 4-leaf level-1 semi-directed networks
which are depicted in Fig. 2. In Lemma 1, we assume that N1 and N2 are two distinct
4-leaf semi-directed networks. We then consider all cases where N1 and N2 are each
either a quartet tree (Q), a single triangle network (Δ), a double-triangle network
(DT ), or a 4-cycle network (4C), and compare the resulting varieties. We only need
to consider four possibilities for each of N1 and N2, because under the JC, K2P, and
K3P constraints, the variety of a triangle or double-triangle semi-directed network
is determined by the unrooted skeleton of the network. This can be shown by first
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(a) (b) (c) (d)

Fig. 2 All possible semi-directed level-1 networks on four leaves (up to relabeling of leaves), grouped by
their unrooted skeletons

observing that under the JC, K2P, and K3P models, the ideals of all of the 3-leaf semi-
directed triangle networks are identical. The proof then follows by applying the same
toric fiber product argument that is described in the remark following Proposition 4.5
in Gross and Long (2017).

The results of Lemma 1 are summarized in Table 1 and the caption of that table
contains the key to the symbols. To give a couple of examples, part (ii) of the lemma
corresponds to the (2, 2) entry of the table. The ∼ symbol indicates that the networks
are distinguishable, but only if N1 and N2 have distinct unrooted skeletons. The results
of part (iii) of the lemma are represented by the entries (4, 1) and (4, 2) (when k1 = 4
and N1 is a 4-cycle network) and by (2, 1) (when k1 = 3 and N1 is a 3-cycle, or triangle
network). And of course, these results are also represented by the entries (1, 4), (2, 4),
and (2, 1) when the roles of N1 and N2 are reversed.

Lemma 1 Let N1 and N2 be distinct 4-leaf level-1 semi-directed networks. Then under
the JC, K2P, or K3P constraints:

(i) If N1 and N2 are both trees, then N1 and N2 are distinguishable;
(ii) If N1 and N2 are both single-triangle networks and have different (leaf-labelled)

unrooted skeletons, then N1 and N2 are distinguishable;
(iii) If N1 is a k1-cycle network with k1 ≤ 4 and N2 is a tree or a k2-cycle network

with k2 < k1, then VN1 � VN2 ;
(iv) If N1 and N2 are both 4-cycle networks, then N1 and N2 are distinguishable;
(v) If N1 is a double-triangle network and N2 a single-triangle network or a tree,

then VN1 � VN2 ;
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Table 1 An overview of Lemma 1 results for two distinct 4-leaf level-1 semi-directed networks N1 and N2.
The two networks are represented by the row for N1 and the column for N2, and each element in the 4×4 grid
indicates whether the two networks are distinguishable (

√
), the variety of one network is not contained in

that of the other (�meansVN1 � VN2 , and�meansVN1 � VN2 ), or the two networks are distinguishable
if the unrooted skeletons are different (∼)

N2

Q Δ DT 4C

Q
√

� � �

N1 Δ � ∼ � �

DT � � ∼ √
4C � �

√ √

(vi) If N1 is a double-triangle network and N2 is a 4-cycle network, then N1 and N2
are distinguishable;

(vii) If N1 and N2 are both double-triangle networks and have different (leaf-labelled)
unrooted skeletons, then N1 and N2 are distinguishable.

See Table 1 for an overview.

The proof of Lemma 1 will be given below. We first outline the proof strategy.
Some parts of the lemma will follow immediately from results in Gross and Long
(2017) and Hollering and Sullivant (2020). In Gross and Long (2017), the proofs were
obtained by computingGröbner bases for all of the ideals involved and then comparing
the ideals. However, this was only possible because the constraints considered were
the Jukes–Cantor constraints, the most restrictive that we consider. In Hollering and
Sullivant (2020), the authors extend the results to the K2P and K3P constraints using
a method based on the theory of algebraic matroids. This method is preferable when
there are fewer constraints since the Gröbner bases computations are difficult if not
impossible to carry out. Here, we find the required invariants bymodifying thismethod
slightly. Specifically, we apply the random search strategy described in that paper to
locate small subsets of variables that are likely to contain distinguishing invariants.
We then perform our computations in a much smaller subring of the original variables.
This greatly reduces the size of the required computations and allows us to generate
specific invariants without computing Gröbner bases for the ideals.

In order to reduce the total number of invariants required to prove each part, we
take advantage of the symmetry between networks. As an example, suppose that the
statement in part (vii) is false. Then there must exist two double-triangle networks
with distinct skeletons, N1 and N2, that are not distinguishable. All of the network
varieties are parameterized, and hence irreducible as algebraic varieties, which means
we may assume that if two networks are not distinguishable then one is contained in
the other. Thus, without loss of generality, we may assume that VN1 ⊆ VN2 , which
implies the reverse inclusion of ideals, IN2 ⊆ IN1 . Up to relabeling, every double-
triangle network has the same unrooted skeleton. Thus, we can obtain any arbitrary
double-triangle network N̂2 from N2 by permuting leaf labels. If we apply the same
permutation to the leaf labels of N1, we obtain another double-triangle network N̂1 for
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which IN̂2
⊆ IN̂1

. Since our choice of N̂2 is arbitrary, if we can show that there is a
single double-triangle networkwith ideal not contained in the ideal of anyother double-
triangle network, then we arrive at a contradiction, and have thus proven part (vii).
Therefore, in order to prove part (vii), it will suffice to produce a single invariant that
vanishes on exactly one of the double-triangle network varieties. A similar argument
applies in each of the other parts.

In order to prove some parts of the lemma, we require two or more invariants to
distinguish all of the relevant networks, though all parts can be proven using some
combination of just the following six polynomial invariants:

g1 = qAT T AqCCGGqGATC − qAAGGqCTTCqGCT A,

g2 = qCT TC − qGCGC ,

g3 = qCAGT qGTCAqTGAC − qCACAqGTGT qTGAC − qCAGT qGT ACqTGCA

+ qCAACqGTGT qTGCA + qCACAqGT ACqTGGT − qCAACqGTCAqTGGT ,

g4 = qAACCqCGCGqGAGAqT AAT − qAACCqCGAT qGAGAqT ACG

+ qAACCqCAGT qGGAAqT ACG − qAAAAqCAGT qGGCCqT ACG ,

g5 = qAAAAqGACT qGCGC − qAAGGqT AAT qTGCA,

g6 = qAAGGqGATCqT AAT − qAAT T qGAAGqT AGC .

In the supplementary Macaulay2 (Grayson and Stillman 2002) files, available at
https://github.com/colbyelong/DistinguishingLevel1PhylogeneticNetworks,
we provide the code to verify that these polynomials vanish or do not vanish on the

referenced varieties as claimed.

Proof (Proof ofLemma1)Statement (i) is awell-known result for the JC,K2P, andK3P
constraints and can be verified using the Small trees catalog (Casanellas et al. 2005).
For the Jukes–Cantor constraints, (ii)-(iv) follow from Proposition 4.6, Corollary 4.8,
and Corollary 4.9 in Gross and Long (2017).

To prove (ii) for the K2P and K3P constraints we require a set of invariants that
vanishes on exactly one of the single-triangle networks. The set {g1} is confirmed to be
such a set for both constraints in the supplementary files. Statements (iii) and (iv) are
proven for the K2P and K3P models by Lemmas 28 and 29 in Hollering and Sullivant
(2020).

To prove (v), we require a set of invariants that vanishes on one of the tree varieties,
but onnoneof the double-triangle networkvarieties, and a set of invariants that vanishes
on one of the single-triangle networks varieties, but on none of the double-triangle
network varieties. The set {g1} is shown to be the required set for both parts under
K2P and K3P, and the set {g1, g2} works for the JC constraints.

For (vi), we must first show that there is a set of invariants that vanishes on one of
the double-triangle network varieties but on none of the 4-cycle network varieties. The
set {g3} works for all constraints and thus establishes that if N1 is a double-triangle
and N2 is a 4-cycle network, then VN2 � VN1 . We prove that VN1 � VN2 , and hence
that the networks are distinguishable, by constructing a set of invariants that vanishes
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on one of the 4-cycle network varieties but on none of the double-triangle network
varieties. For the JC constraints, this set is {g4, g5}. For the K2P and K3P constraints,
this set is {g4, g6}.

The invariant g3 also establishes (vii), since it vanishes on exactly one of the double-
triangle networks under JC, K2P, and K3P. ��

We also need a result on 4-leaf networks that does not fit into Table 1. To state this
result we first need some definitions concerning the type of splits in a network.

Definition 4 For networks N1 and N2, we say X − Y is a common split if X − Y is a
split in both N1 and N2; it is non-trivial if |X |, |Y | ≥ 2. Two splits X − Y in N1 and
A − B in N2 are conflicting if X ∩ A, X ∩ B,Y ∩ A,Y ∩ B are all non-empty.

Lemma 2 Let N1 and N2 be distinct 4-leaf level-1 semi-directed networks. If N1, N2
have conflicting splits, then N1 and N2 are distinguishable under the JC, K2P, or K3P
constraints.

Proof Note that 4-cycles have no non-trivial splits, so we just need to compare trees,
single-triangle networks, and double-triangle networks. Moreover, Table 1 shows that
we only need to verify that VN1 � VN2 in the following cases:

(i) when N1 is a tree or triangle network and N2 is a double-triangle network with a
conflicting split and

(ii) when N1 is a tree and N2 is a triangle network with a conflicting split.

The invariant g3 can be used to verify case (i) for all three constraints. The invariant
g2 can be used to verify case (ii) for JC, and g1 can be used to verify case (ii) for K2P
and K3P. ��

Finally we require Lemma 3, which allows us to use the above small networks as
building blocks to prove the claim about larger networks. To state Lemma 3, we first
define the restriction of a network to a subset of leaves.

Definition 5 Let N be an n-leaf semi-directed network on X and let A ⊆ X . The
restriction of N to A is the semi-directed network N |A obtained by taking the union of
all directedpaths between leaves in A (where undirected edges are treated as bidirected)
and then suppressing all degree two vertices and removing parallel edges.

Lemma 3 is essentially a one-way version of Proposition 4.3 from Gross and Long
(2017), and we use a piece of the proof of that proposition below.

Lemma 3 Let N1 and N2 be distinct n-leaf semi-directed networks on X and let
A ⊆ X . If VN1|A � VN2|A , then VN1 � VN2 .

Proof Let VN1|A � VN2|A . Then VN1|A ∩ VN2|A � VN1|A . In the proof of Proposition
4.3 from Gross and Long (2017), it is shown that if VN1|A ∩ VN2|A � VN1|A , then there
exists a polynomial invariant f contained in IN2 \IN1 , which implies that IN2 � IN1 ,
and so VN1 � VN2 . ��

Lemma 3 implies that in order to prove Theorem 2 it will suffice to show that
for any distinct triangle-free level-1 semi-directed networks N1 and N2, there either
exists a set A ⊆ X with |A| = 4 such that N1|A and N2|A are distinguishable, or sets
A, B ⊆ X with |A| = |B| = 4 such that VN1|A � VN2|A and VN1|B � VN2|B .
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4 Combinatorial properties of triangle-free level-1 semi-directed
networks

If X∪Y is a partition ofX such that N contains an X−Y split, then denote by N/X the
network N |{x}∪Y , for an arbitrary x ∈ X . Observe that the unrooted skeleton of N/X
does not depend on the choice of x . Observe also that r(N ) = r(N/X) + r(N/Y ).

Observation 1 If N1 and N2 are distinct n-leaf semi-directed networks and X − Y
is a common split, then either N1/X and N2/X are distinct or N1/Y and N2/Y are
distinct.

The next lemma follows immediately from Lemma 3 and the definition of N/X .

Lemma 4 Let N1 and N2 be distinct n-leaf semi-directed networks on X . Suppose
X ∪ Y is a partition of X such that N1 and N2 both contain an X − Y split. If
VN1/X � VN2/X then VN1 � VN2 .

Let N be an n-leaf triangle-free level-1 semi-directed network on X and C a cycle
in N . Let e1, . . . , es be the cut-edges incident to C . Then the partition induced by C
is the partition X1| . . . |Xs of X such that x ∈ Xi if and only if x is separated from
C by ei . We say Xi is below the reticulation vertex if ei is the edge incident to the
reticulation vertex in C . If Xi is below the reticulation vertex in C then we also say
that x is below the reticulation vertex for any x ∈ Xi .

We say a set of three or more leaves {x1, . . . , xt } meet at a cycle C if each leaf in
{x1, . . . , xt } appears in a different set of the partition induced by C . We say that they
induce a cycle in N if N |{x1,...,xt } is a t-cycle network. Note that if the set of leaves
{x1, . . . , xt } induce a cycle then they must meet at a cycle, but the converse does not
hold unless one of {x1 . . . , xt } is below the reticulation vertex. As an example consider
the network in Fig. 4a: {a1, a2, a3} meet at the cycle C1 but do not induce a cycle,
whereas {x, a1, a2, a3} also induce a cycle.

Observe that if {x1, . . . , xt } (t ≥ 3) meet at a cycle, then they meet in exactly one
cycle in N , i.e., this cycle is unique in N . Denote this cycle by CN (x1, . . . , xt ). (Note
that CN (x1, . . . , xt ) is not well-defined if {x1, . . . , xt } do not all meet at a cycle.)

Let N1 and N2 be distinct n-leaf triangle-free level-1 semi-directed networks on
X , and let C1 be a cycle in N1 that induces a partition A1| . . . |As |X ′ with X ′ below
the reticulation vertex. Let C2 be a cycle in N2 that induces a partition B1| . . . |Bt |X ′,
with X ′ below the reticulation vertex. We say that C2 refines C1 if B1| . . . |Bt is a
refinement of A1| . . . |As , i.e., if

⋃s
i=1 Ai = ⋃t

j=1 Bj and every pair of leaves a, b that
are contained in different sets in A1| . . . |As also appear in different sets in B1| . . . |Bt .
See Fig. 3.

We recall a combinatorial result from Baños (2019) on four-leaf induced cycles.
We state the result using notation and terms from this paper.

Lemma 5 (Lemmas 12 and 13 of Baños (2019)) Let N be an n-leaf triangle-free level-
1 semi-directed network on X . If two distinct subsets of four leaves induce a 4-cycle,
where three leaves in the two sets are the same, then the five leaves (the union of
the two sets) meet at the same cycle. In other words, let a, b, c, d, e ∈ X be leaves
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Fig. 3 Two triangle-free level-1 semi-directed networks N1 and N2 on taxa set {a, a1, a2, a3, a4, b, c, d, x}.
The cycle C1 in N1 induces a partition {a, a1, a4}|{a2, b}|{a3}|{c}|{x, d} and the cycle C2 in N2 induces
a partition {a, a1}|{a4}|{a2}|{b}|{a3}|{c}|{x, d}. The cycle C2 refines C1

of N such that N |{a,b,c,d} and N |{a,b,c,e} are both 4-cycle networks. Then {a, b, c, d}
and {a, b, c, e} meet at the same cycle.
Lemma 6 Let N1 and N2 be distinct n-leaf triangle-free level-1 semi-directed networks
onX . Suppose that for anya, b, c, d ∈ X , if N1|{a,b,c,d} is a 4-cycle, then N2|{a,b,c,d} =
N1|{a,b,c,d}. Then every cycle in N1 is refined by a cycle in N2.

Proof LetC1 be a cycle in N1 that induces a partition A1| . . . |As |X ′ with X ′ below the
reticulation vertex. Choose any a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, x ∈ X ′. As N1|{a1,a2,a3,x}
is a 4-cycle, N2|{a1,a2,a3,x} is the same 4-cycle. So let C2 = CN2(a1, a2, a3, x). We
claim that C2 is the desired cycle of N2 that refines C1.

To see this, first consider any a ∈ Ah, b ∈ Ai , c ∈ A j , d ∈ X ′ where 1 ≤ h <

i < j ≤ s. Then a, b, c, d all meet at C1 and so CN1(a, b, c, d) is well-defined.
Since i, j > 1, we can replace a with a1 and have that the set of leaves {a1, b, c, d}
also meet at C1. By similar arguments, we also have that {a1, a2, c, d} meet at C1 and
{a1, a2, a3, d}meet atC1.Moreover each of these sets of 4 leaves induces a cycle in N1
(as d is below the reticulation vertex in C1), and so also induce a cycle in N2. Thus we
have that N2|{a,b,c,d}, N2|{a1,b,c,d}, N2|{a1,a2,c,d}, N2|{a1,a2,a3,d} are all 4-cycles, and in
particular CN2(a, b, c, d), CN2(a1, b, c, d), CN2(a1, a2, c, d), CN2(a1, a2, a3, d) are
all well-defined. (See Fig. 4.) By Lemma 5, we must have that CN2(a, b, c, d) =
CN2(a1, b, c, d) = CN2(a1, a2, c, d) = CN2(a1, a2, a3, d) = CN2(a1, a2, a3, x) =
C2.

We thus have that for a ∈ Ah, b ∈ Ai , c ∈ A j , d ∈ X ′ with h < i < j , the set of
leaves {a, b, c, d} all meet at C2.

Now consider any two leaves a′, b′ such that a′, b′ appear in different sets in
A1| . . . |As |X ′. By choosing additional leaves c′, d ′ from other sets, such that one
of a′, b′, c′, d ′ is in X ′, we have that CN2(a

′, b′, c′, d ′) = CN2(a, b, c, d) where
a ∈ Ah, b ∈ Ai , c ∈ A j , d ∈ X ′, for some h < i < j . Then by the above we
have that CN2(a

′, b′, c′, d ′) = C2. In particular, a′, b′ appear in different sets in the
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(a) (b)

Fig. 4 Illustration of part of the proof of Lemma 6. On the left we have an example of some leaves joining a
cycle C1 in N1, such that {a, b, c, d} all meet at C1 with d below the reticulation vertex, and {a1, a2, a3, x}
all meet at C1 with x below the reticulation vertex. The cycles on the right are all induced 4-cycles in N1,
and therefore by assumption are also induced 4-cycles in N2. As the sets {a, b, c, d} and {a1, b, c, d} differ
by only 1 element, they must meet at the same cycle in N2. By repeating a similar argument, we can show
that {a, b, c, d} and {a1, a2, a3, x} meet at the same cycle in N2

partition induced byC2. This implies that the partition induced byC2 is a refinement of
the partition induced by C1. Moreover, observe that a′ is below the reticulation vertex
inC2 if and only if a′ ∈ X ′ (since the only element of {a, b, c, d} below the reticulation
vertex inC2 is the one from X ′). Thus, the partition induced byC2 is B1| . . . |Bt |X ′ with
X ′ below the reticulation and B1| . . . |Bt a refinement of A1| . . . |As . Therefore, C2
refines C1. ��

Lemma 7 Suppose that every cycle in N1 is refined by a cycle in N2. If N2 has a
non-trivial split, then either N1, N2 share a non-trivial common split or they have
conflicting splits.

Proof Let A− B be a non-trivial split in N2. Fix an arbitrary b ∈ B, and take the edge
e in N1 furthest from b such that e separates b from A. If e separates A from B, then
A − B is a non-trivial common split and we are done.

Otherwise, let u be the vertex in e nearer to A. If u is on a cycle, then denote this
cycle by C1. Let X1| . . . |Xs be the partition induced by C1, noting by construction
that Xi ∩ A = ∅ for the set Xi containing b (since Xi is the set of leaves reachable
from C via e). If X j ⊇ A for any j , then the corresponding edge e j leaving C is an
edge that is further away from b than e and which separates A from b, contradicting
the choice of e. So we may assume that the partition X1| . . . |Xs must subdivide A
(that is, A has non-empty intersection with at least two sets X j , Xh).

Furthermore X1| . . . |Xs must subdivide B, as otherwise the set Xi (which contains
b) contains all of B and also none of A, which would imply that A − B is a common
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(a) (b)

Fig. 5 Illustration of N1 in the proof of Lemma 7

split. So C1 is a cycle in N1 whose induced partition subdivides both A and B. As
every cycle in N1 is refined by a cycle in N2, this implies that some cycle in N2 also
subdivides both A and B. But this contradicts the fact that N2 contains an A− B split.
(See Fig. 5a.)

If u is not on a cycle, let f and g be the other edges incident to u. By choice of
e, neither f nor g can separate A from b. Thus there is at least one element a ∈ A
reachable from u via f , and at least one element a′ ∈ A reachable from u via g. As e
does not separate A from B, there is at least one b′ ∈ B that is reachable from u via
either f or g, say (without loss of generality) f . Then let X − Y be the split induced
by f , with Y the set containing b. Observe that a, b′ ∈ X while a′, b ∈ Y . Thus we
have that X ∩ A, X ∩ B,Y ∩ A,Y ∩ B are all non-empty, and so N1 and N2 have
conflicting splits. (See Fig. 5b.) ��

5 Distinguishability of triangle-free level-1 networks

Theorem 2 follows as a corollary of the next lemma.

Lemma 8 Let N1 and N2 be distinct n-leaf triangle-free level-1 semi-directed networks
on X and r(N1) ≥ r(N2). Then VN1 � VN2 under the JC, K2P, and K3P constraints.

Proof We prove the claim by induction on n = |X |, the number of leaves in N1 and
N2. For the base case, if n ≤ 4 then either r(N1) = 0 or r(N1) = 1. If r(N1) = 0,
then N1 and N2 are both trees. If r(N1) = 1 and r(N2) = 1, then N1 and N2 are both
4-cycles. If r(N1) = 1 and r(N2) = 0, then N1 is a 4-cycle network and N2 is a tree.
For each of these cases, by Lemma 1, it follows that VN1 � VN2 . Note that we must
have r(N1) ≤ 1 and r(N2) ≤ 1 as these networks are triangle-free. Thus, this covers
all cases for n ≤ 4.

So now assume that n > 4 and that the claim is true for all smaller values of n. We
first show that we may assume that any set of 4 leaves that induces a 4-cycle in N1
induces the same 4-cycle in N2.

Indeed, suppose this is not the case, and consider some arbitrary A ⊆ X with |A| =
4 such that N1|A is a 4-cycle but N2|A is not the same 4-cycle. If N2|A is a different

123



32 Page 20 of 24 E. Gross et al.

4-cycle or a double-triangle, then by Lemma 1, N1|A and N2|A are distinguishable
(and in particular, VN1|A � VN2|A ).

Otherwise, N2|A is either a tree or a 3-cycle network, and Lemma 1 implies that
VN1|A � VN2|A . In either case, VN1|A � VN2|A and hence, by Lemma 3, we have
VN1 � VN2 .

So we may now assume that any set of 4 leaves that induces a 4-cycle in N1 induces
the same 4-cycle in N2. By Lemma 6, this implies that every cycle in N1 is refined by
a cycle in N2. By Lemma 7, N1 and N2 must have either a non-trivial common split
or conflicting splits, or N2 must have no non-trivial split. It remains to complete the
proof in these three cases.

Firstly, if N1, N2 have conflicting splits, then by Lemma 2 we have VN1 � VN2 , as
required.

Secondly, suppose that X − Y is a non-trivial common split, and consider N1/X
N2/X , N1/Y , N2/Y as defined in the beginning of Sect. 4. Since |X |, |Y | ≥ 2,
each of these networks has fewer than n leaves. Thus by the induction hypothesis,
if N1/X , N2/X are distinct and r(N1/X) ≥ r(N2/X), then VN1/X � VN2/X , from
which it follows that VN1 � VN2 . A similar argument holds if N1/Y , N2/Y are distinct
and r(N1/Y ) ≥ r(N2/Y ). But at least one of these cases must hold. Indeed, since
r(N1/X) + r(N1/Y ) = r(N1) ≥ r(N2) = r(N2/X) + r(N2/Y ), it must hold that
r(N1/X) > r(N2/X), r(N1/Y ) > r(N2/Y ) or r(N1/X) = r(N2/X) and r(N1/Y ) =
r(N2/Y ). If r(N1/X) > r(N2/X) (or r(N1/Y ) > r(N2/Y )) then those networks are
clearly distinct. Otherwise we have r(N1/X) = r(N2/X) and r(N1/Y ) = r(N2/Y ).
We must have that N1/X , N2/X are distinct or N1/Y , N2/Y are distinct, since N1 and
N2 are distinct. Thus we either have that N1/X , N2/X are distinct and r(N1/X) ≥
r(N2/X), or N1/Y , N2/Y are distinct and r(N1/Y ) ≥ r(N2/Y ). In either case we
have VN1 � VN2 , as required.

Finally, suppose that N2 has no non-trivial split. Then N2 is an n-cycle network,
that is, N2 has a single cycle and every leaf is incident to a vertex on the cycle. If
r(N1) = 1, then N1 and N2 are both networks with exactly one cycle of length at least
four. It then follows from Theorem 1, together with Proposition 2, that N1 and N2 are
distinguishable (and, in particular, VN1 � VN2 ). If on the other hand r(N1) ≥ 2, then
consider two cycles C1 and C2 in N1, with X ′

1 the subset of X below the reticulation
in C1, and X ′

2 the subset of X below the reticulation in C2. Since C1 and C2 are
different cycles, X ′

1 �= X ′
2. But then this contradicts the fact that every cycle in N1

is refined by a cycle in N2, as the single cycle in N2 would have to have both X ′
1

and X ′
2 as the set of leaves below the reticulation. Thus in all cases we have either a

contradiction or VN1 � VN2 , which completes the proof of Lemma 8. ��
We are now ready to prove Theorem 2, which we restate for convenience.

Theorem 2 The network parameter of a network-based Markov model under the
Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints is generically
identifiable with respect to the class of models where the network parameter is an
n-leaf triangle-free, level-1 semi-directed network with r ≥ 0 reticulation vertices.

Proof Let {MN }N∈N be a class of triangle-free, level-1 network models with a fixed
number of reticulation vertices. Let N1, N2 ∈ N be distinct n-leaf triangle-free level-1
semi-directed networks on X with r(N1) = r(N2). By invoking Lemma 8 twice, we
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have VN1 � VN2 and VN2 � VN1 under the JC, K2P, and K3P constraints. By defini-
tion, N1 and N2 are distinguishable; as N1 and N2 were chosen arbitrarily fromN , it
follows that the semi-directed network parameter of {MN }N∈N is generically identi-
fiable under the JC, K2P, and K3P constraints. ��

6 Discussion

We have shown that triangle-free level-1 semi-directed networks are generically
identifiable under the Jukes–Cantor, Kimura 2-parameter, and Kimura 3-parameter
constraints. This means that, given a long enough multiple sequence alignment that
evolved on a network of this class under one of these models, this network is, with
high probability, the only network from the class that coincides with the given data.
Roughly speaking, thismeans that the data provide sufficient information to reconstruct
the network. To prove this result, we employed a blend of algebraic and combinatorial
methods to show that any pair of networks are geometrically distinguishable.

Previously, it had been shown that networks cannot be identified from certain sub-
structures. For example, networks cannot be inferred from their displayed trees since
more than one network can display the same set of trees (Gambette and Huber 2012;
Pardi and Scornavacca 2015). Similarly, a network cannot in general be reconstructed
from its collection of proper subnetworks, since two distinct networks can have exactly
the same set of proper subnetworks (Huber et al. 2015). Nevertheless, for certain
restricted network classes it has been shown that those networks can be uniquely
reconstructed from their subnetworks (Huber and Moulton 2013; Huebler et al. 2019;
van Iersel andMoulton 2014; Nipius 2020). These proofs are related to our combinato-
rial results, in that our proof strategy for showing network distinguishability involved
careful examination of induced 4-leaf subnetworks. However, there are some fun-
damental differences that prevent directly using known results on building networks
from subnetworks. Firstly, the existing results focus either on directed (e.g. van Iersel
and Moulton (2014)) or on undirected (e.g. van Iersel and Moulton (2018)) networks.
Our results, as well as the ones in Allman et al. (2019), Baños (2019), Huebler et al.
(2019), provide the first combinatorial results on semi-directed networks. The main
obstacle, however, was that not all 4-leaf level-1 semi-directed networks are distin-
guishable under the considered models. Hence, two networks can be indistinguishable
even if the sets of induced subnetworks are distinct. Consequently, we had a severely
restricted set of building blocks available, requiring a combination of combinatorial
and algebraic techniques.

On the algebraic front, the computations reveal differences between the relation-
ships between the network ideals under the JC constraints and the relationships
between the ideals under the K2P and K3P constraints that would be interesting direc-
tions for further exploration. In Hollering and Sullivant (2020), the authors remark
that the phenomenon observed in Gross and Long (2017) under the JC constraints,
where each triangle network variety is contained within several of the 4-cycle network
varieties, does not occur under the K2P and K3P constraints. In other words, under the
K2P and K3P constraints, 4-cycle networks and triangle networks are distinguishable.
In our computations for this paper, we noticed another phenomenon that seems to
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only hold for JC constraints. In particular, under the JC constraints, the ideals for the
double-triangle networks and the 4-cycle networks are of the same dimension and are
all distinct. This is somewhat surprising as one might expect the additional reticula-
tion vertex and associated reticulation parameters of the double-triangle network to
increase the dimension of the model. Our numerical computations suggest that this is
another unique feature of the JC constraints. However, establishing this result rigor-
ously may require other methods, since we were unable to compute full generating
sets for the vanishing ideals of the networks under the K2P and K3P constraints.

Additionally, from an algebraic perspective, we note that adapting the random
search strategy described in Hollering and Sullivant (2020) is what allowed us to find
candidate subsets of variables for locating the necessary invariants to establish our
main result. Something similar will likely need to be employed if these results are to
be extended to other families of networks. It would be interesting to understand the
relative computational costs once a candidate subset of variables is found, of either
computing invariants in a subring of the original variables as we did, or of computing
the linear matroid of the Jacobian with symbolic parameters as was done in Hollering
and Sullivant (2020).

Finally, a major open problem, which is the larger setting for this paper, is to
determine whether generic identifiability results such as these can be extended to
higher level networks. We expect finding the necessary invariants for the increased
number of non-unique induced 4-leaf subnetworks will be challenging. Furthermore,
the complexity of the combinatorial part of the proof will explode for higher levels.
This question is open not only for the group-based models studied in this paper, but
also for the general Markov model, which has just started to be studied in the context
of networks Casanellas and Fernández-Sánchez (2020).
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