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ABSTRACT: Autosomal Dominant Hypercholesterolemia (ADH), characterized by isolated elevation 
of plasmatic LDL cholesterol and premature cardiovascular complications, is associated with 
mutations in 3 major genes: LDLR (LDL receptor), APOB (apolipoprotein B) and PCSK9 
(proprotein convertase subtilisin-kexin type 9). Through the French ADH Research Network, we 
collected molecular data from 1358 French probands from eleven different regions in France. 
Mutations in the LDLR gene were identified in 1003 subjects representing 391 unique events with 
46.0% missense, 14.6% frameshift, 13.6% splice, and 11.3% nonsense mutations, 9.7% major 
rearrangements, 3.8% small in frame deletions/insertions, and 1.0% UTR mutations. Interestingly, 
175 are novel mutational events and represent 45% of the unique events we identified, highlighting 
a specificity of the LDLR mutation spectrum in France. Furthermore, mutations in the APOB gene 
were identified in 89 probands and in the PCSK9 gene in 10 probands. Comparison of available 
clinical and biochemical data showed a gradient of severity for ADH-causing mutations: 
FH=PCSK9>FDB>«Others» genes. The respective contribution of each known gene to ADH in 
this French cohort is: LDLR 73.9%, APOB 6.6%, PCSK9 0.7%. Finally, in 19.0% of the probands, 
no mutation was found, thus underscoring the existence of ADH mutations located in still 
unknown genes. ©2010 Wiley-Liss, Inc. 

KEY WORDS: Autosomal Dominant Hypercholesterolemia, Mutation screening, French population, Genotype/phenotype 
correlation 
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INTRODUCTION 

Hypercholesterolemia is a major risk factor for atherosclerosis and its premature cardiovascular complications. 
Hypercholesterolemia can be multifactorial or less frequently monogenic, leading to Autosomal Dominant 
Hypercholesterolemia (ADH; MIM# 143890) characterized by an elevation of plasmatic LDL cholesterol levels 
and xanthoma, xanthelasma, arcus corneae or premature coronary heart disease. The diagnosis of ADH is difficult, 
due to the overlap of cholesterol values between monogenic and multifactorial forms. DNA testing provides an 
unequivocal diagnosis and allows the identification of affected relatives at an early age when they can be offered 
lifestyle advice and appropriate lipid-lowering therapies (Humphries et al. 2008). 

The first ADH causative gene identified was LDLR encoding the LDL receptor (Goldstein et al. 1973). This 
disease was named FH for Familial Hypercholesterolemia (MIM# 606945) and its heterozygous prevalence was 
estimated at 1/500. To date, over 1000 mutations in LDLR have been implicated in ADH (Villéger et al. 2002; 
Leigh et al. 2008). Subsequently, a second gene was involved after the discovery of hypercholesterolemic patients 
with normal LDL receptor activity (Innerarity et al. 1987). They carried a missense mutation (p.Arg3527Gln 
previously named p.Arg3500Gln) in APOB, encoding apolipoprotein B, the main ligand for the LDL receptor 
(Soria et al. 1989). This new molecular disorder was called FDB for Familial Defective apolipoprotein B-100 
(MIM# 144010) and its frequency has been estimated at 1/250 in Switzerland and 1/1250 in Northern Europe and 
the US (Rabès et al. 2000). Subsequently, we identified a third ADH-causative gene: proprotein convertase 
subtilisin-kexin type 9 (PCSK9; MIM# 607787) (Abifadel et al. 2003). PCSK9 has been shown to degrade LDL 
receptor independently of its catalytic activity (McNutt et al. 2007). Very recently, we mapped a fourth major 
locus for ADH at 16q22.1 that we named HCHOLA4 (Marques-Pinheiro et al. 2010). Finally, the proportion of 
ADH patients for whom the disease is not explained by a mutation in, either, LDLR, APOB, or PCSK9 was 
estimated at 15.25 % (Varret et al. 2008). The aim of this study was to assess the molecular epidemiology of ADH 
in a representative French population.  

 
MATERIALS AND METHODS 

Proband and family recruitment 
ADH probands and families were recruited by the French National Research Network on Hypercholesterolemia 

that includes numerous clinicians from different cities in France. Since 2005, they selected probands meeting the 
following inclusion criteria: total and LDL-cholesterol levels above the 95 th percentile when compared with a sex- 
and age-matched French population (STANISLAS cohort, B. Herbeth, G. Siest & S Visvikis-Siest, personal 
communication; Siest et al. 1998), autosomal dominant transmission of hypercholesterolemia in the family. 
Venous blood samples were sent to 3 genetic laboratories certified for ADH molecular diagnosis (A.S., A.C. & 
JP.R.) where DNA was extracted. The number of probands included (1358) and the diversity of their geographical 
origin (11 different French regions), constitute a representative sample of the French population. The study was 
performed in accordance with French bioethics regulations and all subjects gave informed consent. 
 

Candidate gene analysis 
The APOB-p.Arg3527Gln mutation was detected as previously described (Rabès et al. 1997) or by sequencing 

(NM_000384.2). The promoters, the 18 exons of LDLR (NM_000527.3), and the 12 exons of PCSK9 
(NM_174936.3), as well as close flanking intronic sequences, were amplified. Primer sequences and annealing 
temperatures are available on request. Electrophoregrams were analyzed using Gensearch®, a DNA sequence 
analysis software developed by PhenoSystems SA, Belgium (www.phenosystems.com). Detection of 
deletions/duplications of one or more exons of LDLR was performed with SALSA MLPA kit (P062) and data were 
analyzed with Coffalyser software (MRC-Holland). In all subjects, genes were studied sequentially: at first, the 
APOB-p.Arg3527Gln mutation was looked for and the LDLR gene was sequenced. If no mutation was found, the 
search for a deletion/duplication of LDLR was performed. Finally, if no deletion/duplication was discovered, the 
PCSK9 gene was sequenced. 
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Nomenclature 
All existing and new mutations were described following the recommendations of the Human Genome 

Variation Society at www.hgvs.org/mutnomen. Nucleotide numbering reflects cDNA numbering with +1 
corresponding to the A of the ATG translation initiation codon in the reference sequence. Furthermore, amino acid 
variants now follow the standard nomenclature with the initiating methionine given as number one, rather than the 
historical numbering from the first residue of the mature peptide. Hence, 21 or 27 has been added to all original 
amino acid numbering for LDL receptor or apo B, respectively. Variants in the 5’ untranslated region are now 
numbered from the nucleotide immediately preceding the A of the initiating methionine.  
 

In silico prediction of effect of molecular event on LDL receptor  
The causal effect of each new molecular event was estimated with in silico prediction of protein function using 

the following tools: NetGene2 (www.cbs.dtu.dk/services/NetGene2), NNSPLICE 
(www.fruitfly.org/seq_tools/splice.html), Polyphen (genetics.bwh.harvard.edu/pph), SIFT (sift.jcvi.org), Pmut 
(mmb2.pcb.ub.es:8080/PMut) and SNP3D (www.snps3d.org). The reference sequences used for LDLR were 
P01130.1 (SwissProt) or NP_000518.1 (NCBI RefSeq).  
 

Statistical analysis 
When possible, we collected clinical and/or biochemical data under fasting conditions and without any 

cholesterol lowering drug. Plasma levels of total-, LDL-, HDL-cholesterol, triglycerides, and clinical signs of the 
disease were not available for all probands, thus sample size is different among each lipid parameter as presented 
in Supp. Figure S1. Lipid levels were expressed as multiples of median (MoM) for age and gender of a reference 
French population: the STANISLAS cohort. Comparison of quantitative values (lipid levels and age) was 
performed by the Mann-Whitney test with Graph Pad Prism 5.03 software. Results are presented with the median 
and range from minimum to maximum MoM values. Comparison of qualitative values was performed with the 
Chi-Square Test (or Fisher Test for N<5) online with the StatPages at www.statpages.org. 

 
RESULTS AND DISCUSSION 

Through the ADH French Research Network, we collected molecular data from 1358 French ADH probands 
and found 1111 molecular events: 1012 (91.1%) LDLR mutations in 1003 (73.9%) probands, 9 with two LDLR 
variants each; 89 (8.0%) APOB-p.Arg3527Gln mutation in 89 (6.6%) probands including 2 probands also 
heterozygous for a LDLR mutation; 10 (0.9%) PCSK9 mutations in 10 (0.7%) probands. For the 258 remaining 
probands (19.0%), no mutation was identified in the three major ADH genes. 
 

Variations in LDLR 
Variations in LDLR were identified in 1003 probands representing 391 unique events distributed as follows: 

46.0% missense; 11.3% nonsense; 14.6% frameshift; 3.8% small in frame deletions, insertions, or indels; 13.6% 
splice; 1.0% in 5’UTR; and 9.7%  large deletions or duplications (complete list available on request). In 
accordance with the known heterogeneity of the French population, this distribution was similar to that reported 
worldwide (Leigh et al. 2008) (Supp. Table S1). However, splice mutations were significantly more abundant in 
this French cohort (p=0.002), probably indicating a technological bias. Indeed, systematic sequencing of intronic 
sequences is a more recent practice (Amsellem et al. 2002). 

Within the 283 variations newly reported in this French population, 175 were novel mutational events (Tables 
1, 2, and 3) and represent 45% (175/391) of the unique events we identified and 22% (222/1003) of probands with 
a variation in LDLR (1 with two new LDLR variants). Furthermore, LDLR mutational events newly reported in 
France represent 72% (283/391) of the unique events reported here and 41% (416/1003) of LDLR variation 
carriers. This highlights a higher level of allelic heterogeneity for LDLR and indicates a specificity of the spectrum 
of LDLR mutations in France when compared to other countries. Another method for genetic diagnosis of ADH is 
based on a DNA-array platform that is able to detect 242 different point mutations in LDLR and 3 in APOB 
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(Lipochip version 8, www.progenika.com). The Lipochip used to screen clinically diagnosed FH patients in Spain 
was able to detect mutations in 78% of all carriers (Alonso R et al. 2009). If the Lipochip (version 8) had been 
used to screen this French cohort, it only would have detected 40% of the mutation carriers, thus indicating the 
need for specific national screening strategies. 

New mutational events leading to abnormal protein size  
All nonsense mutations (9) and frameshift variations (41) were deemed as FH-causing mutations, since their 

theoretical consequence is the synthesis of a truncated protein (Table 1). Prediction of the damaging effect 
remained difficult for the 19 major rearrangements detected by MLPA since the exact breakpoints were not 
investigated (Table 1). The main mechanism reported to explain large deletions or duplications is homologous 
recombination between Alu sequences that are numerous in LDLR (Lehrman et al. 1987). Only introns 9 and 13 do 
not contain Alu sequences and no major deletion or duplication involving one of these two introns has been 
reported to date. In the 1990s, deletion breakpoints were sequenced in 14 of the 39 deletions reported in LDLR, 
and 12 involved an Alu repeat at both endpoints (Hobbs et al. 1992, Nissen et al. 2006). FH Potenza is a 5 kb 
deletion that joins a coding sequence in exon 13 to an Alu repetitive element in intron 15 (Lehrman et al. 1986). 
FH Helsinki is a 9.5 kb deletion that does not involve Alu sequences at either end of the deletion (Aalto-Setälä et 
al. 1989). Except for these two examples, data indicate that large deletions or duplications are mainly due to 
homologous recombination between two Alu sequences located in deep intronic sequences, far from splice sites. 
Therefore, in accordance with this observation and with respect to the translation frame of LDLR exons, protein 
variants could be predicted (Table 1). 

Table 1. New mutational events leading to abnormal protein size 

Location cDNA (HGVS) Protein (HGVS) Predicted protein 
Number 

of 
probands 

Familial 
segregation 

(*) 

nonsense     
exon 2 c.102C>A p.Cys34X 33 AA, truncated or no protein 1 na 
exon 4 c.535G>T p.Glu179X 178 AA, truncated or no protein 1 na 
exon 4 c.539G>A p.Trp180X 179 AA, truncated or no protein 3 na 
exon 10 c.1532T>G p.Leu511X 510 AA, truncated or no protein 1 na 
exon 11 c.1598G>A p.Trp533X 532 AA, truncated or no protein 1 na 
exon 11 c.1685G>A p.Trp562X 561 AA, truncated or no protein 1 yes (3 - 1) 
exon 13 c.1860G>A p.Trp620X 619 AA, truncated or no protein 1 yes (2 - 1) 
exon 14 c.1997G>A p.Trp666X 665 AA, truncated or no protein 1 na 
exon 17 c.2446A>T p.Lys816X 815 AA, truncated or no protein 1 na 

frameshifts     
exon 3 c.244del p.Cys82AlafsX124 81 AA with 124 novel AA, truncated or no protein 1 na 
exon 4 c.350_372dup p.Gln125ThrfsX89 124 AA with 89 novel AA, truncated or no protein 1 na 
exon 4 c.357del p.Lys120SerfsX86 119 AA with 86 novel AA, truncated or no protein 1 na 
exon 4 c.374_375insCTGA p.Gln125HisfsX2 124 AA with 2 novel AA, truncated or no protein 1 yes (2 - 2) 
exon 4 c.450dup p.Ala151ArgfsX29 150 AA with 29 novel AA, truncated or no protein 1 na 
exon 4 c.482_488del p.Ile161SerfsX43 160 AA with 43 novel AA, truncated or no protein 1 na 
exon 4 c.609del p.Cys204AlafsX2 203 AA with 2 novel AA, truncated or no protein 1 na 
exon 4 c.664_681delinsCCGACTG p.Cys222ProfsX14 221 AA with 14 novel AA, truncated or no protein 1 na 
exon 4 c.666_687del p.Cys222X 221 AA, truncated or no protein 1 na 
exon 4 c.673_682delinsTGCAA p.Lys225CysfsX13 224 AA with 13 novel AA, truncated or no protein 2 na 
exon 4 c.681_682insTGAG p.Glu228X 227 AA, truncated or no protein 1 na 
exon 4 c.682del p.Glu228ArgfsX37 227 AA with 37 novel AA, truncated or no protein 2 yes (3 - 1) 
exon 5 c.752dup p.Ser252GlnfsX5 251 AA with 5 novel AA, truncated or no protein 1 yes (2 - 1) 
exon 5 c.781del p.Cys261AlafsX4 260 AA with 4 novel AA, truncated or no protein 1 na 
exon 6 c.865del p.Cys289AlafsX81 288 AA with 81 novel AA, truncated or no protein 1 na 
exon 6 c.875dup p.Asp293GlyfsX8 292 AA with 8 novel AA, truncated or no protein 2 na 
exon 7 c.951del p.Glu317AspfsX53 316 AA with 53 novel AA, truncated or no protein 1 na 
exon 7 c.1008del p.Tyr336X 335 AA, truncated or no protein 3 na 
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Location cDNA (HGVS) Protein (HGVS) Predicted protein 
Number 

of 
probands 

Familial 
segregation 

(*) 

exon 7 c.1031del p.Phe344SerfsX26 343 AA with 26 novel AA, truncated or no protein 3 na 
exon 7 c.1042del p.Ala348ProfsX22 347 AA with 22 novel AA, truncated or no protein 1 na 
exon 8 c.1099_1104delinsGT p.Leu367ValfsX2 366 AA with 2 novel AA, truncated or no protein 1 yes (2 - 0) 
exon 9 c.1343del p.Gln448ArgfsX3 447 AA with 3 novel AA, truncated or no protein 1 na 
exon 10 c.1496_1497del p.Ser499CysfsX36 498 AA with 36 novel AA, truncated or no protein 1 na 
exon 10 c.1549_1555del p.Ser517GlnfsX29 516 AA with 29 novel AA, truncated or no protein 1 na 
exon 11 c.1610del p.Gly537GlufsX11 536 AA with 11 novel AA, truncated or no protein 1 na 
exon 11 c.1632del p.Gly546AlafsX2 545 AA with 2 novel AA, truncated or no protein 2 yes (3 - 0) 
exon 12 c.1718del p.Gly573AlafsX92 572 AA with 92 novel AA, truncated or no protein 1 na 
exon 12 c.1737del p.Ser580ProfsX85 579 AA with 85 novel AA, truncated or no protein 4 na 
exon 12 c.1749_1753del p.Ser584LeufsX17 583 AA with 17 novel AA, truncated or no protein 1 na 
exon 13 c.1886del p.Phe629SerfsX36 628 AA with 36 novel AA, truncated or no protein 1 na 
exon 13 c.1934dup p.Asn645LysfsX24 644 AA with 24 novel AA, truncated or no protein 1 na 
exon 13 c.1948_1952dup p.Asp651GlufsX16 650 AA with 16 novel AA, truncated or no protein 1 yes (3 - 0) 
exon 13 c.1961_1965dup p.His656SerfsX11 655 AA with 11 novel AA, truncated or no protein 1 na 
exon 14 c.2013_2014del p.Leu672GlufsX44 671 AA with 44 novel AA, truncated or no protein 1 na 
exon 14 c.2030_2042del p.Cys677SerfsX28 676 AA with 28 novel AA, truncated or no protein 1 na 
exon 15 c.2187_2197del p.Lys730HisfsX48 729 AA with 48 novel AA, truncated or no protein 1 na 
exon 15 c.2230del p.Arg744AspfsX21 743 AA with 21 novel AA, truncated or no protein 1 yes (2 - 0) 
exon 16 c.2318del p.Gly773AlafsX15 772 AA with 15 novel AA, truncated or no protein 1 na 
exon 17 c.2403_2406del p.Leu802AlafsX126 801 AA with 126 novel AA, truncated or no protein 1 na 
exon 17 c.2416del p.Val806SerfsX123 805 AA with 123 novel AA, truncated or no protein 2 na 
exon 17 c.2509del p.His837ThrfsX92 836 AA with 92 novel AA, truncated or no protein 1 na 

major rearangements MLPA results Predicted protein if recombinaison between Alu 
not affecting splice sites   

Prom c.1-?_1060+?del del from prom. to exon 7 no in phase ATG within exon 8, no protein 1 yes (2 - 2) 
Prom c.1-?_3428+?del del from prom. to exon 18 no protein 1 yes (2 - 2) 
exon 1 c.1-?_67+?del del of exon 1 no in phase ATG within exon 2, no protein 2** na 
exon 1 c.1-?_3428+?del  del of exons 1 to 18 no protein 1 na 
exon 2 c.68-?_817+?dup  dup of exons 2 to 5 p.Gly24Val273 dup, elongated protein (249 AA) 2** na 
exon 2 c.68-?_1586+?del del of exons 2 to 10 p.Val23AlafsX19, truncated protein 1 na 

exon 2 c.68-?_1705+?del  del of exons 2 to 11 p.Val23Asp;Gly24_Asp569del, shortened protein (545 
AA) 2** na 

exon 2 c.68-?_2140+?del  del of exons 2 to 14 p.Val23Glu;Gly24_Glu714del, shortened protein (690 
AA) 1 na 

exon 2 c.68-?_2547+?del del of exons 2 to 17 p.Val23GlufsX9, truncated protein 1 na 

exon 3 c.191-?_313+?del  del of exon 3 p.Leu64Ser;Ser65_Pro105del, shortened protein (40 
AA) 1 na 

exon 3 c.191-?_694+?del  del of exons 3 and 4 p.Leu64Ser;Ser65_Ala232del, shortened protein (167 
AA) 1 na 

exon 4 c.314-?_940+?dup dup of exons 4 to 6 p.Gly314Ala;Pro106_Cys313 dup, elongated protein 
(207 AA) 1 yes (3 - 1) 

exon 5 c. 695-?_1586+?del  del of exons 5 to 10 p.Ala233ValfsX18, truncated protein 1 na 
exon 9 c.1187-?_3428+?del del of exons 9 to 18 no protein 2** na 
exon 11 c.1586-?_1705+?del del of exon 11 p.Phe530SerfsX10, truncated protein 2** yes (3 - 3), na 
exon 12 c.1706-?_1845+?dup dup of exon 12 p.Asp616Ile fsX96, truncated protein 1 na 

exon 12 c.1706-?_2389+?del  del of exons 12 to 16 p.Asp569Val;Leu570_Val797del, shortened protein 
(227 AA) 3** na 

exon 13 c.1846-?_2140+?dup dup of exons 13 and 14 p.Glu714GlyfsX29, truncated protein 4* na 

1 and 8 c.1-?_190+?del 
1061?_1845+?del 

del of exons 1-2 and  
8 to 12 no in phase ATG within exon 3, no protein 2** na 

na: not available. *: nb of affected carriers - nb of unaffected non carriers. **: all unrelated carriers may present different events 
since the exact breakpoints of these major rearrangements are unknown. 
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New intronic variations and small in frame deletions, insertions, or indels  
The majority of FH-causing variations within LDLR have been investigated at the DNA level, but only a small 

number of these were corroborated by cellular functional studies. From these few studies and from in silico 
analyses, it is now possible to predict the damaging effect at the protein level. The putative causal effect of each 
new event was also estimated through Familial Segregation Analysis (FSA) when available. 

From the 20 new intronic variations, 10 (50%) were predicted to be deleterious by NetGene2 and NNSPLICE 
predictor tools, and this could be supported by FSA in three pedigrees. Six (30%) were predicted to be benign with 
both tools. Surprisingly, the only one for which FSA could be performed revealed the presence of the c.941-
12G>A variation in the three affected members analyzed (Table 2). Furthermore, RT-PCR analysis of monocyte 
mRNA showed an abnormal splicing of intron 6 (data not shown). Four (20%) intronic variations were predicted 
to be deleterious by only one of the two tools (Table 2). 

The 10 in frame del/ins were predicted to be benign, except c.667_693del27bp that was predicted to create a 
new donor splice site 59 bp downstream with NNSPLICE (Table 2). FSA could be performed for three families, 
thus indicating that even if predicted to be benign, the familial inheritance of these variations suggested causality. 
Interestingly, the silent variation p.Leu605Leu was predicted to create a new donor site at position 1813 with a 
predicted score at 0.58 when the physiological one remains at 0.50 (NNSPLICE). This new donor splice site could 
lead to: the substitution of p.Leu605 by a threonine, the deletion of 11 amino acids, a frameshift, and a premature 
termination 49 codons downstream. Furthermore, FSA showed that p.Leu605Leu was carried by the 4 affected 
family members and not by the unaffected, thus supporting causality. The use of RT-PCR analysis of LDLR 
mRNA from isolated blood cells is necessary to support this point as has been shown for another silent mutation, 
p.Arg406Arg (Bourbon et al. 2007). 

 
 

Table 2. New intronic and in frame deletion or insertion variations  

Location cDNA (HGVS) Protein (HGVS) 
Number 

of 
probands 

Familial 
segregation 

(*) 

Splice modification prediction 

NetGene2 NNSPLICE Conclusion 

intronic events       

intron 4 c.693_694+20del  1 na new DS at +60 new DS at +60 deleterious 
intron 4 c.694+1G>T  1 na loss of DS loss of DS deleterious 
intron 6 c.940+14del  1 na loss of DS loss of DS deleterious 
intron 6 c.940+1G>A  1 na loss of DS loss of DS deleterious 
intron 6 c.940+1G>C  1 na loss of DS loss of DS deleterious 
intron 6 c.940+2T>A  1 na loss of DS loss of DS deleterious 
Intron 6 c.941-12G>A#  1 yes (3 - 0) no change no change benign 
intron 7 c.1060+24C>A  1 na new DS at +11 no change ? 
intron 7 c.1060+26 T>G  1 na no change no change benign 
intron 8 c.1187-1G>A  1 na loss of AS na ? 
intron 9 c.1358+3_1358+8del  1 yes (7 - 8) loss of DS loss of DS deleterious 
intron 9 c.1359-4T>C  1 na no change no change benign 
intron 9 c.1359-25T>A  1 na no change no change benign 
intron 10 c.1587-2A>T  2 yes (2 - 2) loss of AS loss of AS deleterious 
intron 11 c.1705+2_+3insC  1 na loss of DS loss of DS deleterious 
intron 11 c.1706-2A>T  1 na new AS at 1715 na ? 
intron 11 c.1706-24T>C  1 na no change no change benign 
intron 15 c.2311+1G>T  2 yes (4 - 2) loss of DS loss of DS deleterious 
intron 16 c.2389+14G>A  1 na no change no change benign 
intron 17 c.2547+5G>C  1 na no change new DS at +114 ? 
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Location cDNA (HGVS) Protein (HGVS) 
Number 

of 
probands 

Familial 
segregation 

(*) 

Splice modification prediction 

NetGene2 NNSPLICE Conclusion 

in frame deletions or insertions        

exon 4 c.316_336del p.Pro106_Asp112del 2 yes (3 - 1) no change no change benign 
exon 4 c.516_524dup p.Cys173_Asp175dup 1 yes (2 - 0) no change no change benign 
exon 4 c.648_656del p.Asp217_Gly219del 1 na no change no change benign 
exon 4 c.667_693del p.Lys223_Cys231del 1 na no change new DS at +59 ? 
exon 4 c.673_681dup p.Lys225_Asp227dup 1 na no change no change benign 

exon 4 c.682_683insAAATCTGAC p.Asp227_Glu228InsLysSe
rAsp  1 na no change no change benign 

exon 7 c.964_966del p.Asn322del 1 na no change no change benign 
exon 11 c.1629_1652del p.Lys543_Asp551delinsAsn 1 na no change no change benign 
exon 12 c.1730_1738del p.Trp577_Asp579del 1 na no change no change benign 
exon 12 c.1829_1831del p.Ser610del 2 yes (5 - 1) no change no change benign 

exonic events       

exon 9 c.1194C>T p.Ile398Ile 1 na no change no change benign 

exon 12 c.1813C>T p.Leu605Leu 1 yes (4 - 1) new DS at 1813 new DS at 1813 deleterious 

exon 14 c.2140G>C p.Glu714Gln 1 na loss of DS loss of DS deleterious 

Splice modification predicted with NetGene2 (http://www.cbs.dtu.dk/services/NetGene2) and NNSPLICE 
(http://www.fruitfly.org/seq_tools/splice.html) softwares. 
na: not available. *: nb of affected carriers - nb of unaffected non carriers. DS: donor site. AS: Acceptor site. #: Variation effect 
tested by RT-PCR. 
The reference sequences used for LDLR were P01130.1 (SwissProt) or NP_000518.1 (NCBI RefSeq). 

 

New missense variations 
Seventy new missense variations were detected here (Table 3). For 28 substitutions, prediction of a damaging 

effect was similar with either Polyphen, SIFT, Pmut or SNPs3D. For 36 variations, only one prediction was 
different from the three others and was not always given by the same software (underlined in Table 3). Finally, 6 
missense variations (“?” last column, Table 3) were predicted neutral twice and pathogenic twice. Altogether, these 
analyses showed that 51 (73%) of the new missense variations were very probably deleterious, whereas 13 (19%) 
were very probably benign. Interestingly, the missense variation c.2140G>C (p.Glu714Gln) was predicted to be 
benign in Table 3, but to create the loss of the intron 14 donor splice site in Table 2. 

 

New promotor variations 
Four new DNA variations were found in the promoter sequence: c.-140C>T, c.-155_-150 delACCCCAinsTT, 

c.-219dupA and c.-267A>G. The first two fall within sterol regulatory elements, SRE1 (-130 to -144) and SRE2 (-
145 to -161), respectively (Südhof et al. 1987; Liu J et al. 2000). The third one falls within a cis-acting element 
FP1 (-219 to -238) (Mehta et al. 1996). The last one falls close to the 3’end of FP2 (-268 to -280).  

 
 
In conclusion, 78% (136/175) of the new molecular events identified in LDLR were very probably FH-causing 

mutations and were present in 79% (176/222) probands, whereas 16% (28/175) were very probably benign and 
were present in 16% (35/222) of probands, suggesting that the ADH-causing mutation remains to be identified in 
this last group. Altogether, these observations confirm the care needed in the interpretation of novel sequence 
variants and the relevance of functional analysis. Moreover, these results underscore the care needed in the overall 
interpretation of in silico predictions, FSA and in vitro functional studies. 
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exon 2 c.100T>G p.Cys34Gly 1 yes (3-0) S-S bond disrupted Extracell. probably Not Tolerated Neutral yes (-3.80) deleterious 

exon 3 c.233G>A p.Arg78His 1 na  Extracell. benign Tolerated Neutral no (0.74) benign 

exon 3 c.244T>G p.Cys82Gly 3 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.75) deleterious 

exon 3 c.255G>T p.Gln85His 1 na  Extracell. benign Tolerated Neutral no (1.36) benign 

exon 3 c.265T>G p.Cys89Gly 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.75) deleterious 

exon 3 c.270T>A p.Asp90Glu 4 yes (4-3, 
3-1), na LB site disrupted Extracell. probably Not Tolerated Neutral yes (-2.04) deleterious 

exon 3 c.291C>G p.Asn97Lys 1 na Close to LB site Extracell. possibly Not Tolerated Neutral yes (-1.11) deleterious 

exon 3 c.310T>C p.Cys104Arg 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.26) deleterious 

exon 4 c.362G>A p.Cys121Tyr 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.18) deleterious 

exon 4 c.382T>C p.Cys128Arg 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-4.21) deleterious 

exon 4 c.383G>T p.Cys128Phe 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.86) deleterious 

exon 4 c.416A>T p.Asp139Val 1 yes (2-2) LB site disrupted Extracell. probably Not Tolerated Neutral yes (-3.82) deleterious 

exon 4 c.416A>G p.Asp139Gly 1 na LB site disrupted Extracell. probably Not Tolerated Neutral yes (-2.10) deleterious 

exon 4 c.427T>G p.Cys143Gly 1 yes (4-2) S-S bond disrupted Extracell. probably Not Tolerated Neutral yes (-2.70) deleterious 

exon 4 c.464G>A p.Cys155Tyr 1 na 
S-S bond 

disrupted, HdpC 
and Overpacking at 

BS 
Extracell. probably Not Tolerated Pathological yes (-2.62) deleterious 

exon 4 c.501C>G p.Cys167Trp 3 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.99) deleterious 

exon 4 c.589T>G p.Cys197Gly 1 na S-S bond disrupted Extracell. probably Not Tolerated Neutral yes (-3.47) deleterious 

exon 4 c.598T>A p.Phe200Ile 1 na  Extracell. benign Tolerated Neutral no (1.38) benign 

exon 4 c.611G>A p.Cys204Tyr 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.06) deleterious 

exon 4 c.641G>C p.Trp214Ser 1 na Close to LB site Extracell. probably Tolerated Pathological yes (-2.05) deleterious 

exon 4 c.669G>C p.Lys223Asn 2 na  Extracell. benign Tolerated Neutral no (1.11) benign 

exon 4 c.680A>T p.Asp227Val 1 yes (4-1) LB site disrupted Extracell. probably Not Tolerated Neutral yes (-3.18) deleterious 

exon 4 c.693C>G p.Cys231Trp 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.71) deleterious 

exon 5 c.793A>T p.Ser265Cys 1 na  Extracell. probably Not Tolerated Neutral yes (-2.03) deleterious 

exon 6 c.869T>G p.Ile290Ser 1 na Close to LB site Extracell. probably Not Tolerated Neutral yes (-1.95) deleterious 

exon 6 c.887G>A p.Cys296Tyr 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-1.81) deleterious 

exon 6 c.914G>C p.Trp305Ser 1 na  Extracell. probably Not Tolerated Neutral possibly (-0.10) deleterious 

exon 7 c.965A>T p.Asn322Ile 1 na  Extracell. probably Not Tolerated Neutral yes (-1.41) deleterious 

exon 7 c.1007A>G p.Tyr336Cys 1 na Close to LB site Extracell. probably Tolerated Neutral possibly not 
(0.13) benign 

exon 7 c.1019_1020delins
TG p.Cys340Leu 1 na S-S bond disrupted Extracell. probably Not Tolerated Neutral yes (-3.27) deleterious 

exon 7 c.1055G>T p.Cys352Phe 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-3.27) deleterious 

exon 8 c.1061A>C p.Asp354Ala 1 na 
LB site disrupted, 
HdpC and CC at 

BS 
Extracell. probably Not Tolerated Neutral yes (-2.25) deleterious 

exon 8 c.1067A>C p.Asp356Ala 1 na Close to LB site Extracell. probably Not Tolerated Pathological yes (-1.58) deleterious 

exon 8 c.1103G>C p.Cys368Ser 1 na S-S bond disrupted Extracell. probably Not Tolerated Neutral yes (-3.27) deleterious 

exon 8 c.1153C>G p.Leu385Val 1 na  Extracell. benign Tolerated Neutral possibly (-0.23) benign 

exon 9 c.1223A>C p.Glu408Ala 2 na  YWTD-EGF possibly Tolerated Neutral possibly (-0.47) ? 
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exon 9 c.1288G>C p.Val430Leu 1 na  YWTD-EGF possibly Tolerated Neutral yes (-1.19) ? 

exon 10 c.1424C>T p.Ala475Val 2 na  YWTD-EGF benign Tolerated Neutral no (0.60) benign 

exon 10 c.1460A>G p.Asn487Ser 1 na  YWTD-EGF probably Tolerated Neutral yes (-0.90) ? 

exon 10 c.1487G>T p.Gly496Val 1 na Overpacking at BS YWTD-EGF probably Tolerated Neutral possibly (-0.37) ? 

exon 10 c.1519A>G p.Lys507Glu 1 na  YWTD-EGF benign Tolerated Neutral possibly not 
(0.12) benign 

exon 10 c.1546G>A p.Gly516Ser 1 na  YWTD-EGF benign Tolerated Neutral yes (-1.93) benign 

exon 10 c.1567G>T p.Val523Leu 1 na  YWTD-EGF possibly Not Tolerated Neutral yes (-2.47) deleterious 

exon 10 c.1577C>G p.Pro526Arg 1 na Overpacking and 
CC at BS YWTD-EGF probably Not Tolerated Neutral yes (-2.63) deleterious 

exon 11 c.1597T>C p.Trp533Arg 1 na CC and HdpC at 
BS YWTD-EGF probably Not Tolerated Pathological yes (-4.04) deleterious 

exon 11 c.1606T>G p.Trp536Gly 1 na  YWTD-EGF probably Tolerated Pathological yes (-3.12) deleterious 

exon 11 c.1625T>G p.Ile542Ser 1 na HdpC and Cavity 
creation at BS YWTD-EGF probably Not Tolerated Pathological yes (-4.06) deleterious 

exon 11 c.1633G>A p.Gly545Arg 2 na Overpacking at BS YWTD-EGF probably Not Tolerated Pathological yes (-1.73) deleterious 

exon 11 c.1644T>G p.Asn548Lys 2 yes (3-1)  YWTD-EGF probably Not Tolerated Neutral yes (-2.06) deleterious 

exon 11 c.1687C>T p.Pro563Ser 1 na  YWTD-EGF probably Not Tolerated Neutral yes (-3.18) deleterious 

exon 11 c.1703T>C p.Leu568Pro 1 na  YWTD-EGF probably Not Tolerated Neutral yes (-3.01) deleterious 

exon 11 c.1705G>T p.Asp569Tyr 1 na  YWTD-EGF probably Not Tolerated Pathological yes (-4.15) deleterious 

exon 12 c.1727A>C p.Tyr576Ser 1 na New cavity at BS YWTD-EGF probably Not Tolerated Neutral yes (-3.17) deleterious 

exon 12 c.1736A>G p.Asp579Gly 1 na  YWTD-EGF probably Not Tolerated Pathological yes (-3.53) deleterious 

exon 12 c.1793T>C p.Ile598Thr 1 yes (2-1)  YWTD-EGF possibly Not Tolerated Neutral yes (-1.68) deleterious 

exon 12 c.1844A>T p.Glu615Val 3 yes (5-8)  YWTD-EGF probably Not Tolerated Neutral yes (-3.48) deleterious 

exon 13 c.1853T>G p.Val618Gly 1 na  YWTD-EGF probably Not Tolerated Neutral yes (-2.90) deleterious 

exon 13 c.1856T>C p.Phe619Ser 2 na  YWTD-EGF probably Not Tolerated Neutral yes (-2.90) deleterious 

exon 13 c.1907G>A p.Gly636Asp 1 na  YWTD-EGF probably Not Tolerated Neutral yes (-3.01) deleterious 

exon 13 c.1928C>T p.Ala643Val 1 na  YWTD-EGF benign Tolerated Pathological no (1.55) benign 

exon 13 c.1945C>T p.Pro649Ser 1 yes (2-0)  YWTD-EGF probably Tolerated Neutral yes (-2.16) ? 

exon 13 c.1955T>C p.Met652Thr 1 na  YWTD-EGF probably Not Tolerated Neutral yes (-1.46) deleterious 

exon 13 c.1958T>G p.Val653Gly 1 na  YWTD-EGF probably Tolerated Neutral possibly (-0.45) ? 

exon 13 c.1973T>C p.Leu658Pro 1 na  YWTD-EGF possibly Tolerated Neutral possibly not 
(0.32) benign 

exon 13 c.1975A>C p.Thr659Pro 4 yes (2-0) HdpC at BS YWTD-EGF benign Tolerated Neutral yes (-2.04) benign 

exon 14 c.2094C>G p.Cys698Trp 1 na S-S bond disrupted Extracell. probably Not Tolerated Pathological yes (-2.53) deleterious 

exon 14 c.2120A>T p.Asp707Val 1 na  YWTD-EGF probably Not Tolerated Pathological yes (-3.00) deleterious 

exon 14 c.2132G>C p.Cys711Ser 2 na S-S bond disrupted YWTD-EGF probably Not Tolerated Pathological yes (-2.32) deleterious 

exon 14 c.2140G>C p.Glu714Gln 1 na CC at ES Extracell. benign Tolerated Neutral no (0.85) benign 

exon 17 c.2482T>C p.Tyr828His 1 na   Cytoplasm. probably Not Tolerated Neutral possibly (-0.09) deleterious 

Prediction of damaging effect at the protein level performed with Polyphen (http://genetics.bwh.harvard.edu/pph), SIFT 
(http://sift.jcvi.org), Pmut (http://mmb2.pcb.ub.es/pmut) and SNP3D (http://www.snps3d.org) softwares. 
na: not available. *: nb of affected carriers - nb of unaffected non carriers. S-S: Disulfide. LB: Ligand Binding. BS: Buried Site. 
ES: Exposed Site. HdpC: Hydrophobicity Change. CC: Charge Change. The reference sequences used for LDLR were 
P01130.1 (SwissProt) or NP_000518.1 (NCBI RefSeq). Underlined: prediction different from the three others Bold: prediction 
of damaging effect was similar with either Polyphen, SIFT, Pmut or SNPs3D. 
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Variations in APOB, PCSK9 and other genes 
The APOB-p.Arg3527Gln mutation was identified in 89 probands and 10 mutations in PCSK9 were found 

(Abifadel 2003, Allard 2005, Abifadel 2010 personal data). The respective contribution of each gene to ADH was 
73.9% LDLR, 6.6% APOB, 0.7% PCSK9 and 19.0% “Others”. The identification of this “Others” group of ADH 
patients clearly demonstrates that there is at least one other disease gene involved in ADH. Furthermore, because 
of the numerous proteins involved in cholesterol homeostasis, this new group of patients is very probably a 
heterogeneous class of molecular defects. This is supported by the identification of the LDLRAP1 gene (also 
known as ARH) which encodes a protein required for clathrin-mediated internalization of the LDL receptor by 
liver cells (Garcia et al. 2001), but also by our recent report of the localization of a new ADH gene at 16q22.1 
(Marques et al. 2010). The percentage of this new group of ADH reported here (19%) is in the range of previously 
reported large cohort studies that estimated it between 12% and 48% (Varret et al. 2008). 
 

Clinical and biological features of subjects from the four molecular groups 
The four molecular groups were named FH, FDB, PCSK9 and «Others» for carrying a mutation in LDLR, 

APOB, PCSK9 and other genes, respectively. The four groups were composed of 190F/192M, 43F/12M, 4F/6M 
and 30F/21M, respectively, showing a significant difference in the sex ratio between FH/FDB, FDB/«Others», and 
PCSK9/«Others». Significant differences in the ages of patients were also observed across the four groups. 
«Others» [median of 46 years old, range: 9-78 (N=51)] were significantly older than FH [median of 37 years old, 
range: 2-64 (N=382)] (p=0.002), FDB [median of 37 years old, range: 5-61 (N=55)] (p=0.047), and PCSK9 
[median of 38 years old, range: 3-49 (N=10)] (p=0.042). To overcome these differences for age and sex of patients 
among the four groups, we adjusted lipid values for age and gender of a reference French population and expressed 
them as multiples of median (MoM).  

Total and LDL cholesterol levels were significantly higher for FH and PCSK9 when compared to FDB and 
«Others», and for FDB when compared to «Others» (Supp. Figure S1, panels A and B). As expected, no 
significant differences were observed for HDL cholesterol levels between FH, FDB and PCSK9 (Supp. Figure S1, 
panel C). Interestingly, HDL cholesterol levels were significantly higher for «Others» when compared to FH and 
PCSK9. Triglycerides levels were significantly higher for FH than FDB, as previously reported (Miserez and 
Keller 1995; Ejarque et al. 2008), and for «Others» when compared to FDB or PCSK9 (Supp. Figure S1, panel D). 

Frequency of tendon xanthomas was significantly different only between FH and «Others», with 57% (70/123) 
and 14% (5/35), respectively (p<0.0001). Frequency of evidence of CHD was also significantly different between 
FH and «Others», with 68% (44/65) and 41% (11/27), respectively (p<0.016).  

Based on the results presented here, a gradient of severity could be drawn for ADH: FH = PCSK9 > FDB > 
«Others». «Others» seemed to be the less severe group with total and LDL-cholesterol levels significantly lower 
and presence of xanthomas or evidence of CHD rarer. Furthermore, the age of probands was higher, thus 
suggesting that it may be diagnosed later in life. Another feature of «Others» was an HDL-cholesterol level 
significantly higher that should be protective against CHD. This observation could explain the lower frequency of 
CHD in this group when compared to FH.  
 

CONCLUSION 
In conclusion, mutations in LDLR remain the main cause of ADH, and their already large spectrum is here 

widened with the report of 175 new sequence variations. We also demonstrated the specificity of the spectrum of 
LDLR gene mutations in the French population when compared to other countries, thus underscoring the 
requirement of specific national molecular screening strategies. More than ¾ of these variations likely cause 
familial hypercholesterolemia as inferred from the predicted effect on structure and 16% are probably benign, with 
the remainder requiring careful interpretation and further functional analyses to avoid a false positive diagnosis. 
Although it had been stated that most human ADH mutations in LDLR and other genes had been documented, the 
relatively high number of new mutations reported here suggests that a substantial proportion of mutations across 
all human communities remains unidentified. 

This is the largest French ADH cohort ever reported and it allowed statistical analysis of clinical and 
biochemical data. The comparison of the four molecular groups showed, for the first time, that a significant 
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gradient of severity could be established for ADH: FH = PCSK9 > FDB > «Others». Finally, we report a more 
precise estimation of the percentage of ADH nonLDLR/nonAPOB/nonPCSK9 patients that is close to 19%. 
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SUPPORTING INFORMATION  

 

Supp. Table S1.  Compared distribution of each type of mutation in the LDLR gene between the French cohort and 
worldwide reports* 

  

% in the French cohort 
(All probands) 

% in the French cohort 
(Unique events) 

% in worldwide reported 
unique events* p   value    ** 

Missense 47.7 46.0 47 0.793 
Nonsense 17.8 11.3 9 0.143 
Frameshift 11.8 14.6 19 0.053 

In frame deletions, insertions or indels 2.7 3.8 4 0.743 
Splice 11.2 13.6 8 0.002 
5' UTR 0.4 1.0 2 0.130 

Major rearangements 8.5 9.7 11 0.491 

N 1012 391 1066   
* Leigh et al.2008. ** Chi2 test. 
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Supp. Figure S1.  Comparison of lipid levels among the four molecular groups of patients. Panel A: Multiple of Median 
(MoM) for Total cholesterol levels. Panel B: Multiple of Median (MoM) for LDL cholesterol levels. Panel C: Multiple of 
Median (MoM) for HDL cholesterol levels. Panel D: Multiple of Median (MoM) for triglycerides levels. Results are presented 
with the median and range from minimum to maximum MoM values for each group. Median Mann-Whitney Test: * p < 0.05, 
** p < 0.01, *** p < 0.001. 
 


