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Abstract
The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-

based inference approach to quantifying and interpreting effects, and in a case study

example provide accurate probabilistic statements that correspond to the intended magni-

tude-based inferences. The model is described in the context of a published small-scale

athlete study which employed a magnitude-based inference approach to compare the

effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic

exposure (IHE)) on running performance and blood measurements of elite triathletes. The

posterior distributions, and corresponding point and interval estimates, for the parameters

and associated effects and comparisons of interest, were estimated using Markov chain

Monte Carlo simulations. The Bayesian analysis was shown to provide more direct proba-

bilistic comparisons of treatments and able to identify small effects of interest. The

approach avoided asymptotic assumptions and overcame issues such as multiple testing.

Bayesian analysis of unscaled effects showed a probability of 0.96 that LHTL yields a sub-

stantially greater increase in hemoglobin mass than IHE, a 0.93 probability of a substan-

tially greater improvement in running economy and a greater than 0.96 probability that

both IHE and LHTL yield a substantially greater improvement in maximum blood lactate

concentration compared to a Placebo. The conclusions are consistent with those obtained

using a ‘magnitude-based inference’ approach that has been promoted in the field. The

paper demonstrates that a fully Bayesian analysis is a simple and effective way of analys-

ing small effects, providing a rich set of results that are straightforward to interpret in terms

of probabilistic statements.
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Introduction
A key interest in sports science is the estimation and evaluation of small effects, such as the dif-
ference in finishing times between world-class athletes, or the impact of exercise training and/
or lifestyle interventions such as dietary changes or sleep behaviors on performance [1]. While
such an interest is not confined to this context [2], there are some features of sports science
that make accurate and relevant estimation of small effects particularly challenging. Two such
challenges are small sample sizes when dealing with international-standard, elite-level athletes
and frequent small true between-individual differences in competitive performance. The issue
of dealing with small sample sizes in studies has drawn comment in the fields of both medicine
[3, 4] and sports science [5].

These issues have been addressed by a number of sports science researchers. For example,
Batterham and Hopkins (2006) challenged the traditional method of making an inference
based on a p-value derived from a hypothesis test, arguing that it is confusing, potentially mis-
leading and unnecessarily restrictive in its inferential capability [6]. The authors suggested
alternative is to focus on the confidence interval as a measure of the uncertainty of the esti-
mated effect, and examine the proportion of this interval that overlaps pre-defined magnitudes
that are clinically or mechanistically relevant. As illustration, Batterham and Hopkins identify
‘substantially positive’, ‘trivial’ and ‘substantially negative’magnitudes, as well as more finely
graded magnitudes. The authors then translate these proportions to a set of likelihood state-
ments about the magnitude of the true effect.

Batterham and Hopkins justify their suggested approach and corresponding inferences by
drawing an analogy between their method and a Bayesian construction of the problem. In par-
ticular, they claim that their approach is approximately Bayesian based on no prior assumption
about the distribution of the true parameter values. This has drawn criticism by a number of
authors, such as Barker and Schofield (2008) who–rightly–point out that the approach is not
Bayesian, and that the assumed priors in an analogous Bayesian approach may indeed be infor-
mative [7]. More recently, Welsh and Knight (2014) further criticised the approach of Batter-
ham and Hopkins and suggested that relevant statistical approaches should use either
confidence intervals or a fully Bayesian analysis [8].

The aim of this paper is to provide a Bayesian formulation of the method proposed by Bat-
terham and Hopkins (2006) and provide a range of probabilistic statements that parallel their
intended magnitude-based inferences. The models described here can be expanded as needed
to address other issues. For further exposition, the model is described in the context of a small-
scale athlete study authored by Humberstone-Gough and co-workers [9], which employed Bat-
terham and Hopkins’ approach to compare the effect of two altitude training regimens (live
high train low, and intermittent hypoxic exposure) on running performance and blood mea-
surements of elite triathletes.

Methods

General model
Both Bayesian and frequentist approaches require specification of a statistical model for the
observed data, which contains a number of parameters that need to be estimated. Bayesian
methods are different from frequentist approaches in that the parameters are treated as ran-
dom variables. That is, they are considered as having true, but unknown, values and are thus
described by a (posterior) probability distribution that reflects the uncertainty associated with
how well they are known, based on the data. The posterior distribution is obtained by multiply-
ing the likelihood, which describes the probability of observing the data given specified values
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of the parameters, and the prior distribution(s), which encapsulates beliefs about the probabil-
ity of obtaining those parameter values independently of the data. These priors may be devel-
oped using a range of information sources including previous experiments, historical data and/
or expert opinion. Alternatively, they may be so-called uninformative or vague distributions, to
allow inferences to be driven by the observed data.

This study describes a simple statistical model that might be considered in the context of
examining small effects in sports science and also some possible prior distributions that might
be placed on the parameters of this model. Some extensions to the model are considered in a
later section.

Suppose that there are G treatment groups. For the gth group (g = 1,. . .,G), let ng denote the
total number of individuals in the group, yi(g) denote an observed effect of interest for the ith
individual in the group (i = 1,. . .,ng), yg denote the set of observations in the group, �yg and s

2
g

denote respectively the sample mean and sample standard deviation of all the observed
responses from the group, and vg = ng−1 denote the degrees of freedom. For example, in the fol-
lowing case study, there are G = 3 groups (training regimens); yi(g) is the difference between the
post- and pre-treatment measurements for a selected response for the ith athlete in the gth
training regimen, and �yg is the average difference for that group.

Assume that an observation yi(g) is Normally distributed around a group mean μg, with a
group-specific variance s2

g , i.e.:

yiðgÞ � Normalðmg ; s
2
gÞ ð1Þ

A vague prior density is adopted for the pair of parameters ðmg ; s
2
gÞ [10] so that:

pðmg ; s
2
gÞ / s�2

g ð2Þ

(where/ denotes proportional to). Based on [1] and [2], the posterior conditional distribu-
tions for μg and s2

g are given by

mg js2
g ; yg � Nð�yg ;

s2
g

ng

Þ ð3Þ

s2
g jyg � Inversew2ðug ; s2gÞ: ð4Þ

The marginal posterior distribution for μg can be shown to have a t distribution on vg
degrees of freedom: [10]

mg jyg � tgð�yg ;
s2g
ng

Þ ð5Þ

so that

ðmg � �ygÞ=ðs2g=
ffiffiffiffiffiffiffi
ngÞ

q
jyg � tug ð6Þ

Relationship with frequentist results
The marginal posterior distributions for s2

g and μg, based on the data, are given by Eqs (4) and

(5), respectively. Because of the choice of the vague prior (Eq (2)), these distributions can be
shown to be closely related to analogous distributions for the (appropriately scaled) sufficient
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statistics, given μg and s2
g , based on frequentist sampling theory: [10]

ugs
2
g js2

g � w2ug ð7Þ

ð�yg � mgÞ=ðs2g=
ffiffiffiffiffiffiffi
ngÞ

q
� tug : ð8Þ

Estimation of values of interest
A range of posterior estimates (conditional on the available data) arising from the model may
be of interest, including:

1. the mean and standard deviation for each group (e.g., each training regimen in the study),

given by μg and s2g , respectively

2. the difference between the group means: δkl = μk−μl and the associated standard deviation
of this difference, σkl

3. a (1−α)% credible interval (CI) for a measure of interest, θ, say, such that there is a posterior
probability (1−α) that θ lies in this interval (e.g., θ could be the mean of group 2, i.e., θ = μ2,
and a 95% CI of (3.1, 4.2), for instance, indicates that the probability that μ2 is between 3.1
and 4.2, given the data, is 0.95), which is a much more direct statement than is possible
under a frequentist approach

4. Cohen’s d [11] for the difference between two groups, given by dkl = δkl/σkl when comparing
groups k and l, k 6¼ l

5. the probability that Cohen’s d exceeds a specified threshold such as a ‘smallest worthwhile
change’ (SWC,[6]), given by Pr(dkl> SWC) or Pr(dkl< −SWC), depending on whether dkl
is positive or negative, respectively

6. the predicted outcome of each individual under each training regimen, regardless of
whether or not they have participated in that training, obtained from Eq (1), with an esti-
mate of the corresponding uncertainty of this prediction

7. the ranks of each individual under each training regimen, with corresponding uncertainty
in these orderings.

Given the data yg for each group (and hence the sufficient statistics �yg and s
2
g), it is straight-

forward to use Eqs (4) and (5) to compute posterior estimates μg and s2
g , and other probabilities

of interest. An alternative, simple approach is to simulate values of interest using Eqs (3) and
(4) iteratively, employing a form of Markov chain Monte Carlo (MCMC) [12]. A more techni-
cal explanation of this approach including the Gibbs sampling techniques is provided by
Geman and Geman [13]. At each iteration, a value of s2

g is simulated from Eq (4) and then a

value of μg given that value of s2
g is simulated from Eq (3). This process is repeated a large num-

ber of times. The simulated values can be used to compute other measures (e.g. exp(μ1−μ2) if
this is of interest), indicators I(μ1 > c) or I(μ1 > μ2) and so on. Then E(exp(μ1−μ2)), Pr(μ1 > c)
and Pr(μ1 > μ2) can be estimated (where E denotes expectation) as the respective averages of
these values over all of the iterations. Similarly, at each iteration, the simulated parameter val-
ues can be input into Eq (1) to obtain predicted values of y for each individual under each regi-
men, and the individuals can be ranked with respect to their predicted outcome. The posterior
distributions for individual predicted outcomes, and the probability distribution for the ranks,
are computed from the respective values obtained from the set of iterations.
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The Cohen’s d is a standardized effect size estimate, calculated as the difference between
two means divided by the corresponding standard deviation. While there are many effect size
estimators, Cohen’s d is one of the most common since it is appropriate for comparing between
the means of distinctly different group and it has appealing statistical properties; for example it
has a well known distribution and is maximum likelihood estimator [14].

Model extensions
The model described above can be easily extended in a range of ways. Three such extensions
are considered here. The first extension is that other prior distributions can be considered
instead of Eq (2) above. For example, another common approach is to assign a normal distribu-
tion for the group means,

mg � NormalðM;VÞ ð9Þ

and a Uniform distribution for the standard deviations,

sg � Uniformð0;RÞ; ð10Þ

where M and V denote the mean and variance of the normal distribution, respectively, and R is
the upper bound of the uniform distribution. Alternatives to the uniform are the half-normal
or half-Cauchy. If the sample sizes within groups are small and little is known a priori about
the comparative variability of measurements within and between the groups, then s2

g can be

imprecisely estimated; to avoid this, the individual variances be replaced by a common vari-
ance, σ2 say.

There are many ways of setting the values of M, V and R. For example, if there is no prior
information about these values and if the groups are considered to be independent, this can be
reflected by specifying very large values of V and R, relative to the data. This means that the pri-
ors in Eqs (9) and (10) will have negligible weight in the posterior estimates of the group means
μg and variances s2

g . If V is sufficiently large, the value of M will not matter, so it is commonly

set to 0 in this case. Alternatively, the groups can be perceived as having their own characteris-
tics (described by μg and s2

g) but also being part of a larger population with an overall mean M

and variance V. This random effects model is very common as it helps to accommodate outliers
and improve estimation of small groups. Another alternative is to use other information to set
the values of M, V and R. This information can include results of previous similar experiments,
published estimates, expert opinion, and so on. Depending on the problem and the available
information, different values of M, V and R can be defined for the different groups. The Bayes-
ian framework can be very helpful in providing a mechanism for combining these sources of
information in a formal manner.

The second extension is that the model described in Eq (1) can be expanded to include
explanatory variables that can help to improve the explanation or prediction of the response.
This is the model that is adopted in the case study described below, where the explanatory vari-
ables comprise the group label and a covariate reflecting training-induced changes. For this
purpose, Eq (1) is extended as follows:

yi ¼ x0ibþ ε ð11Þ

where the explanatory variables and their regression coefficients are denoted by x and β,
respectively, and εi describes the residual between the observation yi and its predicted value

x
0
ib. Note that the superscript

0 denotes the transpose. It is common to assume that 2i~Normal
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(0,σ2). Normally distributed priors are placed on the parameters in this regression model:

b � Normalkðb0;B�1
0 Þ; s2 � Gammaðc0=2; d0=2Þ ð12Þ

where k represents the number of parameters, Normalk indicates a k-dimensional Gaussian
distribution and Gamma indicates a Gamma distribution described by shape and scale parame-
ters, in this case given by constants c0 and d0.

An uninformative prior specification can be defined for β by setting zero values for the mean
vector b0 and precision matrix B0. Similarly, negligible prior information about the magnitude
of the residuals is reflected by setting small values for c0 and d0 in the distribution for σ2 [15].

An alternative, popular formulation is to use Zellner’s g-prior, whereby the variance of the
prior for β is defined in terms of the variance for the data. More explicitly, b is specified as a mul-
tivariate normal distribution with a covariance matrix that is proportional to the inverse Fisher
information matrix for β, given by g(xTx)−1. This is an elegant way of specifying the ‘informa-
tion’ contained in the prior, relative to that contained in the data: the value of g is analogous to
the ‘equivalent number of observations’ that is contributed to the analysis by the prior [16, 17].

The third extension is the choice of the response y. This depends on the aim of the analysis,
biological and other contextual knowledge of the problem, and the available data. The residuals
are assumed to have a normal distribution with a mean of zero, and normally distributed priors
can be defined as the difference between an individual’s post-training and pre-training measure-
ments, the difference of the logarithms of these measurements, the relative difference between
the pairs of measurements (i.e. (post-pre)/pre) or some other context-relevant transformation.

Case Study
The Bayesian approach described above was applied to a study by Humberstone-Gough et al.
[9] who used a two-period (pre-post) repeated measures design to compare the effects of three
training regimens ‘Live High Train Low’ altitude training (LHTL), ‘Intermittent Hypoxic
Exposure’ (IHE) and ‘Placebo’ on running performance and blood characteristics. The study
comprised eight subjects (elite male triathletes) in each regimen, and had one dropout in the
LHTL group. Although ten running and blood variables were considered in the original study;
three variables with the most complete data are selected here for illustration: hemoglobin mass
(Hbmass, units of grams), submaximal running economy (RunEcon, units of L O2.min-1) and
maximum blood lactate concentration (La-max, units of mmol/L). The authors also employed
a covariate reflecting training-induced changes, namely the percent change in weekly training
load from pre- to during-camp for each individual athlete. The data used for the analyses are
shown in S1 Table (data extracted from original study of Humberstone-Gough et al (2013 and
provided by co-author Gore).

Casting this study in terms of the models described above, there are G = 3 groups denoting
the training regimens (Placebo by g = 1; IHE by g = 2; LHTL by g = 3). Letting prei and posti
denote respectively the pre- and post-treatment measurements for the ith individual, an
(unscaled) effect of interest, yi, was defined in terms of the difference between the pairs of mea-
surements:

yi ¼ posti � prei: ð13Þ

A log transformation was adopted in the original analysis by Humberstone-Gough et al. [9]
but was not performed in the analysis described below, as there was insufficient information in
the observed data to strongly motivate a transformation of the measurements, particularly after
adjusting for the covariate reported by Humberstone-Gough et al. (comparative summary
plots not shown). However, it is acknowledged that this decision was based purely on the
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available data and there may be compelling biological or experimental reasons for choosing the
log (or other) scale; for example, under this transformation covariates can be considered to
have multiplicative rather than additive effects on the original response. On the one hand,
retaining the original scale allows for more direct interpretation of the results. On the other, if
the underlying assumptions are not met, the inferences based on the results must be treated
with caution. In this study, the premise was adopted of not transforming unless there is a com-
pelling domain-specific or statistical reason to do so. Hence the decision was made not to take
a log transformation of the data as other authors have suggested–a statistical decision–and to
consider a relative change in performance as well as an absolute difference–a domain-based
decision since this measure is of interest to sports scientists. A similar issue arises about the
inclusion of covariates in a small sample analysis. In this case, the associated regression param-
eters may be estimated with substantial uncertainty and the usual model comparison methods
are often inadequate in determining any associated improvement in model fit. Again, the deci-
sion may be more domain-based than statistical. In the study considered here, results were
reported with and without a covariate that was considered to be important for sports scientists,
and a deliberate decision was made to avoid formal model comparison. These issues of data
transformation and model comparison for small samples merit further research.

Here we consider instead an analogous scaled effect defined in terms of the relative differ-
ence between the pairs of measurements:

yi ¼ ðposti‐preiÞ=prei: ð14Þ

For both the unscaled response given by Eq (13) and the relative response given by Eq (14),
the list of posterior estimates of interest were:

• the differences between the two experimental training regimens (IHE, LHTL) and the Pla-
cebo group, given by δ12 and δ13, respectively, and the difference between the two training
regimens IHE and LHTL, given by δ23;

• Cohen’s d for each of the two experimental regimens compared with the Placebo regimen,
given by d12 = δ12/σ12 for IHE and d13 = δ3/σ13 for LHTL;

• Cohen’s d for the standardized difference between LHTL versus IHE, given by d23 = δ23/σ23;

• the probabilities that the standardized difference between the IHE training regimen and the
Placebo exceed the ‘smallest worthwhile change’ (SWC, specified as a standardised change of
0.2 based on previous recommendations [18]), denoted by SWCU12 = Pr(d12 > 0.2) and
SWCL12 = Pr(d12 < -0.2);

• analogous probabilistic comparisons with the SWC for the difference between the LHTL
training regimen and the Placebo, and the LHTL and IHE training regimens,

• the posterior distributions of the expected outcome E(yij) = β0 + β1X + β2Ij = 1 + β3Ij = 2 for
the ith individual under the jth training regimen (where Ij = 1 = 1 if the treatment is IHE
and = 0 otherwise, and Ij = 2 = 1 if the treatment is LHTL and = 0 otherwise); the expected
outcome, obtained by substituting the simulated parameter values (β0, β1, β2, β3) into this
equation at each MCMC simulation,

• the analogous posterior predicted outcome for each individual under each training regimen,
which allows for within-subject variation around the expected outcome, i.e.,

ypredij ¼ ypredij þ eij; eij � Nð0; s2Þ, which is obtained in the same manner as above,
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• the ranks of the individuals based on their expected and predicted outcomes under each of
the treatment regimens; again, this is a probability distribution, reflecting the fact that rank-
ings may change depending on the precision of the estimated treatment effects and within-
subject variation.

Note that although the denominator of the Cohen’s dkl values can be calculated using the
traditional equation, i.e., σkl =

p
Var(δl-δk) =

p
((vlVar(δl)+vkVar(dk))/(vl+vk)), this can also be

directly calculated using the simulated values of dkl obtained from the MCMC iterations, i.e.,
σkl =

p
Var(dkl).

Based on exploratory plots of the relationships between the observed pre- and post-training
values of Hbmass, RunEcon and La-max among the three groups, and with the covariate, two
analyses of the data were undertaken. In the first analysis, the covariate was excluded and the
model was fit using Eqs (3) and (4). In the second analysis, the covariate was included given
previous work showing that training load can influence the hemopoietic response [19] and the
model was fit using Eq (11). The models were implemented using the statistical software R,
with packages BRugs and R2WinBugs, which call WinBUGS [15, 20, 21], and MCMCregress
in the MCMCpack library [22]. Estimates were based on 150,000 MCMC iterations, after dis-
carding an initial burn-in of 50,000 iterations. For comparability with Humberstone-Gough
et al [9], the results of the second analysis are reported below. The R code for this model is pre-
sented as a text file in S1 Text.

As described above, the primary analyses for the case study utilized an uninformative prior
specification for β in Eq (12), which was obtained by setting the values of the prior mean vector
b0 and prior precision matrix B0 to zero. The impact of informative priors was evaluated by
considering a range of non-zero values for these terms, with Hbmass as the response measure.
The values were motivated by the results of a recent meta-analysis of training regimens on
Hbmass [23], which reported a mean response of 1.08% increase in Hbmass per 100 hours of
LHTL training. Based on the study of Humberstone-Gough with 240 hours of exposure, the
prior expectation is thus that the mean increases for the LHTL and IHE groups would be 2.6%
and 0% respectively. The latter figure is also supported by a report that 3 h/day at 4000–5,500
m was inadequate to increase Hbmass at all [24]. This literature also provides a prior expecta-
tion of 0% increase in Hbmass of the Placebo group. The 2013 meta-analysis [23] also provided
an estimate of 2.2% for the within-subject standard deviation of Hbmass.

Results
The distribution of the covariate X (representing the % change in weekly training load from
pre- to post-camp) within and among the three training regimens (Placebo, IHE, LHTL) is dis-
played in Fig 1. The plots show that there is non-negligible variation between individuals
within a regimen with respect to this variable and substantive differences between the regi-
mens. It is clear that adjustment needs to be made for X before evaluating the comparative
impact of the three regimens. This is accommodated in the regression model described in Eq
(11).

Scatterplots of the unscaled differences given by Eq (13) and scaled differences given by
Eq (14) are presented in Figs 2–4. Based on these plots, there is no clear visual association
between the three measurements under consideration in this case study (Hbmass, RunEcon
and La-max), or between these measurements and the covariate.

Plots of the posterior distributions of the differences between the training regimens, IHE vs
Placebo, LHTL vs Placebo, LHTL vs IHE, given by δ12, δ 13 and δ23, respectively, are shown in
Fig 5. Corresponding posterior estimates of the effects (mean, s.d., 95% and 90% credible inter-
vals) are given in Table 1.
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From Fig 5 and Table 1, it can be seen that for Hbmass and RunEcon, although there is a
slight detrimental effect of IHE and a slight beneficial effect of LHTL compared with the Pla-
cebo, these are not substantive: a difference of 0 is reasonably well supported by the posterior
distributions. However, this slight differential in response results between IHE and LTHL: a
difference of 0 appears to have less support in the posterior densities; the 90% credible interval
does not include 0 and the posterior probability that Cohen’s d exceeds the SWC is 0.96 and
0.93 for Hbmass and RunEcon respectively. These outcomes strongly indicate that LHTL is
substantively better than IHE for both of these outcome measures.

In contrast, for La-max, both IHE and LHTL show a substantive beneficial effect compared
with the Placebo, with the corresponding 95% (and hence 90%) credible intervals excluding 0

Fig 1. Exploratory analyses comprising stripcharts (left) and boxplots (right) for the covariate X in the three training regimens (Placebo,
Intermittent Hypoxic Exposure (IHE), Live High Train Low (LHTL)), where X is a measure of the percent change in training load for each of the 23
individuals in the study. (See text for details.).

doi:10.1371/journal.pone.0147311.g001

Fig 2. Three-dimensional scatterplot of the three measurements, Hemoglobin Mass (Hbmass), Running Economy (RunEcon) andmaximum blood
lactate concentration (La-max), unscaled data (left) and scaled data (right).Unscaled data are calculated as posti−pre, and scaled data are calculated
as (posti−prei) / prei.

doi:10.1371/journal.pone.0147311.g002

Bayesian Estimation of Small Effects

PLOS ONE | DOI:10.1371/journal.pone.0147311 April 13, 2016 9 / 23



and a probability of 0.97 that Cohen’s d exceeds the SWC. As a consequence, the difference
between LHTL and IHE is thus attenuated for this outcome measure.

Posterior estimates of parameters of interest for the scaled (relative) measures are shown in
Fig 6 and Table 2. The figures and table confirm the above results. Similar to the unscaled
effects, there is no clear visual association between two of the measurements under consider-
ation in this case study (Hbmass and RunEcon), or between these measurements and the
covariate of change in weekly training load. However, there is a clear difference in the values of
the covariate among individuals in the Placebo group compared with the two training regimens
(LHTL and IHE). The two training regimens both appear to substantively improve La-max,
even after accounting for training-induced changes in the individual athletes. The direct proba-
bilistic comparisons with the SWC provide more complete information about these treatments
based on these data.

Hbmass                                               RunEcon                                             La-max

Hbmass                                               La-max Hbmass
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Fig 3. Two-dimensional scatterplots of the three measurements of Hbmass, RunEcon and La-max, under three regimes Placebo, Intermittent
Hypoxic Exposure (IHE) and Live High Train Low (LHTL), unscaled data.

doi:10.1371/journal.pone.0147311.g003
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The posterior expected outcome of Hbmass for each individual under each regimen is illus-
trated in Fig 7, for the unscaled data. The boxplots indicate the distribution of possible out-
comes, with the box corresponding to the middle 50% of values and the limits of the bars
corresponding to the minimum and maximum values. The corresponding expected rank and
associated interquartile range for the 23 individuals are reported in Table 3. It is noted that the
predictions and ranks are substantively driven by the covariate values in this model, with com-
paratively much less influence from the effect of the training regimens. Hence Table 3 displays
only a selection of results.

A comparison of two of the primary outcome measures Hbmass and RunEcon based on the
Bayesian and magnitude-based inference approach is presented in Table 4. Note that the two
sets of results differ slightly not only because of differences in analytic method, but also because
of differences in modelling. For example, the magnitude-based inferences are based on a log-
transformed response forecast to a covariate value (a 44% increase in weekly training load),
with covariate adjustment undertaken within each treatment group; in contrast, the Bayesian
inferences are based on the unadjusted and relative responses forecast to the mean covariate
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Fig 4. Two-dimensional scatterplots of the three measurements of Hbmass, RunEcon and La-max, under three regimes Placebo, Intermittent
Hypoxic Exposure (IHE) and Live High Train Low (LHTL), scaled data.

doi:10.1371/journal.pone.0147311.g004
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value and adjustment is undertaken using all of the data for reasons of small sample size. Fur-
thermore, as described above, the method of computation of the denominator of the standard-
ized values is not based on asymptotics in the Bayesian analysis, which makes a difference for
small samples. Notwithstanding these differences, the overall conclusions are similar for the
two sets of analyses. For Hbmass, the Bayesian analysis indicated a substantially higher increase
for LHTL with both unscaled and scaled data, with magnitude-based analysis indicating possi-
bly higher for LHTL with unscaled data, and likely higher with scaled data. Similarly for RunE-
con the outcomes were similar between the analytical approaches—the Bayesian analysis
indicated a substantial improvement (lower oxygen cost) with both unscaled and scaled data,
while magnitude-based analysis indicated possibly lower oxygen cost in both cases.

Comparison of the expected values of Hbmass and La-max under each of the training regi-
mens is further illustrated in Fig 8. The diagonal line indicates no treatment effect. The cloud
of points represents the values obtained from the MCMC simulations in the Bayesian analysis.
Displacement of the cloud from the line indicates that that there is an expected improvement

 

 

 

 

Hbmass 

La-max 

RunEcon 

Fig 5. Posterior densities of the three measurements, Haemoglobin Mass, Running Economy and Running Maximum Lactate, comparing Live
High Train Low (LHTL) vs Intermittent Hypoxic Exposure (IHE) (solid line), LHTL vs Placebo (dotted line) and IHE vs Placebo (dashed line),
unscaled data.

doi:10.1371/journal.pone.0147311.g005
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Table 1. Posterior estimates based on unscaled data.

Hbmass

Posterior parameter estimates (units of grams)

Effect Mean s.d. 95% CI 90% CI

X 0.25 0.25 -0.25, 0.74 -0.17, 0.66

IHE -1.4 19.8 -40.5, 37.8 -33.8, 30.9

LHTL 30.7 21.7 -12.4, 73.4 -4.9, 66.2

LHTL-IHE 32.0 15.3 1.9, 62.2 7.04, 57.2

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE -0.07 1.0 -2.1, 1.9 -1.7. 1.6

LHTL 1.4 1.0 -0.57, 3.4 -0.23, 3.0

LHTL-IHE 2.1 1.0 0.12, 4.1 0.46, 3.7

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.45 0.39

LHTL 0.052 0.89

LHTL-IHE 0.013 0.97

RunEcon

Posterior parameter estimates (unit of L/min)

Effect Mean s.d. 95% CI 90% CI

X 0.00045 0.0010 -0.0016, 0.0025 -0.0012, 0.0021

IHE 0.039 0.079 -0.12, 0.20 -0.09, 0.17

LHTL -0.080 0.090 -0.26, 0.097 -0.23, 0.065

LHTL-IHE -0.12 0.064 -0.25, 0.0094 -0.22, -0.014

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE 0.50 1.0 -1.5, 2.5 -1.1, 2.1

LHTL -0.89 1.0 -2.9, 1.1 -2.5, 0.73

LHTL-IHE -1.85 1.0 -3.8, 0.15 -3.5, -0.22

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.23 0.62

LHTL 0.77 0.13

LHTL-IHE 0.95 0.023

La-max

Posterior parameter estimates (units of mmol/L)

Effect Mean s.d. 95% CI 90% CI

X -0.018 0.015 -0.050, 0.013 -0.044, 0.0076

IHE -2.5 1.3 -5.0, -0.06 -4.6, -0.50

LHTL -2.8 1.3 -5.6, -0.10 -5.10-, -0.59

LHTL-IHE -0.32 1.0 -2.3, 1.66 -1.2, 1.3

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE -2.0 1.0 -4.0, -0.054 -3.7, -0.40

LHTL -2.1 1.0 -4.0, -0.070 -3.7, -0.48

LHTL-IHE -0.32 1.0 -2.3, 1.7 -2.0, 1.3

(Continued)
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or decline in the outcome measure associated with the respective treatment, and the range of
values for which this is anticipated to take effect.

The alternative priors that were motivated by the available external information are shown
in Table 5. The consequent changes in the parameter values arising from the incorporation of
these priors in the model are also shown in this table. It is clear that although the parameter
estimates change slightly, the inferences reported above are generally robust to relatively small
changes in the priors. However, the posterior estimates start to differ in a natural manner when
the priors become more informative with respect to either the mean or variance. It is also
noted that, reassuringly, the original (vague prior) setting yielded a posterior estimate of a rela-
tive increase of 2.6% in Hemoglobin mass under the LHTL regimen, which is equivalent to the
anticipated value based on the (independent) prior information.

Table 1. (Continued)

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.97 0.015

LHTL 0.98 0.015

HTL-IHE 0.55 0.29

doi:10.1371/journal.pone.0147311.t001

Hbmass 

La-max 

RunEcon 

Fig 6. Posterior densities of the three measurements, Haemoglobin Mass, Running Economy and
Running Maximum Lactate, comparing Live High Train Low (LHTL) vs Intermittent Hypoxic Exposure
(IHE) (solid line), LHTL vs Placebo (dotted line) and IHE vs Placebo (dashed line), scaled data.

doi:10.1371/journal.pone.0147311.g006
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Table 2. Posterior estimates based on scaled data.

Hbmass

Posterior parameter estimates (units of percent / 100)

Effect Mean s.d. 95% CI 90% CI

X 0.00020 0.00029 -0.00038, 0.00077 -0.00028, 0.00067

IHE -0.0075 0.023 -0.053, 0.038 -0.045, 0.030

LHTL 0.026 0.025 -0.023, 0.076 -0.015, 0.068

LHTL-IHE 0.034 0.018 -0.0011, 0.069 0.0050, 0.063

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE -0.33 1.0 -2.3, 1.7 -1.2, 1.3

LHTL 1.1 1.0 -0.93, 3.0 -0.60, 2.7

LHTL-IHE 1.9 1.0 -0.059, 3.9 0.28, 3.6

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.55 0.29

LHTL 0.10 0.81

LHTL-IHE 0.019 0.96

RunEcon

Posterior parameter estimates (units of percent / 100)

Effect Mean s.d. 95% CI 90% CI

X 0.00023 0.00031 -0.00038, 0.00083 -0.00027, 0.00072

IHE 0.015 0.023 -0.032, 0.061 -0.024, 0.053

LHTL -0.016 0.027 -0.069, 0.037 -0.060, 0.027

LHTL-IHE -0.031 0.019 -0.069, 0.0071 -0.062, 0.00016

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE 0.63 1.00 -1.4, 2.6 -1.0, 2.3

LHTL -0.61 1.00 -2.6, 1.4 -2.2, 1.0

LHTL-IHE -1.62 1.00 -3.6, 0.37 -3.3, 0.0085

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.19 0.68

LHTL 0.67 0.20

LHTL-IHE 0.93 0.035

La-max

Posterior parameter estimates (units of percent / 100)

Effect Mean s.d. 95% CI 90% CI

X -0.0019 0.0016 -0.0051, 0.0013 -0.0045, 0.00072

IHE -0.26 0.13 -0.51, -0.0094 -0.47, -0.054

LHTL -0.29 0.14 -0.58, -0.014 -0.52, -0.065

LHTL-IHE -0.034 0.10 -0.24, 0.17 -0.20, 0.13

Cohen’s d

Effect Mean s.d. 95% CI 90% CI

IHE -2.6 1.0 -4.0, -0.074 -3.7, -0.43

LHTL -2.1 1.0 -4.1, -0.10 -3.7, -0.46

LHTL-IHE -0.33 1.0 -2.3, 1.7 -2.0, 1.3

(Continued)
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Discussion
In 2008, Barker and Schofield [7] suggested that “to correctly adopt the type of inference advo-
cated by Batterham and Hopkins [6], sport scientists need to use fully Bayesian methods of
analysis”. They also noted that most sport scientists are not trained in Bayesian methods, likely
because this approach has only become commonplace as a statistical technique in approxi-
mately the last 20 years. To help make the Bayesian approach more accessible for those work-
ing in exercise science and sports medicine, we have provided here both a worked example
(using statistical software) together with a description of the underlying models. We hope that
this template will encourage those who deal with small samples and small effects to explore the
full Bayesian method, which is well suited to the analysis of small samples. Other supporting
information, where available, can be represented via the prior and hence formally and trans-
parently incorporated with the data. In the absence of such information, the uncertainty
induced by small samples is properly incorporated in the posterior estimates and inferences. In
both of these situations, the analytical decision-making is enhanced, in support of the ultimate
practical/clinical decision-making undertaken by sports practitioners.

Case study re-interpreted with Bayesian inferences
An experimental study by Humberstone-Gough and colleagues reported changes (mean ± 90%
confidence interval) in Hbmass of -1.4 ± 4.5% for IHE compared with Placebo and 3.2 ± 4.8%

Table 2. (Continued)

Prob. Cohen’s d <> 0.2

Parameter Prob. d<-0.2 Prob. d>0.2

IHE 0.97 0.014

LHTL 0.97 0.014

LHTL-IHE 0.56 0.29

doi:10.1371/journal.pone.0147311.t002

Fig 7. Boxplots of the posterior expected outcomes for Hbmass for each individual in the study, under each of the two training regimens
Intermittent Hypoxic Exposure (left) and Live High Train Low (right).

doi:10.1371/journal.pone.0147311.g007
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for LHTL compared with Placebo [9]. For RunEcon the authors reported ‘no beneficial
changes’ for IHE compared with Placebo, and a change of 2.8 ± 4.4% for LHTL compared with
Placebo. Although the analyses were undertaken using different outcome measures and a
slightly different analytical model, the conclusions based on the posterior estimates and proba-
bilities obtained from the Bayesian analysis reported above are broadly consistent with those
reported by Humberstone-Gough et al. Importantly, the Bayesian approach allows a much
more direct probabilistic interpretation of credible intervals and posterior probabilities; for
example, the probability that the mean change in Hbmass after LHTL compared with the
change after IHE is greater than the smallest worthwhile change (0.2) is 0.96.

Cohen’s effect size magnitudes are well established [11] but the selection of a small effect
(d = 0.2) as the threshold value for a worthwhile change or difference has been questioned. In
the sporting context, worthwhile changes in competition performance, which can alter medal
rankings, have been derived [25] as approximately 0.3 times the within-subject standard devia-
tion [26, 27], or ~0.3–1% of performance time in a range of sports [28–30]. Empirical evidence
confirms that small effects (on competitive performance) are worthwhile for elite athletes and of
practical relevance for coaches and scientists attempting to understand the likely benefit or
harm of training regimen, lifestyle intervention or change in technique. The full Bayesian
approach provides a robust and acceptable method of estimating the likelihood of a small effect.
For instance, in the Humberstone-Gough et al. case study Hbmass increased ~21 g (or by 2.3%)
more in LHTL vs IHE. Given that every gram of hemoglobin can carry ~4 mL O2, [31], it is

Table 3. Expected rank and associated interquartile range for the 23 individuals in the study.

ID Hbmass RunEcon La-max

Mean IQR Mean IQR Mean IQR

1 3 3–19 3 3–19 19 3–19

2 NA NA NA NA NA NA

3 10 10–12 10 10–12 12 10–12

4 5 5–17 5 5–17 17 5–17

5 12 10–12 12 10–12 10 10–12

6 15 7–15 15 7–15 7 7–15

7 11 11–11 11 11–11 11 11–11

8 8 8–14 8 8–14 14 8–14

9 6 6–16 6 6–16 16 6–16

10 2 2–20 2 2–20 20 2–20

11 1 1–21 1 1–21 21 1–21

12 17 5–17 17 5–17 5 5–17

13 4 4–18 4 4–18 18 4–18

14 7 7–15 7 7–15 15 7–15

15 9 9–13 9 9–13 13 9–13

16 18 4–18 18 4–18 4 4–18

17 21 1–21 21 1–21 1 1–21

18 13 9–13 13 9–13 9 9–13

19 16 6–16 16 6–16 6 6–16

20 14 8–14 14 8–14 8 8–14

21 20 2–20 20 2–20 2 2–20

22 NA NA NA NA NA NA

23 19 3–19 19 3–19 3 3–19

doi:10.1371/journal.pone.0147311.t003
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reasonable to infer that this small increase in Hbmass is likely beneficial to overall oxygen trans-
port capacity. The corresponding 95% credible interval for this comparison of absolute change
ranged from -11.8 to +53.8 g, but on balance the probability is>0.8 that the true increase in
Hbmass is substantial (worthwhile), which should be sufficient encouragement for most

Table 4. Analysis of pre- to post-training measurements for LHTL vs IHE–outcomes for Bayesian and Magnitude-based Inferences for both
unscaled and scaled data. SD = standard deviation, CL = confidence limits, CI = credible interval.

Analysis Measure Hemoglobin Mass Running Economy
(g) (L.min-1)

Bayesian Unscaled Mean ± SD 21 ± 17 -0.17 ± 0.052

90% CI -6, 48 -0.25, -0.08

Cohen’s d; 90% CI 1.26; -0.37, 2.90 -3.20; -4.84, -1.57

Probability |d|>0.2 0.931 0.998

Qualitative inference Higher Lower

Magnitude-based Inference Mean; 90% CL 36; -5, 78 -0.13; -0.22, 0.04

Cohen’s d; 90% CL 0.18; -0.02, 0.39 -0.20; -0.34, -0.07

Qualitative inference Possibly Higher Possibly Lower

Bayesian Scaled Mean ± SD (% / 100) 0.023 ± 0.019 -0.042 ± 0.017

90% CI -0.008, 0.054 -0.069, -0.015

Cohen’s d; 90% CI 1.21; -0.42, 2.85 -2.51; -4.14, -0.88

Probabilty |d|>0.2 0.926 0.993

Qualitative inference Higher Lower

Magnitude-based Inference Smallest worthwhile difference (% / 100) 0.016 0.019

Difference ± SD 0.047 ± 0.035 -0.028 ± 0.044

Cohen’s d; 90% CL 0.20; 0.05, 0.35 -0.14; -0.34, 0.07

Qualitative inference Likely Higher Possibly Lower

doi:10.1371/journal.pone.0147311.t004

Fig 8. Comparison of the posterior distributions of the expectedmeasurements of Hbmass (left) and La-max (right) under each of the training
regimens Intermittent Hypoxic Exposure (IHE) and Live High Train Low (LHTL), unscaled data.

doi:10.1371/journal.pone.0147311.g008
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scientists and coaches to utilize altitude training to increase Hbmass–a position also supported
by a meta-analysis of Hbmass and altitude training [23]. Likewise in the Humberstone-Gough
et al. case study RunEcon improved (was lower) by ~0.17 L.min-1 (or lower by 4.2%) more in
LHTL vs IHE. The associated 95% credible interval for this comparison of relative change ran-
ged from –0.9 to -7.5%, with a probability of ~0.99 that the true decrease in submaximal oxygen
consumption is substantial (worthwhile). Although contentious [32], an improved running
economy after altitude training is advantageous to distance running performance because it
reduces the utilization of oxygen at any given steady-state running speed [33, 34].

Limitations of quasi-Bayesian approaches
Batterham and Hopkins (2006) have challenged the frequentist approach as being too conser-
vative, and provided a useful, if somewhat unconventional, framework for interpreting small
effects. The so-called magnitude-based approach emerging in sports science [18, 26, 35] is
based on defining and justifying clinically, practically or mechanistically meaningful values of
an effect. Confidence intervals are then used to interpret uncertainty in the effect in relation to
these reference or threshold values. Much discussion has centred on the legitimacy of using
vague priors in the magnitude-based approach and whether prior knowledge is actually useful
in all cases [36]. There are inferential limitations to their approach [7, 8] which can be circum-
vented by using a full Bayesian approach that we have elaborated here.

A major criticism of the approach suggested by Batterham and Hopkins (2006) is that, con-
trary to the authors’ claims, their method is not (even approximately) Bayesian and that a
Bayesian formulation of their approach would indeed make prior assumptions about the distri-
bution of the true parameter values. Barker and Schofield (2008) suggest that the underlying
prior distribution would be uniform, which makes a clear assumption about the parameter val-
ues (that any parameter value in the defined range is equally likely) and which can be influ-
enced by transformations of the parameter. As demonstrated in our paper, a Bayesian
formulation of the problem considered by Batterham and Hopkins (2006) can quite easily be

Table 5. Configurations of hyperparameter values for informative priors in the Bayesianmodel [Eqs (11 and 12)]. Here b0 and B0 denote respectively
the prior mean vector and precision matrix for the regression coefficients, and c0/2 and d0/2 denote respectively the shape parameter and scale parameter
for the inverse Gamma prior on σ2 (the variance of the disturbances). These latter two parameters can be respectively interpreted as indicating the amount of
information, and the sum of squared errors, from c0 pseudo-observations, for the inverse Gamma prior on σ2 (the variance of the residuals) [16]. Note that (a)
depicts the baseline uninformative priors used in the primary analyses, whereas (b) to (h) illustrate seven alternate priors.

Setting (a) (b) (c) (d) (e) (f) (g) (h)

b0 (0,0,0,0) (0,0,0,2.6) (0,0,0,2.6) (0,0,0,2.6) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,2.6)

diag(B0) (0,0,0,0) (0,0,.2,.2) (5,5,5,5) (0,0,5,5) (0,0,0,0) (0,0,0,0) (0,0,5,5) (0,0,0,0)

c0 0.0001 0.0001 0.0001 0.0001 20 20 20 20

d0 0.0001 0.0001 0.0001 0.0001 100 5 100 100

Int. 0.00047 0.0044 -0.0027 -0.0028 0.011 0.0060 -0.64 0.0060

(0.026) (0.026) (0.026) (0.026) (1.4) (0.30) (0.28) (0.30)

X 0.00020 0.00020 0.00026 0.00026 0.00018 0.00019 0.0062 0.00019

(0.00029) (0.00029) (0.00029) (0.00029) (0.015) (0.0034) (0.0033) (0.0034)

IHE -0.0075 -0.0073 -0.0021 -0.0021 -0.017 -0.0096 0.41 -0.0096

(0.023) (0.023) (0.023) (0.023) (1.2) (0.27) (0.23) (0.27)

LHTL 0.026 0.027 0.035 0.035 0.024 0.026 0.79 0.26

(0.025) (0.025) (0.025) (0.025) (1.3) (0.29) (0.27) (0.29)

σ2 0.0011 0.0011 0.0011 0.0011 2.9 0.14 0.17 0.14

(0.00042) (0.00042) (0.00043) (0.00043) (0.71) (0.035) (0.047) (0.045)

doi:10.1371/journal.pone.0147311.t005
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constructed, using a reference prior which is arguably vague (often referred to as the Jeffreys
prior [10]). Moreover, there are clear and natural links between the frequentist distributions
based on sampling theory and the Bayesian posterior distributions under these prior assump-
tions. The use of the reference prior for the estimation and comparison problem considered in
this paper is well-founded, theoretically sound and very commonly employed [10]. As dis-
cussed in the Methods section, however, other priors can also be considered, particularly if
there is other information available to complement the analysis.

Another criticism levelled at Batterham and Hopkins (2006) by Barker and Schofield (2008)
is their choice and use of an expanded set of categories, based on a non-standard choice of the
thresholds used to define the categories, the use of different thresholds for different problems
(e.g., sometimes 0.025 and 0.975 instead of 0.05 and 0.95), and the descriptors used to label the
categories, namely ‘almost certainly not,. . .almost certainly’). However, while the expanded set
of categories proposed by Batterham and Hopkins is not ‘standard’ in classical statistics, this
does not mean that it is wrong, misleading or not useful. Indeed, such categorizations can be
very useful if they are clearly justified, interpreted properly and provide additional decision
support for clinical (or, in this case, sporting) interventions. Even in ‘traditional’ statistics,
some statisticians suggest that a p-value less than 0.10 indicates ‘substantive’ evidence against
the null hypothesis, while other statisticians would not counsel this. Similarly, although a p-
value of 0.05 is almost overwhelmingly taken as the ‘significance level’, many statisticians
strongly advise against its unconsidered use and suggest that other levels (such as 0.01 or 0.10)
may be more appropriate for certain problems and desired inferences. A number of commenta-
tors in the sports science field have made similar observations [1, 37, 38]. The overwhelming
advice is that the probabilities obtained as a result of statistical analysis must be useful in pro-
viding decision support for the problem at hand, and different probabilities can indeed be used
if they are well justified, transparently reported and correctly interpreted.

The technical interpretation of a (frequentist) confidence interval is poorly understood by
many practitioners. This has caused, and will continue to lead to, clumsy statements about the
inferences that can be made on its basis. In contrast, an analogous Bayesian interval is directly
interpretable: for example, a 95% credible interval indicates that the true parameter lies within
this interval with an estimated probability of 0.95. Moreover, the analysis can be used to obtain
other decision support statements such as a set of meaningful probabilities; for example, as
demonstrated in the case study, one can obtain the probability that a particular parameter
exceeds an objectively-derived threshold of clinical/practical/sporting interest. Of course, the
particular decisions that are made on the basis of these probabilities remain the prerogative of
the decision-maker. For example, the outcome of an intervention to improve athletic perfor-
mance (e.g. a new experimental therapeutic treatment) may be classified as ‘possible’ in some
cases (acceptable probability of improving performance, within minimal adverse effects, low
cost, readily available, and legal in terms of anti-doping regulations), and hence lead to a deci-
sion of using, whereas in another context it may be deemed too risky (unacceptable risk of
impairing performance, adverse effects on health and well-being, high cost and limited avail-
ability, and some uncertainty in meeting anti-doping regulations) and lead to no action. In
practice, these decisions may not coincide with the traditional statement of a statistically signif-
icant effect at a 5% level [36]. In both cases, however, the decisions are enhanced by the richer
probabilistic and inferential capability afforded by the Bayesian analysis.

In the context of small samples such as those encountered in this study, it is important to
understand the nature and implications of the statistical assumptions underlying the adopted
models and inferences. For example, in a standard linear regression model a common assump-
tion is that the residuals (the differences between the observed and predicted values) are nor-
mally distributed. Note that this only applies to the residuals, not the explanatory or response
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variables. This assumption was also adopted in the model and analysis presented in this paper.
There is a rich literature about the appropriateness of this assumption for small sample sizes.
Importantly, if the residuals are indeed normally distributed then the regression estimates will
possess all three desirable statistical characteristics of unbiasedness, consistency, and efficiency
among all unbiased estimators; however, even if they are not normally distributed they will still
be unbiased (accurate) and consistent (improve with increasing sample size) but will only be
most efficient (i.e. have smallest variance) among a smaller class of (linear unbiased) estimators
[39]. The most obvious implication of non-normal residuals is that the inferences may not be
as sharp, but by virtue of the central limit theorem the sampling distribution of the coefficients
will approach a normal distribution as the sample size increases, under mild conditions. In our
study, this was achieved by employing a single residual term across all groups which effectively
increased the sample size. Feasible alternatives would have been to allow different residual vari-
ances for each group or to employ a robust regression approach, for example using a t distribu-
tion for the errors. It is also noted that the Bayesian estimates avoid some of the inferential
concerns, since the credible intervals and probabilistic rankings are obtained from the MCMC
samples, i.e., from the posterior distributions themselves, as opposed to relying on stronger
asymptotic assumptions that are required for frequentist inferences

Another topical issue that has substantive implications for small sample analysis is repro-
ducibility [40]. Indeed, the very measure of reproducibility arguably faces similar challenges as
those reported here, and a Bayesian approach is arguably preferable over measures based on p-
values or confidence intervals [41–43]. See also a recent blog article that discusses this topic
(http://alexanderetz.com/2015/08/30/the-bayesian-reproducibility-project/). The current
debates are often conducted in the context of large samples, so the challenge is much greater
for studies such as the one presented here. This is another topic for future research.

Conclusion
We have demonstrated that a Bayesian analysis can be undertaken for small scale athlete stud-
ies and can yield comparable, but more directly interpretable and theoretically justified proba-
bilistic outcomes compared with the so-called magnitude-based (quasi-Bayesian) approach.
The model described here is one of the simplest Bayesian formulations, and can be expanded
as needed to address other issues. Analytical approaches for small sample studies using full
Bayesian, quasi-Bayesian, and frequentist decisions must be well justified, reported transpar-
ently and interpreted correctly.
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