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Many insect species, and even some vertebrates, assemble their bodies to form

multi-functional materials that combine sensing, computation, and actuation. The

tower-building behavior of red imported fire ants, Solenopsis invicta, presents a key

example of this phenomenon of collective construction. While biological studies of

collective construction focus on behavioral assays to measure the dynamics of formation

and studies of swarm robotics focus on developing hardware that can assemble

and interact, algorithms for designing such collective aggregations have been mostly

overlooked. We address this gap by formulating an agent-based model for collective

tower-building with a set of behavioral rules that incorporate local sensing of neighboring

agents. We find that an attractive force makes tower building possible. Next, we explore

the trade-offs between attraction and random motion to characterize the dynamics and

phase transition of the tower building process. Lastly, we provide an optimization tool

that may be used to design towers of specific shapes, mechanical loads, and dynamical

properties, such as mechanical stability and mobility of the center of mass.

Keywords: social insects, agent based modeling (ABM), self-assembly, phase transition, collective construction,

swarms and collective behavior

1. INTRODUCTION

Collective aggregation is a prevalent behavior among social animals, where many individuals
cluster together while feeding, defending against predators, or as a thermoregulation strategy,
effectively reducing the exposed surface area per individual. Examples of species that aggregate
include vertebrates, such as penguins (Waters et al., 2012) and bats (Roverud and Chappell, 1991;
Kerth, 2008) as well as insects, such as beetles (Deneubourg et al., 1990), ants (Theraulaz et al.,
2002; Reynaert et al., 2006), and cockroaches (Ame et al., 2004; Jeanson et al., 2005). While these
aggregations are often planar, eusocial insects, such as honey bees (Seeley, 2010; Kastberger et al.,
2011), army ants (Franks, 1989), and fire ants (Mlot et al., 2011) extend this strategy and create
three-dimensional assemblages. These self-assemblages are composed of a multitude of individuals
who link their bodies, doing so without a global overseer and with limited cognitive abilities
(Anderson et al., 2002).

Ants in particular are capable of a wide variety of self-assemblages and collective behavior. For
example, ants of the genus Oecophylla build chains for gap crossing and during nest construction
(Lioni et al., 2001). In addition, army ants are known for their construction of bivouacs (Franks,
1989), and are also capable of building bridges out of their bodies to cross gaps along a foraging
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trail (Reid et al., 2015). Finally, as we will discuss further, fire ants
gather together to form rafts and towers when their habitat floods
(Mlot et al., 2011, 2012; Phonekeo et al., 2017).

The structures that these insects create are, in essence,
autonomous materials that embed sensing, computation, and
actuation. These properties are some of the long-standing
aspirations in the fields of multi-functional materials and robotic
materials (Şahin, 2004; Hughes et al., 2019). Self-assembling
agents have already begun to inspire robotic applications
(Bonabeau et al., 1999; Brambilla et al., 2013; Hamann, 2018).
For example, Del Dottore et al. (2018) have described the concept
of “growing robots,” which are systems of a large number of
individual robots working together to mimic biological growth
in plants or groups of molecules or cells. Other collective robots
are directly inspired by eusocial insects, such as the S-bots (Şahin
et al., 2002; Groß et al., 2006), which form chains to collectively
move larger payloads, just like ants working together to move
larger food (Buffin and Pratt, 2016). Also inspired by ants,
Swissler and Rubenstein (2018) have developed robots with a new
docking mechanism to form self-assembling structures. Another
class of robots, inspired by termites (Werfel et al., 2014), build
three-dimensional structures out of external building materials.
Finally, the cube-shaped M-Blocks (Romanishin et al., 2015)
construct aggregations out of their own bodies, using magnetism
and angular momentum to climb on top of neighbors. These
works represent examples from the emerging field of multi-agent
robotic systems built out of many inexpensive individual robots
and utilizing control strategies that may include redundancies to
overcome individual malfunctions. While much of the focus in
robotics has been on developing the hardware, the algorithmic
development of assembling processes has often been overlooked.
We address this gap by borrowing tools from computational
material science and characterize the dynamics of 3-dimensional
aggregation formation inspired by fire ant towers.

In nature, red imported fire ant (Solenopsis invicta) towers
tend to occur in the event of flooding. Initially, fire ants gather
together to form hydrophobic rafts (Mlot et al., 2011, 2012) to
float above the water surface. When the rafts approach vegetation
emerging from the surface, they may attach to the vegetation
and form towers on top of their floating rafts, as pictured in
Figure 1A. In a recent, Phonekeo et al. (2017) described an
experimental assay of the tower-building process in fire ants.
The experimental setup involved fire ants constructing towers
around a vertical rod to represent the emergent vegetation. In
their analysis, the authors propose four rules which allow ants
to build towers:

1. Do not move if ants are on top of you.
2. If atop other ants, repeatedly move a short distance in a

random direction.
3. Upon reaching available space adjacent to non-moving ants,

stop and link with them.
4. The top layer of the tower is not stable unless there is a

complete innermost ring of ants gripping each other around
the rod.

Note that the “available space adjacent to non-moving ants” is
primarily discussed by Phonekeo et al. (2017) in the context

of a ring around the vertical rod or vegetation. We will take a
more general definition of an available space in the present study,
discussed below in section 2.1.

The work of Phonekeo et al. (2017) shows an agreement
between the resulting tower shapes in the long-timescale limit;
however, it does not explore the time dynamics and parameter
space systematically. This is what the present work aims to do,
since local rules, such as these provide a systematic way of
analyzing collective behavior through agent-based modeling, and
importantly, they are directly implementable in swarm robotic
systems. By simulating the behavior of individuals following
a set of local rules, it is possible to investigate how local
interactions between agents lead to global emergent behavior and
explore the space of possible behavior beyond what is possible
with experiments.

Modeling efforts of collective behavior using local behavioral
rules include the boids model (or Vicsek model) (Reynolds,
1987; Vicsek et al., 1995), which simulates agents moving under
attraction, repulsion, and alignment as well as more complicated
models (Couzin and Krause, 2003; Mishra et al., 2012; Wilensky
and Rand, 2015). However, boids-type models best describe the
behavior of more sparse collectives, such as flocks of birds or
schools of fish. To model ants building a tower, we must account
for dense aggregations where the interaction range is limited
to a short length scale, preferably defined by the size of an
individual agent. Models of more dense collective assemblies
include aggregation in slime mold based on chemical signal
amplification (Levine et al., 1997; Umeda and Inouye, 1999),
and nest building in wasps using an agent-based model in
which swarms of builders deposit bricks and build up a nest
(Theraulaz and Bonabeau, 1995; Bonabeau et al., 2000). Agent-
based modeling has been successfully applied to studies of ant
collective behavior as well (Dorigo et al., 2000) to modeling
traffic organization in ant foraging (Goss et al., 1989; Couzin
and Franks, 2003; Strömbom and Dussutour, 2018), bridge and
chain formation (Lioni et al., 2001; Garnier et al., 2013), and trail
clearing (Bochynek et al., 2017). However, for the present study
we must consider both moving ants as in traffic organization
and trail clearing, which climb the tower and form the shape,
as well as stationary ants that support the structure as in bridge
and chain formation. Based on the similarity to the aggregation
of inanimate systems, such as colloids (Deneubourg et al.,
2002; Vernerey et al., 2018), we reason that ant tower building
would experience dynamic phase separation processes including
nucleation (Vlasov, 2019), jamming (Bak, 1996), and ripening
(Voorhees, 1985). These phase transitions are also observed at
the thermodynamic transition between phases of matter, which
have been studied experimentally (Panagiotou et al., 1984) as well
as computationally (Rovere et al., 1990; Navarro and Fielding,
2015). Hence, we formulate an agent-based model with a set
of behavioral rules that lead to aggregation and experience
dynamical phase transitions.

Section 2 describes the details of the model we study in the
present work and lays out the modifications to the local rules
(presented above) that we introduce to achieve tower-building.
In section 3, we explore the parameter space of the local rules to
identify the impacts of each component: locking, unlocking, and
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FIGURE 1 | (A) Formation of towers by fire ants around vegetation, reproduced with permission from Phonekeo et al. (2017). (B) Schematic of computational model

considered in this study, as described in section 2.2. Individual free agents (black) move to an adjacent square at every time step, while locked agents (red) remain

stationary. The side view below the grid shows the 3-dimensionality of the model arena. The blue region represents the neighborhood of adjacent locations which an

agent considers when searching for locked neighbors and for determining its attractive force. (C) Schematic representation of the three states an agent can assume in

the model. Free agents move with constant velocity, locked agents stop to build towers, while covered agents cannot unlock.

attraction. We find that towers undergo a phase transition when
varying the attraction parameter, and explore how this phase
transition changes across various densities. Finally, we introduce
an optimization algorithm to generate the largest possible tower
for a given density of agents in the system. In section 4, we discuss
the significance of the results and talk about implications for both
the understanding of collective biological systems and the design
of multi-agent robotic control strategies.

2. AGENT-BASED MODEL

We consider a system of N individual agents simulated to move
in a L × L × ∞ arena, discretized into a cubic lattice made of
voxels of volume ℓ × ℓ × ℓ. The volume of an individual agent is
set to the be volume of a voxel, where ℓ ≡ 1. At each time step, an
individual agent can move into one of its 26 neighboring voxels:
9 above, 9 below, and 8 on the same level. A schematic of agents
moving within the arena is shown in Figure 1B. In the present
work, we will not consider the effects of solid wall boundaries and
will instead implement periodic boundaries. The horizontal plane
of the arena, therefore, contains periodic boundary conditions—
when an agent leaves the right side of the arena, for example,
it re-enters the left side. Periodic boundaries are also taken
into account when distances between agents are calculated. The
equations that define the periodic boundary conditions are given
in (S1) and (S2) inAppendix 2. The vertical direction of the arena
is semi-infinite, extending upward from a solid floor.

Agents move horizontally and climb up if the voxel they
intended to move into is occupied by a locked agent. Note that
the local rules described above, from Phonekeo et al. (2017), refer
to agents “linking” with one another, while in the present work

we will refer to an agent that stops to support tower building as
“locked.” Each pixel along the horizontal plane has an associated
height equal to the number of locked agents on top of each other
in that location. The free agents, therefore, are moving under
2-dimensional rules along the surface defined by locked agents,
which is embedded in 3-dimensions. If an agent attempts to climb
on top of neighbors to a voxel that is more than ℓ higher, it does
not move at this time step. Agents may move down any distance
but never move below the floor.

Agents in the model may take on three different states,
depicted in Figure 1C: free, locked, or covered. A free agent may
move around the arena according to a specific set of behavioral
rules with a constant velocity of one voxel per time step. All
agents determine their intended movement before moving, and
movement order is chosen randomly at each time step. To
prevent two individuals from occupying the same position, if two
free agents attempt to move to the same voxel, the second agent
to arrive randomly chooses an unoccupied voxel horizontally
adjacent to the target voxel. Locked agents are those which have
decided to become a part of a tower and allow their neighbors
to climb on top of them. We explore different schemes for the
decision to “lock” as defined in sections 2.1 and 2.2. Covered
agents are locked agents with at least one other agent on top
of them. Each time step consists of first evaluating movement
for all individuals and then evaluating locking decisions for
all individuals based on their new configuration. We will not
consider the effect of stability and assume that each agent has
infinite strength to support neighbors.

It is likely that pheromones play a role in fire ant tower
building, but for the present study, we consider whether this
behavior can arise from solely physical proximity to neighbors.
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Hence, an agent can sense which of its surroundings 26 voxels
are occupied by another agent. This local model will allow for
easier implementation by collective robotic systems, as it merely
requires local sensing.

Unless specified otherwise, all simulations contain N = 1, 000
agents moving in a 100 × 100 × ∞ arena, corresponding to a
density of ρ = N

L2
= 0.1. Based on preliminary simulations,

we have chosen to evaluate each trial for 500,000 time steps, for
which 97.8% of all simulations considered reached a steady state,
where the largest tower size remained approximately constant
(±5% of N) for at least the last 100,000 time steps of the
simulation. Exceptions will be discussed below in section 3.2.

2.1. Diffusion-Limited Aggregation
We start by investigating whether a dynamic simulation of the
proposed local rules above can lead to tower-building. As we
are not considering effects of stability, we will ignore rule (iv)
in the present study. We simulate the rules (i)–(iii) from Mlot
et al. (2012) and Phonekeo et al. (2017) with a naive approach
to what constitutes an available space adjacent to non-moving
agents, assuming no direct knowledge of the agents about where
they are relative to the rest of the tower. At each time step, each
individual agent randomly chooses an adjacent square to move
into, performing a random walk and fulfilling rule (ii). When
an agent arrives in a voxel with at least one locked neighbor
sharing a corner, edge, or side, it decides to lock, fulfilling rule
(iii). Locked agents remain in place, and allow others to move on
top of them. Finally, when agents climb on top of locked agents,
the locked agent’s status changes to covered, fulfilling rule (i).
For the sake of simple implementation, we also allow agents to
start tower building with a constant probability of spontaneous
locking, Psl =

1
20,000 .

This model leads to aggregations which grow horizontally
rather than upward. An example of a final configurations from
one such simulation is shown in Appendix 1 and correspond
to the boxed-in panel of Figure S1. This is illustrated in
Supplementary Video S1, where each tower growing outward in
fractal shapes from a center point. This behavior arises due the
higher likelihood of an agent performing a random walk to find
other agents near the outer edge of the aggregation.

These results closely resemble a phenomenon known as
diffusion-limited aggregation (DLA) (Witten and Sander, 1981).
DLA was developed to model the aggregation of metal particles
which gather in wispy, fractal shapes, similar to the simulated
agent aggregation in Figure S1 for Pu = 0, knl = 1. DLA has also
been observed in experimental colloidal aggregation systems, as
in Reynaert et al. (2006). Without any rule modifications, DLA
is unable to form dense aggregations of agents, because agents
on the edge of the aggregation shadow those closer to the center.
Hence, we propose several modifications to the behavioral rules
which are necessary to mimic the time dynamics of tower shapes
experimentally observed by Phonekeo et al. (2017).

2.2. Rule Modifications to Achieve
Tower-Building
2.2.1. Probability of Unlocking

First, we allow locked agents to unlock with a constant
probability, as long as they are not covered by other

agents. This allows individuals past the first locked neighbor
they encounter and move further in toward the center of
an aggregation. To model this, we introduce a constant
probability of unlocking Pu which applies equally to all
uncovered locked agents. This rule introduces a distinction
between locked agents and covered agents—covered agents
cannot unlock.

2.2.2. Neighbor-Influenced Locking Probability

Second, we loosen the requirement that agents must lock upon
encountering another locked agent, and instead allow for their
probability of locking to increase with an increasing number
of locked neighbors. This new rule (ii) replaces the previously
discussed rule that individuals lock immediately upon finding
a locked neighbor. Instead, an individual has a probability to
lock based on the number of locked agents in its neighborhood.
We define this probability of neighbor-influenced locking as
Pnl = knlNn, with Nn representing the number of locked agents
in an individual’s neighborhood and knl specifying the increase
in probability for each additional neighbor. The neighborhood
is defined as a distance of one above below, or horizontally
adjacent to the agent’s location, highlighted by the blue region
in Figure 1B.

The overall probability that a free agent chooses to lock is
given by,

Pl = min {Psl + Pnl, 1} ,

= min
{

Psl + knlNn, 1
}

,
(1)

where Psl is the probability of spontaneously locking. Note that
the model allows for up to 26 neighbors, so the value of Psl +

knlNn may be >1. In this case, locking is guaranteed. Therefore, a
min function is used to state that when Psl + knlNn > 1, the
locking probability is Pl = 1. Additionally, the inverse of the
neighbor locking factor, 1

knl
, may be thought of as the number

of neighbors required to guarantee locking.
The probability of spontaneous locking provides a baseline

probability of locking, to allow for individuals to randomly seed
towers. In our simulations, we keep this probability small and
set it to Psl = 1

20,000 . The neighbor-influenced locking factor
provides the urgency with which an agent locks next to locked
neighbors.

2.2.3. Attraction Forces

As we show below in section 3.1 and Appendix 1, the two
rule modifications above are unable to reproduce large tower-
like structures. Therefore, we extend the random walk model
discussed above, and add an attractive “force” representing
a behavioral tendency to cluster together. Under this effect,
individual agents search their immediate local neighborhood for
other agents, and move toward the center of all neighbors. This
motion is then perturbed by the randomness associated with a
simple random walk model. The resulting velocity is given by,

vi = vrandom +
c

ni

ni
∑

j=1

(

xj − xi
)

, (2)

where ni is the number of neighbors in the agent’s immediate
neighborhood sharing at least one corner, edge, or side with
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the agent’s current position, and c is ratio of the magnitude of
attraction relative to the magnitude of randomness. Each agent
moves toward the available voxel most closely aligned with the
direction of vi. The resulting normalized velocity, v̂i is defined in
(S3) in Appendix 2. Each agent moves into the voxel defined by
the surface height at the resulting pixel.

Software that simulates agents following these modified rules
in MATLAB is provided in Supplementary Code S8.

2.3. Set of Modified Behavioral Rules
With the three modifications mentioned above, we modify the
first three rules of Phonekeo et al. (2017) and Mlot et al. (2011)
into four new local rules:

1. Do not move if agents are on top of you.
2. Upon reaching available space adjacent to non-moving agents,

stop and lock with them with probability Pl = knlNn.
3. If stopped and locked, but uncovered by other agents,

spontaneously unlock with probability Pu.
4. If free to move, move generally toward your neighbors with

some random noise as defined by equation (2).

2.4. Measurements of Tower Geometry
Each simulation is post-processed to measure the geometry of
each tower in order to determine how tower-like the aggregation
is. For the final configuration of each simulation, a 2-dimensional
height map is constructed by assigning each pixel in the 2D
projection of the arena a value equal to its maximum height
(Figure 2A). We treat the resulting L × L array of pixel values
as an image and apply connected-component analysis (Shapiro,
1996) to identify different towers—a labeled image is generated
where any two non-zero pixels that share a corner or edge have
the same label. Each agent in the simulation is then given the label
corresponding to its horizontal position within the labeled image.
As we are interested in building a single large tower, properties
for the tower containing the largest number of agents from each
simulation are reported. Three tower properties are considered:
number of individuals per tower, maximum tower height, and
the ratio of the tower height to its equivalent diameter. Equivalent
diameter is defined as the diameter of a circle with area equivalent
to the tower’s base (Figure 2A).

3. RESULTS

To gain an intuition for the effects of the modifications to the
tower-building rules discussed in section 2.2, simulations were
run over a range of locking and unlocking parameters, knl and
Pu, across multiple attraction parameters, c, and in section 3.3,
across varying densities of agents in the system, ρ. We begin with
a parameter sweep across the locking and unlocking parameters
and attraction parameter in section 3.1. Then, selecting a pair
of locking and unlocking parameters, we systematically vary
attraction c to show a rapid phase transition, and investigate the
time dynamics of tower properties, both near and far from the
phase transition in section 3.2. In section 3.3, we vary the density
of agents along with attraction, and observe, in section 3.4, that
the center of mass of the towers may continue to move. Finally,

we optimize for tower size and height in section 3.5 and identified
a set of parameters where a tower formed of nearly all individuals
in the simulation.

3.1. Tower Geometry
To explore the range of possible tower shapes in the model,
we sweep the parameter space of the three rule modifications,
including probability of unlocking Pu, neighbor-locking factor
knl, and attraction factor c. Resulting tower properties and
example final configurations from these simulations are shown
in Figure 2. Every data point represents the mean of the largest
tower’s properties for each of 10 simulations. The left column
of the array of tower properties, representing simulations with
c = 0, shows that without attraction, towers tend to contain a
small number of agents, a small height, and an especially low
height-diameter ratio. These simulations with c = 0 represent the
first two rule modifications—individual unlocking and neighbor-
influenced locking—alone. From the measured tower properties
in Figure 2B, we see the effects of the first two rule modifications
without attraction. The aggregations with the largest number of
agents are found in the simulations with parameters knl = 1
and Pu = 0, representing the case of no rule modifications
at all. These aggregations lead to diffusion-limited aggregation
as discussed above and shown in Supplementary Video S1. The
locking and unlocking rule modifications, therefore, decrease the
number of agents in the largest aggregation. They do provide
an increase in tower height and the height-diameter ratio. This
increase is modest, however, with the tallest average tower
height reaching 3.4 agents tall for Pu = 0.002, knl = 1

12 ,
corresponding to a height-diameter ratio of 0.314. The largest
height-diameter ratio occurs for the parameters Pu = 0.02, knl =
1, reaching a value of 0.49, with a corresponding average height
of 2.2 and 19.9 agents in the largest tower for each simulation.
Finally, the simulations with c = 0 and Pu = 0.2 with
a small lock factor knl ≤ 1

8 finish the simulations without
forming aggregations. Supplementary Video S2 and the c = 0
configuration snapshot in Figure 2C show the dynamics and
final configuration, respectively, of one such simulation which is
unable to form aggregations, with parameters Pu = 0.2, knl =
1
26 , c = 0. These tower measurements show that without
attraction, all of the tested parameter sets produce aggregations
that remain small in number of individuals, do not reach average
heights more than 3.4 layers, and remain wide and shallow.

When an attractive force is added, larger aggregations form,
as shown by the center column of Figure 2B for an attraction
ratio of c = 1. As unlock probability Pu increases and lock factor
knl decreases, larger aggregations form, with the largest reaching
over 500 individuals. However, these largest aggregations have
the smallest height-diameter ratios of this set, showing that these
large aggregations are particularly wide, as is visible in the c = 1
example in Figure 2C and Supplementary Video S3. Increasing
the attraction ratio to c = 2 finally reveals a more typical tower-
like shape, with taller aggregations, even reaching a height of 11
agents. Interestingly, these taller towers contain fewer agents than
the c = 1 case. The reason for this is clear in the snapshots shown
in Figure 2C and Supplementary Video S4—stronger attraction
yields more densely-packed towers with larger height-diameter
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FIGURE 2 | (A) Schematics of tower height and diameter, defined in section 2.4. (B) Average number of agents (orange), tower height (green), and aspect ratio (blue)

of the largest tower across a variety of parameters. Every data point represents the mean of the properties of the largest tower from each of 10 simulations after

500,000 time steps. Aspect ratio (blue) is defined as the ratio of tower height to the diameter of a circle with area equal to the tower base. The bordered square

represents the case of no rule modifications, with parameters Pu = 0, knl = 1, c = 0. Note that the axes of the property comparisons are not linear. (C) Examples of

the final configuration of agents after 500,000 time steps for c = {0, 1, 2} with Pu = 0.2, knl =
1
26 . Each panel shows the entire 100× 100 arena. The videos of the

simulations that result in these final configurations are shared as Supplementary Videos S2–S4.

ratios—the towers are so dense that multiple, smaller towers form
instead of most individuals aggregating into a single tower.

3.2. Phase Transition and Time Dynamics
of Tower-Building
The example configurations shown in Figure 2C represent the
same set of locking and unlocking parameters, Pu = 0.2, knl =

1
26

across c = {0, 1, 2}. These locking and unlocking parameters give
the largest towers for both c = 1 and c = 2, but no aggregations
at all for c = 0. To investigate the effects of the attraction
ratio c further, we selected a fixed pair of locking and unlocking
parameters and explored both the height and number of agents
in the largest tower in the system for a densely sampled range
of the attraction parameter c. The results of these simulations are
shown in Figures 3A,C. The presence of a phase transition occurs
between c = 0.92 to c = 1.06, where the number of agents in the
largest tower climbs from close to 0 to over 700 agents. The results
show that as c increases beyond that critical value, the number of

individuals in the largest tower decreases (Figure 3A) while the
height of the largest tower increases (Figure 3C).

In Figure 3B, we show the time dynamics of the number
of agents for tower for two cases, close to the phase transition
and further from it. To illustrate tower growth further from the
phase transition, Figure 3B shows the time histories of all 10
simulations for Pu = 0.2, knl =

1
26 , c = 2.0 in green and themean

of all simulations in black. One of these simulations is shown in
Supplementary Video S4. The tower formation process in this
model demonstrates two time scales: the time scale of initial
nucleation, and the time scale of growth. Nucleation generally
occurs within the first 5,000 time steps, the first 1% of each
simulation. After nucleation, towers often continue to grow
slowly through the rest of the simulation. Occasionally, two
towers will merge into one, which manifests as a sharp jump in
the time histories of Figure 3B. Some of these tower collisions
last through the rest of the simulation, while others briefly merge
and then separate again, which shows up as a sharp peak in the
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FIGURE 3 | (A) The number of agents and (C) tower height of the largest tower across a range of attraction parameters, c for a given pair of locking and unlocking

values, Pu = 0.2, knl =
1
26 . Each data point shows the mean value over 10 simulations of 500,000 time steps each. Error bars indicate the maximum and minimum

values observed. (B) Example time histories from 10 simulations of Pu = 0.2, knl =
1
26 , c = 2.0 in green with the mean at each time step shown in black. (D) Time

histories from two examples for several c values near the phase transition, c = {0.96, 1.0, 1.3}.

time history of tower size. The fast nucleation followed by slow
growth seen for c = 2.0 is typical for most simulations in the
present work.

However, there are some examples, particularly within the
phase transition regime, for which a critical slowing down occurs.
Trajectories close to the phase transition are shown in Figure 3D.
Two trajectories are shown for each of c = {0.96, 1.0, 1.3} with
Pu = 0.2, knl = 1

26 . The critical slowing down is particularly
evident for the c = 0.96 trajectories, where agents aggregate into
a tower after 250,000 time steps while the other never transitions
out of the disordered state. The c = 1.0 trajectories also show
variation in nucleation time, although in this case, all simulations
have transitioned to their aggregated state, in which the largest
tower contains at least 100 agents. The variation in tower size
is highest for these examples, varying in size by 200 or more
individuals. There are also cases where the towers continue to
grow in size, even after 500,000 time steps, which can also be seen
in the case of c = 1.3.

As discussed in section 2, the simulation time of 500,000 was
chosen because nearly all simulations have reached a steady state.
The cases highlighted in Figure 3D represent the exceptions, and
there is no guarantee that these simulations will ever converge.
The figure shows that c = {0.96, 0.98} are the only cases that give
a mixture of aggregated and non-aggregated results.

3.3. The Effect of Density
The parameters varied up to this point in the model represent
entirely behavioral parameters, that is, those associated with

the decision-making of individuals. While these parameters
are testable within multi-agent robotic examples, they do not
represent a variable that can be systematically changed in
experiments with live fire ants, or robots, in order to test
the predictions of the model. To develop a set of testable
predictions, we turn to explore the parameter of density
of agents, ρ.

In our model, density is varied by changing the number
of individuals in a fixed arena size. The computational
complexity of the model is O(N2), so practical limits of
computational time place an upper bound on density we
explore here. In a 100 × 100 × ∞ arena, our test set is
N = {200, 500, 750, 1000, 1500, 2000} which corresponds to
the densities ρ = {0.02, 0.05, 0.75, 0.1, 0.15, 0.2}. We will use
unlocking and locking parameters of Pu = 0.2, knl = 1

26 for
consistency with section 3.2.

The results of these simulations are presented in Figure 4,

showing several key differences and similarities across densities.

As density increases, less attraction is required for tower

formation. The data points highlighted by circles in Figure 4B

show the critical attraction ratio c∗, which represents the
minimum value of c for which the largest aggregation is
at least 100 individuals, representing the onset of the phase
transition. This result also implies that there exists a critical
density across a range of attraction factors, below which
no tower formation occurs. Another key result is that the
largest towers, in terms of number of agents per tower,
occur shortly after the transition from no towers at all.
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FIGURE 4 | (A) Final configurations of various simulations after 500,000 time steps, comprising densities of ρ = {0.02, 0.075, 0.15, 0.2} and attraction factors of

c = {0.5, 1.0, 1.5, 2.0}. Each panel shows the entire 100× 100 arena. (B) Number of agents, height, and height-diameter ratio over a range of density ρ and attraction

factor c. Note that the vertical axis is not linear. Each data point represents the average properties of the largest tower from 10 simulations after 500,000 time steps.

The circles on the density plot represent the onset of phase transition. The circles indicate the minimum attraction coefficient c for each density at which the largest

tower contains at least 100 agents.

Beyond this point, tower height and ratio increase while
number of agents decreases. Finally, tower shape remains
close to constant across densities, particularly in height-
diameter ratio.

3.4. Moving Towers
The introduction of unlocking probability effectively adds
noise to the system (equivalent to higher temperatures in
thermodynamic systems), which allows towers to move. Agents
locking on one side of the tower while others unlock on the
other side can lead to tower motion. Traces of the center of
area for each tower from two example simulations may be seen
in Figure 5B. To quantify this phenomenon, we consider the
motion of towers as a Brownian random walk and investigate the

diffusion coefficient of each tower. The diffusion coefficient (D)
for a Brownian random walk follows the relationship,

MSD = 2Dt,

MSD =
1

T − t

T−t
∑

t0=0

∣

∣x(t + t0)− x(t0)
∣

∣

2
,

(3)

for each trajectory of length T. Therefore, we measure the mean
square displacement (MSD) of each tower in each simulation
over a variety of times, t = {0, 250, 500, ..., 12, 500}, and perform
a linear fit for each tower trajectory. The average slope of these
lines is then twice the diffusion coefficient (Figure 5A).
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FIGURE 5 | (A) Heat map of diffusion coefficients across the density-attraction space of Figure 4. Each point represents the mean diffusion coefficient calculated by

(3) of all tower trajectories over 10 simulations of 500,000 time steps. The diffusion coefficient is calculated over the first 37,500 time steps of each trajectory. (B)

Example trajectories from two simulations at the density ρ = 0.2 with attraction factors c = {1.0, 2.0}, with points every 250 time steps for 500,000 time steps. (C)

Snapshots in time of the same simulations as in the top-right, showing the motion, shape change, and appearance and disappearance of towers over time. Each

panel shows the entire 100× 100 arena.

These results show that the maximum diffusion occurs in the
highest density regime, and for the lowest attraction parameters
that generate aggregations, particularly for ρ = 0.2 at c = 0.75
and c = 1.0. These towers have lower height-diameter ratios, as
seen in Figure 4B, which leads to a larger proportion of agents
on the surface of the tower, and therefore a higher probability
that individuals on the surface will be unlocking. The towers
at c = 0.75 have a smaller number of agents than those of
c = 1.0, which leads to an even higher proportion of individuals
on the surface. This is illustrated in Figure 5C, showing the time-
evolution of tower configurations for two example simulations
(see also Supplementary Videos S5, S6).

3.5. Tower Optimization
One question that still remains is, what parameter values are
optimal for tower building? To answer this, we need to think
about what may constitute optimal. It may be that the optimal
tower reaches as high as possible, which would, in practice, allow
as many agents as possible to attach to a support structure. Or,
for robotics applications, this would allow the tower to reach

higher heights. On the other hand, it may be best to include
as many individuals as possible in the tower, and the optimal
tower would be the one that includes every single agent in the
tower. As observed in Phonekeo et al. (2017), fire ants built towers
that equally distribute load among the individuals. Therefore, an
optimal tower from their perspective may be one that optimizes
for load distribution. In this section, we use a genetic algorithm
to explore optimal tower building considering each of these
optimization targets.

To search for an optimal tower, we employ the Covariance

Matrix Adaptation-Evolutionary Strategy (CMA-ES) algorithm
developed by Hansen et al. (2003). This algorithm randomly
generates parameter sets within the search space and evaluates
a cost function for each parameter set. From the results of
this function evaluation, it updates the covariance matrix to
expand in the direction of the most optimal value. Using
the updated covariance matrix, the algorithm generates new
parameter sets and repeats the process until convergence,
generally defined as finding a parameter set with a cost function
below some threshold.
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FIGURE 6 | Optimization of the cost function given by (4) using the CMA-ES algorithm (Hansen et al., 2003). Panels show the final configuration of the best simulation

at iterations 2, 12, and 20 after 50,000 time steps. Each panel shows the entire 100× 100 arena. The algorithm converges in 20 iterations, to the parameter set

Pu = 0.938, knl = 0.029, and c = 2.56, with the optimal configuration shown in the bottom-right.

We applied the CMA-ES algorithm to the tower-building
model introduced above, using the average final properties of
three trials for each parameter set across 10 parameter sets
per iteration. For the optimization, we choose a cost function
defining the optimal tower as the largest tower, both in terms
of tower height and number of individuals within the tower.
Therefore, the cost function is given by,

f =

(

1−
Ntower

Nmax

)

+max

{

0,

(

1−
htower

hmax

)}

, (4)

where Ntower and htower represent the number of individuals and
height of the largest tower, Nmax is the number of individuals in
the simulation, and hmax is a prescribed maximum height. The
height term is included to ensure that the results are effectively
tower-like, preventing the optimal tower from simply achieving a
large, wide aggregation. From the results of the attraction sweep
in Figure 3A, we observe that hmax = 14 is an approximate upper
bound on tower height, so it is therefore chosen as hmax for the
purpose of this optimization. Note that a tower height of htower ≥
hmax results in a zero second term, and the simulation therefore
allows for a taller tower. For the purposes of optimization, we
reduce the simulation time to 50,000 time steps. This serves the
practical role of making iterated simulation possible, but also
places an effective minimization of convergence time. Therefore,
we are optimizing for a tower that maximizes both height and
number of agents quickly (within 50,000 time steps).

Figure 6 shows the progression of the minimum cost at
each iteration of the CMA-ES algorithm along with snapshots
of intermediate results to show the algorithm’s progress. The
optimal tower occurs for the parameters, Pu = 0.938, knl =

0.029, and c = 2.56, which led to a tower of 993 agents
reaching 16 agents tall after 50,000 time steps. The final
cost function, averaged over three trials, was f = 0.01.

A video of one simulation with these parameters is shown in
Supplementary Video S7.

The CMA-ES optimization code of Hansen et al. (2003)
applied to the present model may allow future research and
consideration of other conditions of optimal tower-building. For
example, when designing a robotic system where each individual
robot has a maximum load capability, it may be necessary to
calculate the maximum load experienced by an individual in the
tower and add that term to cost function.

4. DISCUSSION

In this work, we have extended a previously proposed set of local
rules to replicate the tower-building behavior of red imported
fire ants, Solenopsis invicta. This model and its insights will
allow for the design of control strategies for tower-building
swarm robotics and greater insight into the collective behavior of
social insects. The results presented above show that individuals
moving under the influence of local attraction are able to form
large towers. We find that an attractive force is necessary for
significant tower-building and show the impacts of this attractive
force over a range of locking and unlocking parameters as well
as a range of densities. We find that the system contains a
sudden phase transition as the attraction parameter is varied,
and that this phase transition is density-dependent. Finally,
the largest towers, in both height and number of individuals,
occur with a combination of very strong attraction and highly
probable unlocking.

On the other hand, without attraction, no towers
form, as shown in the c = 0 case of Figure 2 and
Supplementary Video S2 and discussed further in the
Appendix 1 and Figure S1. The effective force of attraction
may also be thought of as a desire of the ants to climb, because
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the tallest available square to move toward will also have the
most neighbors.

Near the phase transition, a critical slowing down occurs, and
there are parameter sets that do not result in tower formation
within a simulation time of 500,000 time steps. This critical
slowing down is reminiscent of other examples of systems with
phase transitions, such as the spin-glass model, the Ising model,
and molecular dynamics models (Dasgupta et al., 1979; Hu,
2013). Further from the phase transition (c ≫ c∗), towers form
rapidly, but the possibility exists for these towers to encounter
one another and merge into larger towers. The number of
individuals in the tower and tower motion are largest just after
the phase transition, but the largest height occurs with stronger
attraction. Phase transitions have previously been observed
experimentally and computationally in other ant and insect
systems, such as in Pharaoh’s ant foraging (Beekman et al., 2001)
and in marching desert locusts (Buhl et al., 2006).

Our results also illustrate the exploration-exploitation trade-
off, which balances attraction forces with randommovement and
unlocking events. Following this trade-off, stronger attraction
may lead to higher towers with fewer individuals, as the attraction
rapidly draws individuals from the edge of the aggregation
toward the center of the tower, and therefore upward. This
balance of unlock probability and attraction is found through
the combined optimization of number of individuals and tower
height, which discovered that with an unlock probability of Pu =

0.938 and an attraction of c = 2.56, it is possible to include nearly
all of the individuals in a simulation, with a tower reaching a
height of 16 layers. This large unlock probability of the largest
towers in our simulations connects with the observation from
Phonekeo et al. (2017) that, in the experimental system, the
fire ants are constantly rebuilding their tower and circulating
ants throughout the tower. The work of Phonekeo et al. (2017)
showed that fire ants build towers of constant load, and future
optimization work could incorporate the load experienced by
each individual to achieve towers that prioritize stability. More
refined ant models may also incorporate the mechanics and
viscoelastic properties of fire ant aggregations (Tennenbaum
et al., 2016), which are observed to change depending on the
number of active ants, such as the free ants included in the
present model (Tennenbaum and Fernandez-Nieves, 2017).

The results of the parameter sweep in density values showed
both similarities and differences across densities. In general, for a
fixed attraction ratio c, the tower height-diameter ratio remains
fairly constant, even as the numbers of agents per tower and
tower height vary. The biggest difference across densities is the
change in critical attraction parameter, c∗. These observations
lead to testable hypotheses for animal experiments. Below a
certain density threshold, tower formation should cease, due to
the move past the critical attraction. Additionally, the height-
diameter ratio should remain constant across a large range of
densities. Finally, we have shown that the towers built in our
simulations move over time, with a diffusion coefficient that is
dependent on both attraction and density, and should be taken
into account when considering practical application to robotics.

This work also lays the groundwork for future robotic studies,
where robots are able to built towers out of themselves in a

manner similar to, for example, theM-blocks of Romanishin et al.
(2015) or the Roombots of Spröwitz et al. (2014), which have
also been proposed for bridge-building applications (Nguyen-
Duc et al., 2019). The tower is a ubiquitous structure in
building, and designing rigorous control strategies for tower-
building represents a fundamental starting point toward fully
autonomous, locally-sensed swarm building applications. In
practice, a tower of robots could be useful in the case of,
for example, seeing over obstacles, providing scaffolding for
climbing, or clearly marking a location of interest. Robotic tower-
builders would need to be have the following capabilities: sense
neighbors, climb onto and off of one another, and support
appropriate loads. At the moment, there is no robot with
all of these capabilities, and we believe that this would be
a promising avenue for future robotics research. The control
strategies introduced in the present study could also be further
modified to more closely replicate experimentally-observed fire
ant behavior, developing a control strategy for interacting with a
support structure.
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Supplementary Video S1 | The diffusion-limited aggregation case of the model,

with Pu = 0, knl = 1, c = 0. The video is shown at a speed of 120 time steps

per second.

Supplementary Video S2 | Simulation in which no aggregations form, with

Pu = 0.2, knl =
1
26 , c = 0. The video is shown at a speed of 10,000 time steps

per second.

Supplementary Video S3 | Simulation in which large, wide aggregations form,

with Pu = 0.2, knl =
1
26 , c = 1. The video is shown at a speed of 10,000 time

steps per second.
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Supplementary Video S4 | Simulation in which many steep towers form, with

Pu = 0.2, knl =
1
26 , c = 2. The video is shown at a speed of 10,000 time steps

per second.

Supplementary Video S5 | Simulation with large, wide moving aggregations in a

dense environment, with Pu = 0.2, knl =
1
26 , c = 1, and N = 2, 000 individuals.

The video is shown at a speed of 10,000 time steps per second.

Supplementary Video S6 | Simulation with many steep moving aggregations in a

dense environment, with Pu = 0.2, knl =
1
26 , c = 2, and N = 2, 000 individuals.

The video is shown at a speed of 10,000 time steps per second.

Supplementary Video S7 | Simulation of the results of tower optimization, with

Pu = 0.938, knl = 0.029, c = 2.56. The video is shown at a speed of 2,500 time

steps per second.

Supplementary Code S8 | Three MATLAB code files, included in a .zip file.

TowerSimulation.m provides a function to run a single simulation,

TowerAnalysis.m provides the analysis of the resulting

towers, and TowerVideo.m provides the code used to visualize the

results of each simulation. A maintained repository of these codes is available at:

https://github.com/peleg-lab/TowerBuilding.
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