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Abstract

Data processing and learning has become a spearhead for the advancement of medicine, with pathology and laboratory
medicine has no exception. The incorporation of scientific research through clinical informatics, including genomics,
proteomics, bioinformatics, and biostatistics, into clinical practice unlocks innovative approaches for patient care.
Computational pathology is burgeoning subspecialty in pathology that promises a better-integrated solution to whole-slide
images, multi-omics data, and clinical informatics. However, computational pathology faces several challenges, including
the ability to integrate raw data from different sources, limitation of hardware processing capacity, and a lack of specific
training programs, as well as issues on ethics and larger societal acceptable practices that are still solidifying. The
establishment of the entire industry of computational pathology requires far-reaching changes of the three essential elements
connecting patients and doctors: the local laboratory, the scan center, and the central cloud hub/portal for data processing and
retrieval. Computational pathology, unlocked through information integration and advanced digital communication
networks, has the potential to improve clinical workflow efficiency, diagnostic quality, and ultimately create personalized
diagnosis and treatment plans for patients. This review describes clinical perspectives and discusses the statistical methods,

clinical applications, potential obstacles, and future directions of computational pathology.

Introduction

Artificial intelligence (AI) refers to the simulation of the
human mind in computer systems that are programmed to
think like humans and mimic their actions such as learning and
problem-solving. Al should be able to perform tasks that
normally require human intelligence, such as visual perception,
decision-making, and communication. Al-based computational
pathology as an emerging discipline has recently shown great
promise to increase both the accuracy and availability of high-
quality health care to patients in many medical fields. The
primary forces and limitations in this field are: (1) a shortage of
experienced pathologists and the limitation of global health
care resources [1]; (2) the ever increasing amount of health
data available, including digital images, omics, clinical records,
and patient demographic information, being generated through
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the process of patient care [2]; (3) the increased complexity
that is created in managing and integrating the data across
different sources in order to maximize patient care; and (4)
machine learning-based algorithms need to be efficiently har-
nessed in order to process and understand the big data [3]. Al
technologies have the ability to handle the gigantic quantity of
data created throughout the patient care lifecycle to improve
pathologic diagnosis, classification, prediction, and prog-
nostication of diseases.

The most important advantage of the computational
pathology is to reduce errors in diagnosis and classification.
The Camelyon Grand Challenge 2016 (CAMELYONI16
challenge), is a worldwide machine learning-based program
to evaluate new algorithms for the automated detection of
cancer in hematoxylin and eosin (H&E)-stained whole-slide
imaging (WSI), has achieved encouraging results with a
92.4% sensitivity in tumor detection rate. In contrast, a
pathologist could only achieve 73.2% sensitivity [4].
Computational pathology has the potential to transform the
traditional core functions of pathology and not just growing
sub-segments such as digital pathology, molecular pathol-
ogy, and pathology informatics [5, 6]. Computational
pathology aims to improve diagnostic accuracy, optimize
patient care, and reduce costs by bringing global colla-
boration. As the rapid technological advancement drives
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individualized precision medicine [7], computational
pathology is a critical factor in achieving this goal.

Digital pathology, machine learning, and
computational pathology

The development of brightfield and fluorescent slide scanners
made possible the virtualizing and digitalizing the whole glass
slides [8]. Digital pathology includes the process of digitizing
histopathology, immunohistochemistry or cytology slides
using whole-slide scanners as well as the interpretation, man-
agement, and analysis of these digitized whole-slide images
using computational approaches. The digital data of the slides
can be stored in a central cloud-based space allowing for
remote access to the information for manual review by a
pathologist or automated review by a data algorithm. It makes
Al a branch of computational science which generates the data
algorithms, to be applied in pathology possible [9]. Based on
the degree of intelligence, Al can currently be divided into two

Table 1 List of terms and abbreviations appearing in this paper.

major categories: weak Al and strong Al (Table 1). Weak Al
also known as artificial narrow intelligence, refers to the
classification of data based on a well-established statistic model
that has already been trained to perform specific tasks [10]. In
contrast, strong Al, also known as artificial general intelligence
(AGI), can create a system, which can function intelligently
and independently by executing machine learning from any
available normalized data.

Generally, machine learning is an Al process to allow a
computer system to automatically learn and improve from the
data set by itself and to solve problems without being pro-
grammed during the process. Machine learning is an
advanced branch of AGI using a large amount of initial data,
training set, to build statistic algorithms to interpret and act on
new data later on [11]. At present, various machine learning-
based approaches have been developed and tested in pathol-
ogy to assist pathologic diagnosis using the basic morphology
pattern such as cancer cells, cell nuclei, cell divisions, ducts,
blood vessels, etc. [12]. Deep learning (also known as deep
structured learning) is a subfield of machine learning based on

A branch of computer science dealing with tasks that normally require human intelligence.

A branch of Al in which statistical algorithms establish their own patterns by being exposed
to representative data to interpret and act on new data.

A statistical method to distinguish between classes of data with the widest possible margin by

The number of trainable parameters: 10—100.
A statistical method using a network of decision trees to classify the data.

A statistical method for data classification and regression based on the number of k

Also called deep learning (DL), which is a subset of machine learning using complex
multilayered architectures including multiple hidden layers and a large number of nodal

A set of layered, interconnected artificial neurons based on deep neural networks to explore
higher level features, mimicking biological brain.
The number of trainable parameters >100,000.

A type of ANNSs but the connections between nodes within a hidden layer are cycled.

A type of ANNSs particularly designed for machine vision field. CNNs have been most
commonly applied to analyze images such as image recognition and classification.

Quickly and accurately parsed trends and patterns from digital images, mimicking biological

Shares similar benefits in terms of speed and accuracy of CV, but the applications are mainly
focused on efficiency such as automatic inspection, robotic guidance process.

A CNNs model that was created by Google for computer vision and classification.
A CNNs model for face recognition and classification.

A CNNs model was designed by Alex Krizhevsky and achieved a top 5 of the ImageNet
Large Scale Visual Recognition Challenge on 2012.

A CNNs model was created by Visual Geometry Group (VGG) at University of Oxford and
achieved first runner-up of the ImageNet Large Scale Visual Recognition Competition

Term Abbreviation Explanation
Artificial intelligence Al
Machine learning ML
Support vector machine SVM

training.
Random forest RF
k-nearest neighbor k-NN

neighbors.
Deep neural networks DNNs

connections.
Artificial neural networks ANNSs
Recurrent neural networks RNNs
Convolutional neural networks CNNs
Computer vision (6\%

vision.
Machine vision MV
GooglLeNet -
FaceNet -
AlexNet -
VGGNet -

on 2014.
Area under receiver AUC

operating curve

Performance measured by the area under the receiver operating characteristic curve (from 0.5
(lowest) to 1 (highest)).
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artificial neural networks (ANNs) in which the statistic
models are established from input training data [13]. Deep
neural networks provide architectures for deep learning. The
ANNSs can perform its own determination as to whether its
interpretation or prediction is correct, resembling a biological
complex neural network of the human brain [14]. ANNs are
comprised of three functional layers of artificial neurons,
known as “nodes”, which include an input layer, multiple
hidden layers, and an output layer. The artificial neurons are
connected to each other in the ANNSs and the strength of their
connections is known as “weights”. The connections between
artificial neurons in the ANNs are assessed using statistic
methods, including clustering algorithms, K-nearest neighbor,
support vector machines (SVM), and logistic regressions [15].
The involved artificial neurons, which are related to the output
event, and their associated connections, which bear different
“weight”, need to be trained by qualified big data set to
achieve an optimized algorithm for specific tasks (Fig. 1). The
convolutional neural networks are a type of deep multilayer
neural networks particularly designed for visual image. It
employs convolutional kernels, a set of learnable filters, to
build up a pooling layer that can effectively reduce the
dimensions of the image data while still retaining its char-
acteristics (Fig. 2). By flattening an image, removing or
reducing the dimensions, convolutional kernels act as a pre-
process treatment that then allows for computer vision and
machine vision models to process, analyze, and classify the
digital images, or parts of the image, into known categories.
With slide scanning technology getting faster and more
reliable, a larger volume of WSI data becomes available to
train and validate convolutional neural network models. In
combination with clinical information, biomarkers, and
multi-omics data, computational pathology will become
part of the new standard of care [16]. Computational
pathology not only facilitates a more efficient pathology
workflow, but also provides a more comprehensive and
personalized view, enabling pathologists to address the
progress of complex diseases for better patient care [17].

Algorithm training progress
Case selection

Patients’ selection is the initial step to train the algorithm
(Fig. 3). Both training set and validation set must include all
sample types or variants, which are related to the subject of
diseases including stages, grades, histologic classification,
complication, etc. to eliminate false-negative and false-
positive scenarios. Still very much a machine driven pro-
cess, algorithms have no way to recognize the variants that
has not been included in the training set. The criteria for the
samples and subsequent slide selection for the learning set

SPRINGER NATURE
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Fig. 1 The basic structure of a deep neural network. Each input
value is assigned to each node from “X1-3” to “Xn” in the input layer
(left). Nodes labeled “deep 1-7” are hidden layers behind the input
layer. The values of hidden layers are not directly visible and are sent
to the output layer after processed. Arrows connecting each node
represent the direction and weight from previous layers. Both weights
and nodes impact the network in generating an output (Y).

Input image

Convolution layer Pooling layer

Max-pooling .

Average-pooling .

Fig. 2 The principle of convolutional neural networks. The input
image is converted to numerical data (1-20) as the convolution layer.
The convolutional neural network generates a pooling layer to reduce
the dimensions of the image data as well as retain its characteristics for
the statistic modeling. Several types of pooling methods including max
pooling, which returns the maximum value from the portion of the
image, and average pooling, which returns the average of all the values
from the portion of the image. In addition, max pooling also performs
de-noising along with dimensionality reduction, which improved
analysis and accuracy.

Criteria of sample selection +
Clinical information

Fig. 3 Flow chart of algorithm training. The process of creating an
algorithm is divided into four necessary phases. The initial phase is to
collect applicable samples along with clinical information. Next phase
is to create whole-slide images with annotation. Based on the image
analysis data, an algorithm was developed and trained by both the
training set and the independent validation set.
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need to be established by experienced pathologists along-
side a computational team. Confounding variables have to
be isolated and removed. For example, the patients with
other medical conditions who may interfere with the out-
come. In addition, inadequate slide preparation including
blurred vision, over- or under-staining, air-bubbles, and
folded tissue can produce inaccurate resulting algorithms.
The comprehensive initial and follow-up clinical informa-
tion, as well as laboratory results, should be collected and
included. The more relevant the information included, the
more accurate the resulting algorithm.

Whole-slide imaging (WSI)

Several slide scanning systems for whole-slide imaging
have been approved by the US Food and Drug Adminis-
tration (FDA) to be used in clinical settings (Table 2) [18].
The first FDA-approved Ultra-Fast Scanner, the Philips
IntelliSite Pathology Solution (PIPS), has a resolution of
0.25 ym/pixel, scanning speed of 60s for a 15x 15-mm
scan area and scanning capacity of 300 slides in one load
[19]. The Aperio AT2 DX System from Leica Biosystems
has 400 slide capacity for brightfield and fluorescent slides
[20]. File sizes of digital images at applicable resolution
vary depending on the scan area on the glass slides. In
general, pathology images are tremendously large, in the
range of 1-3 GB per image. Therefore, it requires a high-
capacity and fast digital working computer. Furthermore,
the number of slides needed to achieve a clinically accepted
algorithm may vary by tissue type and diagnosis. Campa-
nella et al. showed that at least 10,000 slides are necessary
for training to reach a good performance. The authors also
observed the discrepancy of the prediction between Leica
Aperio and PIPS and found that brightness, contrast, and
sharpness affect the prediction performance [21].

Image analysis and automation

For digital slide analysis, Senaras et al. [22] described a
novel deep-learning framework, called DeepFocus, which
enables the automatic identification of blurry regions in
digital slides for immediate re-scan in order to improve
image quality for pathologists and image analysis algo-
rithms. Janowczyk et al. [23] presented an open-source tool
called HistoQC to assess color histograms, brightness, and
contrast of each slide and to identify cohort-level outliers
(e.g., darker or lighter stain than other slides in the cohort).
These methods play an essential role in the quality control
of whole-slide images to standardize the quality of images
in computational pathology. Due to improvements in var-
ious smart image-recognition algorithmic discriminators,
based on high-capacity deep neural network models [24],
the pathologist can be released from extensive manual

annotations for each whole-slide images at the pixel level so
that they can focus other parts of the clinical workflow. The
patch-based whole-slide images (224 x 224 to 256 x 256)
have been widely used in many machine learning domains
to train classifiers for diagnostic or prognostic tasks. For
example, Campanella et al. [21] employed multiple instance
learning (MIL) approaches with “bag” and “instance” based
on convolutional neural networks and recurrent neural
networks to classify the prostate cancer images of H&E
slides. Kapil et al. [25] applied deep semi-supervised
architecture and auxiliary classifier generative adversarial
networks, including one generator network and one dis-
criminator network, to automatically analyze the PD-LI
expression in immunohistochemistry slide of late stage non-
small cell lung cancer needle biopsies. Barker et al. [26]
revealed an elastic net linear regression model and weighted
voting system to differentiate glioblastoma multiforme and
lower-grade glioma with an accuracy of 93.1%.

Pathologist-centered medical system
Pathologist-centered medical system

Although most Al research is still focused on the detection
and grading of tumors in digital pathology and radiology,
computational pathology is not limited to the detection of a
morphological pattern. It can also contribute to the complex
process of analysis and judgment using demographic
information, digital pathology, -omics, and laboratory
results [27]. Therefore, Al has the potential to contribute to
nearly all aspects of the clinical workflow, from more
accurate diagnosis to prognosis, and individualized treat-
ment. Multiple sources of clinical data [28] are incorporated
into mathematic models to generate diagnostic inferences
and predictions, to enable physicians, patients, and labora-
tory personnel to make the best possible medical decisions
[29]. For example, deep neural networks have been applied
to automated biomarker assessment of breast tumor images,
such as HER2, ER, and Ki67 [30]. Hamidinekoo et al. [31]
created a novel convolutional neural network-based
mammography-histology—phenotype-linking—model to
connect and map the features and phenotypes between
mammographic abnormalities and their histopathological
representation. Mobadersany et al. [32] developed a geno-
mic survival convolutional neural network model to inte-
grate information from both histology images and genomic
data to predict time-to-event outcomes and demonstrated
the prediction accuracy surpassed the current clinical para-
digm for predicting the overall survival of patients diag-
nosed with glioma.

As electronic health record (EHR) systems enable us to
collect medical data such as age, race, gender, social history,
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and clinic history, applying these data as independent factors
of a particular disease to an appropriate mathematic algo-
rithm becomes feasible [33, 34]. These integrated data allow
pathologists to gain deeper insights and to switch between
different algorithms of treatment at different stages of the
disease and/or for different statuses of the patient. As the
health-related apps on mobile devices and smart personal
trackers become popular, direct access to continuous real-
time health information, such as temperature, heart rate,
respiratory rate, electrocardiogram, body mass index, blood
glucose, and blood oxygen content, can be recorded into
individual health data. These data can then be incorporated
into the EHR and laboratory information systems (LIS) [35]
to reintegrate into a virtualized and digitalized person,
which was not possible previously and was beyond what
the human brain alone can accomplish [36] (Fig. 4).
This new system of data-driven care requires the pathology,
as a cornerstone of modern medicine, to integrate data,
algorithms, and analytics to deliver high-quality and
efficient care. The combination of computational pathology
and big data mining offers the potential to create a revolu-
tionary way of practicing evidence-based, personalized
medicine.

Global pathology service model

Three essential advancements happened in recent years: the
possibility to store a great amount of data from network-
attached storage to cloud storage, the growing speed of
network from WIFI-6 to 5 G, and high-performance central
processing unit (CPU) and graphics processing unit. These
technological improvements not only enhance people’s
daily life, but also have a great impact on medicine, espe-
cially digital and computational pathology [37] (Fig. 5).
Together with the surging development of network and
information technology, these technologic improvements
allow for the centralization of medical and computing
resources—with the benefit of larger sample data volume
for optimization of algorithms. Furthermore, the central
cloud-based Al laboratory and data bank of digital and
computational pathology make the global network of
computational pathology possible. In local laboratories or
centralized scanning centers, histology slides can be con-
verted to whole-slide images and numerical data. These data
can then be transferred to the central laboratory together
with EHR data and multi-omics data for further analysis
[38] (Fig. 6). Patients in different geographic areas around
the world can benefit from more efficient and effective
diagnosis, treatment, and follow-up. In the meantime,
pathologists are able to access the information they need to
care for patients or to collaborate with specialists anytime
and anywhere. Deep-learning platforms have the potential
to facilitate the discovery of more complicated or subtle

Clinical informatics Algorithm 1:
(Patients’ information) diagnosis

Molecular pathology
(genomic & proteomic
data)
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Fig. 4 Pathologist-centered medical system. Clinical information
from EHR, -omics data from molecular pathology, WSIs from digital
pathology, and results from clinical laboratories aggregated into LIS to
create “algorithm 1” for diagnosis. The updated disease-related data
during follow-up are integrated into the previous data to build the
“algorithm 2” over time for improved patient care.

Machine learning
Deep learning

“Artificial

neural

networks >

(Hardware
limitations Jj

(Applicable

Fig. 5 The relation between different levels of artificial intelligence
and the four bottlenecks that are facing currently. The four chal-
lenges are experienced computational clinicians who are capable of
developing algorithms of particular clinical issues, hardware limita-
tions (i.e., cloud storage, computational capacity, network speed),
qualified applicable data, and ethical issues.

connections and to help pathologists make the best clinical
decisions to meet every patient’s needs.

Examples of pathology Al

Increasingly, Al detection is being applied to different
subspecialties with various sample types [39]. Early reports
on accuracy have shown to be promising and that the Al-
assisted systems have the potential to classify accurately at
an unprecedented scale [40] and lay the foundation for the
deployment of computational pathology in nearly all sub-
specialties [41].
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Fig. 6 Global pathology service model. Each small green circle
labeled “L” represents a local laboratory where the slides are scanned.
Alternatively, slides can be scanned at a centralized scanning center
(SC) where many local laboratories can send their slides for scanning.
A central cloud laboratory with a large data storage and high capacity
of computation will integrate, analyze, and store WSI data together
with other medically related data.

Prostate cancer

Campanella et al. validated a high-capacity deep neural
network-based algorithm to analyze image classification and
categorization of 44,732 whole-slide images across three
different cancer types, including prostate cancer, basal cell
carcinoma, and breast cancer metastases to axillary lymph
nodes. In terms of whole-slide images, they found that x5
magnification has higher accuracy. They trained a statistic
model with MIL-based tile classifier for each tissue type and
achieved area under receiver operating curve (AUC) above
0.98 for all cancer types. Its clinical application would allow
pathologists to exclude 65-75% of slides while retaining
100% sensitivity [21]. Wildeboer et al. discussed deep-
learning techniques based on different imaging sources
including magnetic resonance imaging, echogenicity in
ultrasound imaging, and radio density in computed tomo-
graphy as computer-aided diagnostic tools for prostate cancer.
They found that the algorithm of convolutional neural net-
work architecture performed equal or better than SVM or
random forest classifiers in machine learning [42].

Colorectal cancer

Korbar et al. developed multiple deep-learning algorithms,
modified version of a residual network architecture, which

SPRINGER NATURE

can accurately classify whole-slide images of five types of
colorectal polyps, including hyperplastic, sessile serrated,
traditional serrated, tubular, and tubulovillous/villous polyps.
Among 2074 of images, 90% of them were used for model
training and the remaining 10% of images were assigned to
the validation set. The overall accuracy for classification of
colorectal polyps was 93% (confidence interval (CI) 95%,
89.0-95.9%) [43]. Bychkov et al. combined convolutional
neural networks and recurrent neural network architectures to
predict colorectal cancer outcomes based on tissue microarray
(TMA) samples from 420 colorectal cancer patients. Their
results show that the AUC of deep neural network-based
outcome prediction was 0.69 (hazard ratio, 2.3; CI 95%,
1.79-3.03). For comparison, pathology experts performed
inferiorly on both TMA samples (HR, 1.67; CI 95%,
1.28-2.19; AUC, 0.58) and whole-slide level (HR, 1.65; CI
95%, 1.30-2.15; AUC, 0.57), which implied that deep neural
networks could extract more prognostic information from the
tissue morphology of colorectal cancer than an experienced
pathologist [44].

Breast cancer

Wang et al., the team of winner of competitions in the
CAMELYONI16 challenge, used input 256 x 256 pixel pat-
ches from positive and negative regions of the whole-slide
images of breast sentinel lymph nodes to train various clas-
sification models including GooglLeNet Patch, AlexNet,
VGG16, and FaceNet. The patch classification accuracy is
98.4, 92.1, 97.9, and 96.8% separately. Among the algo-
rithms, GoogLeNet has the best performance and is generally
faster and more stable, which achieved AUC of 0.925 for
whole-slide images classification. With the assistance of deep-
learning system, the accuracy of pathologist’s diagnoses
improved significantly as the AUC increased from 0.966 to
0.995, representing ~85% reduction of human error rate [45].
Furthermore, the open resource of a data set of annotated
whole-slide images for CAMELYON16 and CAMELYON17
challenges enable testing of new machine learning and image
analysis strategies for digital pathology [46].

Cytology

Martin et al. applied convolutional neural networks for clas-
sifying cervical cytology images into five diagnostic cate-
gories, including negative for intraepithelial lesion or
malignancy, atypical squamous cells of undetermined sig-
nificance, low-grade squamous intraepithelial lesion, atypical
squamous cells cannot exclude how-grade squamous intrae-
pithelial lesion and high-grade squamous intraepithelial
lesion, and achieved accuracies of 56, 36, 72, 17, and 86%
separately, which implies convolutional neural networks are
able to learn cytological features [47]. In another
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cytopathology study, the authors used morphometric algo-
rithm and semantic segmentation network based on VGG-19
to classify urine cytology whole-slide images according to
Paris System for Urine Cytopathology and achieved a sensi-
tivity of 77%, false-positive rate of 30% and AUC of 0.8 [48].

CovID-19

During the outbreak of COVID-19, telemedicine and
computer-aided medicine are rapidly entering the market in
many countries. Highly contagious nature, systemic risks,
and social isolation brought unexpected challenges to tra-
ditional medicine. Applying Al-based computer-aided
medicine along with clinical data from EHR, including
individuals’ clinical risk factors of human-to-human inter-
actions and a variety of diverse social data, may provide a
quick control of this public health emergency with a better
quality and safety [49].

Several Al companies have been working on products to
address the COVID-19 pandemic. For example, JLK
Inspection, Korea (http://www.jlk-inspection.com/#/medical/
main) is integrating the reverse transcription-polymerase
chain reaction (RT-PCR) results, imaging tests, and their
universal Al platform, AIHuB, to provide COVID-19 diag-
nosis. Persivia, Massachusetts (https://persivia.com/covid-19-
detection/) announced a new surveillance module based on
their Soliton Al engine to identify and alert patients who are
presumed positive for COVID-19. Biofourmis, Massachusetts
(https://www.biofourmis.com/) developed an analytic plat-
form called Biovitals Sentinel, which provides 24/7 remote
monitor to identify early clinical deterioration and enable
earlier interventions. Schaar et al. described that machine
learning could significantly enhance both the efficiency and
effectiveness of randomized clinical trials for COVID-19. It
has the capability to speed up recruiting subjects from iden-
tifiable subgroups and assigning subjects to treatment or
control groups as well as significantly reducing error and
requiring many fewer patients [50].

Challenges

Although machine learning has produced promising results
and provided many benefits in computational pathology, the
following limitations need to be addressed before deep
machine learning can be implemented in the clinical setting.

Standardization and normalization

The successful adaptation of whole-slide images in digital
pathology heavily depends on each step of high-quality
pathology slide preparation, including embedding, cutting,
staining, and scanning. Folded tissue section during cutting,

staining variation and the presence of air bubble during
covering slide as well as different settings of brightness,
intensity disparity, average color, and boundary intensity
during scanning can cause unreliable raw data and produce
inaccurate results [8, 51]. The protocols and systemic
quality controls need to be standardized to reduce the sys-
tem errors and random errors resulted from different
instruments since a single noise in big data can cause
misclassification and change the slide prediction, possibly
resulting in a large number of false positives or negatives.
The data used to generate algorithms are analyzed by dif-
ferent models by different developers. The larger the
accumulated data, the more accurate algorithms, especially
for rear diseases and specific small populations. A standard
data format and normalization method of data analysis
should be engaged to merge consecutive data sets from
different resources and train them into one algorithm since
different data resources may cause variation in classification
accuracy in practice. The digital imaging and communica-
tions in medicine (DICOM) developed standards for med-
ical images including radiology (www.dicomstandard.org).
It defines the formats for medical images that can be
exchanged with the data and quality necessary for clinical
use. DICOM Standard now provides support for WSI, by
incorporating a way to handle tiled large images as multi-
frame images and multiple images at varying resolutions
(http://dicom.nema.org/Dicom/DICOMWSI/).

The role in the computational pathology

Computational pathology is not only important in medical
research, but also needed to address clinical questions in
practice [52]. To achieve this goal, a team of experts in
different fields is needed to participate in computational
pathology projects, including data scientists such as statis-
ticians and bio-informaticians for algorithm design and
architect as well as engineer for the construction of physical
environments and maintaining hardware (Fig. 7). Among
them, the pathologists play a critical role to introduce
medical questions and clinical applications to the developer
team and to trigger the downstream industry development
[53]. The new role of the pathologist in computational
pathology not only requires solid clinical knowledge and
experience, but also requires the knowledge of statistical
analysis and data mining to bridge the gap between clinical
medicine and Al so that when a disease suddenly happens,
or a new biomarker is discovered, the pathologist can
quickly react to the opportunity to either create a new
algorithm or optimize an existing algorithm to assist the
clinician [54]. Furthermore, pathologists who understand
the potential problems that may occur during the data
analysis can address the clinical problems clearly with
computational thinking. Good communication among the
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Fig. 7 Computational pathology team. A computational pathology
developer team includes pathologists to establish a clinically relevant
issue, data scientists to develop and train the algorithm, and engineer
to support the operating environment. During actual clinical practice,
pathologists play a pivotal role in applying and monitoring the algo-
rithm and relay feedback to the team to keep optimizing it.

team members can help to design a more efficient algorithm
because the algorithms with different coding approaches
will consume different amount of computing resources and
time, especially for big data, although they generate the
same end result. Furthermore, AI pathology provides
excellent tools for experimental pathology by the integra-
tion of morphology at organ, histology, cell, and organelle
levels with molecular details of omics data.

Hardware limitations

The accuracy of applications in the computational pathol-
ogy heavily depends on large amounts of data, reliable
hardware and software, and a supportive network environ-
ment. Large image file size (around 3 GB per slide scan)
requires significant big storage space with backup capability
in both local and cloud. In addition, deep machine learning
solutions, especially when applying analysis of pathology
images, heavily depend on graphics processing unit, which
is a chip on the computer’s graphics card for rapidly
manipulating graphics and processing images [55]. A
powerful graphics processing unit can provide significant
performance enhancement alongside the CPU to boost
computing capacity and reduce turn-around time. For
implementation of either data transmission or cloud-based
image processing, data bandwidth of both intranet and
internet becomes a bottleneck, which limits the speed of
upload and download [56]. Only if all these related elements
in a network have been developed and evolved into a robust
system (Fig. 5), computational pathology can move forward
to assist resolving more complex and multifaceted medical
and clinical questions and research tasks. Finally, the
clearance as medical devices (510k) by FDA is critical to
ensure the clinical reliability and the acceptance by
pathology community.
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Ethics

In the new era of computation-driven decision-making
processes based on Al and machine learning, computational
pathology must involve in more complicated interactions of
massive information from clinical history, omics data, liv-
ing environment to social habits [57]. It is very likely that
the experts involved in these decision-making processes
will no longer be exclusively pathologists. Instead, the
decision-making panel will include other experts such as
data statisticians and bio-informaticians, which may raise
ethical concerns [58]. A continuous massive, sensitive
health data transfer among clinics, laboratories, and data
banks can enable higher precision medicine, but at the same
time increases the security vulnerability. Policies around the
strict protection of patient privacy and personal data creates
an obstacle for computational pathology to access the health
databases need to create more comprehensive training data
sets. General Data Protection Regulation was enacted in
May 2018 in Europe to impose new responsibilities on
organizations who process the data of European Union
citizens for scientific research [59]. This concept highlights
the proportionate approach to regulate computational
pathology-related security and ethical issues while not
limiting innovation unduly, which is difficult but critical.

Future prospects

Technological innovation in health care is growing at an
increasingly fast pace and has been integrated into both our
daily lives, such as smart healthy tracker, and diagnostic
algorithm in medical practice [60]. With the rapid develop-
ment of digital pathology, molecular pathology, and infor-
matics pathology, computational pathology is increasingly
involved in many subspecialties such as pulmonary, renal,
gastrointestinal, neurology, and gynecology pathology. We
believe the initial phase of Al will start with specific tasks
such as the diagnosis of a particular cancer and classification
of tissue types, which require limited and simple criteria [61].
For example, the common subtypes and variants of benign
and malignant neoplasm in prostate should be included in the
training and validation to ensure the feasibility of daily
pathology practice. As a result of more data collection and
more powerful computing capacity over time, the clinical
applications of Al will be broader and the number of non-
specific cases in the gray zone or with red flags classified by
Al for manual review will be decreased.

The growing medical data, including genomics, pro-
teomics, informatics, and whole-slide images [62], is expected
to integrate together to become a data-rich pathomics and lead
to rapid development and prosperity of an Al-assisted com-
putational pathology. Although many challenges remain, the
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computational pathology with the deployment of digital
pathology technology and statistic algorithm will continue to
improve clinical workflows and collaboration among pathol-
ogist and other members in the patient care team. The
improved infrastructure of the network environment, the
enhanced computing capacity, and broad integration of
informatics have ushered in new horizons for both compu-
tational pathology and collaborative pattern, which make data
travel and cloud-based central laboratory and data bank to
deliver better care for patients at lower costs possible.

Conclusion

In the new era of deep learing-assisted pathology, the data
banking, integration, and cloud laboratory are becoming an
essential part of daily practice of pathology. Furthermore, the
pathologists, data scientists, and industry are starting to
incorporate the genomics, proteomics, bioinformatics, and
computer algorithms into a large amount of complex clinical
information. Through this process, the computational
pathology can contribute valuable insights to the diagnosis,
prognosis, and treatment of disease ultimately. Although
many technical and ethical challenges need to be addressed,
computational pathology as a synergistic system will lead to a
boosting workflow, enabling clinical teams to share and
analyze image data in a broader platform.

Currently, deep learning has been applied to solve more
and more specialized tasks in medicine. Several studies dis-
cussed above showed that algorithm assistance has the
potential to not only improve the sensitivity and accuracy of
the diagnoses but also improve turn-around time. Moreover,
according to Sarwar’s et al. [63] study, around 75% of
pathologists across 59 countries in the world are interested
and excited about using Al as a diagnostic tool. Finally,
despite the challenges and obstacles, the potential of com-
putational pathology which will change and improve the
current health care system is promising and exciting.
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