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INTRODUCTION

The majority of sudden cardiac deaths are due to 
coronary plaque rupture. Myocardial infarction due to 
coronary atherosclerotic rupture is one of the main causes 
of mortality in young adults (1). Despite the recent 
advancements in various imaging modalities, identification 
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A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary 
artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical 
for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging 
techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is 
widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a 
marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. 
Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions 
of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are 
warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific 
accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging 
probe to detect vulnerable plaque.
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of high-risk coronary plaque is still difficult. Anatomical 
imaging to assess luminal patency, such as computed 
tomography (CT) coronary angiography, have failed to 
detect high-risk plaque, because the vulnerable vessel 
normally has non-flowing limiting plaque, which is a high-
risk plaque called “vulnerable plaque.”

To overcome the limitations of anatomical imaging, 
several molecular imaging probes are currently being 
investigated to target biomarkers in vulnerable plaque. 
Molecular markers for atheromatous plaque can provide 
clinically crucial information regarding the vulnerability 
and the degree of progression. In addition, molecular 
imaging has a potential to permit the development of a 
novel therapeutic agents and non-invasive imaging tool to 
monitor the therapy response (2, 3).

In this study, we reviewed the pathophysiology of 
calcification in atherosclerotic plaque and F-18 fluoride 
positron emission tomography (PET) as an imaging probe 
for vulnerable plaque.
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Pathophysiologic Basis of Atherosclerotic 
Plaque

The pathogenesis of atheromatous plaque formation 
involves cholesterol deposition, macrophage accumulation, 
inflammation, and smooth muscle proliferation. The 
characteristics of vulnerable plaque include a large 
necrotic core, thin fibrous cap, inflammation, macrophage 
aggregation, hypoxia, and microcalcification (4-6). 
Inflammation is the key pathophysiology in the formation 
and progression of atherosclerotic plaque. Pathology 
confirmed macrophage aggregation within the plaque lipid 
core (4).

Early plaque calcification was observed in the thin 
fibrous cap overlying the necrotic core of atherosclerotic 
plaque. Studies have shown that microcalcifications in the 
thin fibrous cap increased the risk of plaque rupture, and 
subsequent stress-related microfractures result in acute 
thrombosis (7, 8). Calcification is part of the healing 
process after inflammation. Similar to the calcification 
observed in tuberculosis patients, calcification occurs in 
patients with atheroma during the healing process after 
inflammation in the necrotic core (9). 

Calcification in patients with atheroma is a bi-phasic 
reaction. The early phase is not visible on conventional 
imaging, but is associated with plaque instability. The 
latter phase of macroscopic calcification can be observed 
on a radiograph or CT (10). Normally, the diameter of 
microcalcification is small (< 5 mm), occurs during the 
early stage of calcification, has inflammation, covers a 
large surface area, has high exposed hydroxyapatite, and 

possesses a high risk for rupture (9). 
The mechanism of vessel calcification is not well 

elucidated, but it is thought that vessel calcification in 
atheromatous plaque progression is an active process 
(11). Active vessel calcification is divided into 3 stages: 
initiation, propagation, and end-stage calcification 
(12). After prolonged inflammation from the initiation 
and propagation phases, microcalcification is formed in 
the plaque. Regional distribution of inflammation and 
microcalcification appears to overlap or is in close proximity 
to the initial in vivo imaging (13). Microcalcification may 
induce a pro-inflammatory response leading to plaque 
rupture by microcalcification fracture (14). The end-
stage calcification phase manifests as advanced tissue 
calcification, which can be easily detected on CT and may 
be an irreversible process. 

Current Imaging Method for Plaque Evaluation: 
FDG

Several biomolecules have been suggested as possible 
targets for atherosclerotic plaque. F-18 fluorodeoxyglucose 
(FDG) is a well-known marker for glucose metabolism. 
Because of high macrophage accumulation in the 
atheromatous plaque, the plaque has high FDG uptake, 
especially if is vulnerable (15, 16). 

Feasibility of F-18 Fluoride PET in 
Atherosclerotic Plaque

Fluoride has a strong affinity for bone structures, and 

Fig. 1. F-18 fluoride PET-CT in 80-year-old male with stable angina. 
A. CT image shows similar calcifications in left circumflex artery (arrow) and left anterior descending artery (arrowhead). CT findings suggest 
that there is no difference in macrocalcification. B. F-18 fluoride PET shows high uptake at left circumflex artery (arrow) and mild uptake at 
left anterior descending artery (arrowhead). F-18 fluoride PET findings suggest that left circumflex artery has more microcalcification than 
left anterior descending artery, and has high probability for vulnerable plaque. C. PET-CT fusion image (Courtesy of Dr. Jin Chul Paeng in Seoul 
National University Hospital). PET = positron emission tomography
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its radioactive isotope, F-18 fluoride, was proposed as a 
clinical imaging probe for skeleton imaging (17). However, 
after the wide-spread of single photon emission computed 
tomography camera, F-18 fluoride PET was replaced by Tc-
99m labeled diphosphonate agents. Compared with bone 
scintigraphy using Tc-99m-labeled diphosphonate agents, 
F-18 fluoride PET has a unique advantage of high resolution. 
Due to high image quality and higher sensitivity than Tc-
99m labeled diphosphonate agents, F-18 fluoride PET can 
be used for the evaluation of primary and metastatic bone 
tumors (18). Recently, the introduction of vascular PET 
imaging is feasible in many PET centers. Many cyclotron 
centers are producing F-18 fluoride for bone imaging, and 
F-18 fluoride PET already has been easily available for 
vascular imaging.

Recently, F-18 fluoride PET was suggested as a promising 
imaging probe for atheromatous plaque imaging. F-18 
fluoride ions accumulated in bone-forming fluoroapatite 
crystal by exchange of hydroxyl groups on hydroxyapatite 
surface (19). Similar to F-18 fluoride deposits in various 
active calcification sites, these ions may accumulate in 
vulnerable plaque (Fig. 1). In advanced calcified plaque, 
which is stable, and in the advanced stage, no deposition 
of F-18 fluoride may be observed. 

F-18 fluoride uptake in the aortic arterial wall was 
assessed in oncology patients who were under bone 
metastasis work-up (20). Out of all the patients assessed, 
76% showed vascular wall F-18 fluoride uptake, with 
high uptakes in the femoral artery, abdominal aorta, and 
thoracic aorta. Analysis of the lesions showed that only 
12% of arterial calcification sites had increased F-18 
fluoride uptake. Most of the vascular calcification detected 
on CT should be regarded as stable, chronic stage of 
atherosclerosis, if there was no F-18 fluoride uptake, which 
is a marker for active microcalcification.

Derlin et al. (21) compared F-18 fluoride, FDG and CT 
calcification at major vessels in 45 oncologic patients, 
simultaneously. Common carotid artery, ascending aorta, 
aortic arch, descending aorta, and abdominal aorta were 
evaluated. The results revealed FDG uptake rates of 14.5%, 
while the F-18 fluoride level was 77.1% at CT calcification 
sites. Coincident uptake of both FDG and F-18 fluoride was 
observed in only 6.5%, thereby suggesting a difference in 
the biologic target of these two probes. It was suggested 
that FDG and fluoride may allow evaluation of distinct 
pathophysiologic processes in atherosclerotic lesions. 

The carotid arterial F-18 fluoride uptake was assessed, 

and the significant correlation between F-18 fluoride uptake 
and CT calcification was determined (22). They evaluated 
260 oncologic patients who underwent F-18 fluoride PET 
for bone metastasis evaluation. 94 patients (34.9%) of the 
patients had vascular F-18 fluoride uptake, and its uptake 
was colocalized with calcification in all atherosclerotic 
lesions. High fluoride uptake was associated with age, 
male, hypertension, and hypercholesterolemia. They 
reported a highly significant correlation between the F-18 
fluoride uptake and number of cardiovascular risk factors. 
It was suggested that F-18 fluoride uptake may quantify 
continuing mineral deposition in carotid plaque, which 
suggest a potential role of F-18 fluoride for imaging and 
characterization of carotid atherosclerotic plaque. 

The feasibility of F-18 fluoride PET to assess coronary 
artery was assessed in volunteers and patients with 
aortic stenosis by Dweck et al. (23). Focal F-18 fluoride 
uptake was observed in the coronary artery and could be 
determined using a hybrid CT image. There were discordant 
sites between coronary F-18 fluoride uptake and CT 
calcification. Coronary calcification without any F-18 
fluoride uptake was frequently observed. Subjects (41%) 
with a high coronary calcium score (> 1000) did not show 
significant F-18 fluoride uptake. This finding suggested that 
F-18 fluoride PET provides different information relating 
to metabolically active calcific plaque and developing 
microcalcification. This study compared the F-18 fluoride 
uptake with FDG in the coronary artery. Coronary FDG PET 
images were not adequate in 49% of the cases, mainly 
due to high myocardial FDG uptake, small size, and partial 
volume effect. Moreover, F-18 fluoride PET was related to 
symptomatic status, prior major adverse cardiac events, 
and cardiovascular risk scores, which showed the clinical 
significance.

The diagnostic performance of F-18 fluoride PET for 
identification of ruptured and high-risk atherosclerotic 
plaque was assessed by a prospective clinical trial (24). 
The patients with myocardial infarction (n = 40) and stable 
angina (n = 40) underwent FDG PET, F-18 fluoride PET, and 
invasive coronary angiography. 93% of the patients with 
myocardial infarction showed high F-18 fluoride uptake at 
the culprit vessel, while only 33% of the patients showed 
high FDG uptake. In addition, coronary FDG could not be 
distinguished from background activity in 52% of the vessel 
territories. By comparison with histologic examination, 
microcalcification, macrophage infiltration, apoptosis, and 
necrosis were frequently detected at the vessel with high 
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F-18 fluoride uptake. They clearly showed that high F-18 
fluoride uptake localized to recent plaque rupture through 
prospective clinical trial. Another important finding by 
this study was the direct comparison between F-18 fluoride 
and FDG. FDG uptake is frequently influenced by patient 
preparation and metabolic status. However, more studies 
will be needed to determine that vascular F-18 fluoride is 
superior to vascular FDG images. 

CONCLUSION

Vascular microcalcification is regarded as an early marker 
for atheromatous plaque formation, and has a potential as 
a predictor for future cardiovascular events. The correlation 
between vascular microcalcification and its vulnerability 
is yet to be clarified, due to lack of a non-invasive 
imaging method. Recently, F-18 fluoride PET for vascular 
imaging can provide useful in vivo information on vascular 
microcalcification, and holds possibility for identifying 
high-risk and ruptured coronary atherosclerotic plaques.

F-18 fluoride PET represents early stage, active 
microcalcification, while conventional imaging methods 
targeting macrocalcification is about late stage of 
atherosclerotic plaque. Non-invasiveness, easy accessibility, 
and high reproducibility of F-18 fluoride PET in vascular 
microcalcification warrant further clinical investigation. 
Prospective clinical trials to assess the prognostic value of 
F-18 fluoride uptake will determine whether F-18 fluoride 
uptake is generally accepted as a novel biomarker for plaque 
vulnerability.
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