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Background. Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the
readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive
modeling approaches, whichmay be useful to identify preventable readmissions that constitute amajor portion of the cost attributed
to readmissions. Objective. To assess the all-cause readmission predictive performance achieved by machine learning techniques in
the emergency department of a pediatric hospital in Santiago, Chile.Materials. An all-cause admissions dataset has been collected
along six consecutive years in a pediatric hospital in Santiago, Chile.The variables collected are the same used for the determination
of the child’s treatment administrative cost.Methods. Retrospective predictive analysis of 30-day readmission was formulated as a
binary classification problem. We report classification results achieved with various model building approaches after data curation
and preprocessing for correction of class imbalance. We compute repeated cross-validation (RCV) with decreasing number of
folders to assess performance and sensitivity to effect of imbalance in the test set and training set size. Results. Increase in recall due
to SMOTE class imbalance correction is large and statistically significant. The Naive Bayes (NB) approach achieves the best AUC
(0.65); however the shallow multilayer perceptron has the best PPV and f-score (5.6 and 10.2, resp.). The NB and support vector
machines (SVM) give comparable results if we consider AUC, PPV, and f-score ranking for all RCV experiments. High recall of
deep multilayer perceptron is due to high false positive ratio. There is no detectable effect of the number of folds in the RCV on
the predictive performance of the algorithms. Conclusions. We recommend the use of Naive Bayes (NB) with Gaussian distribution
model as the most robust modeling approach for pediatric readmission prediction, achieving the best results across all training
dataset sizes. The results show that the approach could be applied to detect preventable readmissions.

1. Introduction

Hospital readmission is defined as the nonscheduled return
of a patient within a short prespecified period of time after
hospital discharge. An internationally extended standard
period to count a patient return as readmission is 30 days,
but it may change for political reasons [1]. In the United
States (US), hospital readmission is being used as an indicator
of patient care quality. Both public and private funding
agencies use this measure to penalize underperforming
institutions [2]. It has been argued that up to two-thirds
of the readmissions are preventable; therefore advances in
patient readmission prediction are worth the investment

[3, 4]. US policy has inspired similar concerns in other
countries so that readmission analysis and prediction is under
consideration worldwide.The data collected in the Electronic
Health Record (EHR) is the main information source for the
predictive modeling of readmissions and the analysis of their
consequences and structural/organizational causes [3, 5].

Readmission prediction in the case of adult patients has
been tackled with diverse statistical approaches [1, 6] such
as logistic regression [7, 8] and survival analysis [9]. Recent
works favor the application of predictive machine learning
approaches, formulating readmission prediction as a binary
classification problem [7, 10]. For example, the literature
report results from support vectormachines (SVM) [4, 11, 12],
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Figure 1: Study design.

deep learning [13, 14], artificial neural network [8], and Naive
Bayes [5, 15].

Despite this long history of studies about hospital read-
mission for adult patients, there are almost no studies devoted
to readmission of pediatric patients [2]. In the pediatric case,
hospital readmission prediction has been only reported in
the setting of emergency department [16, 17] and intensive
care units [18]. Few studies report results on both adult
and pediatric patients [7], finding lower sensitivity in the
pediatric population than in the adult population, due to
greater class imbalance in the pediatric datasets. In this
paper we report the predictive modeling results over a large
cohort of all-cause admissions to the emergency department
of a pediatric hospital in Santiago, Chile. We tested four
modeling applications considering various numbers of folds
in a repeated cross-validation approach, achieving results
comparable to those reported for adult patient readmissions.

2. Materials and Methods

The overall model training and validation process is shown
in Figure 1. First, the EHR data entries were labeled as
readmissions according to the following rules: (a) we consider
admissions in period of less than 30 days after the previous
discharge; (b) we discard an admission if it corresponds to
programmed treatments such as chemotherapy, or if it is
intended for services that are not urgent. We check (corrob-
orate) the correctness of the generated labels by an expert
committee, which consisted of two experienced medical
doctors and two nurses from the hospital’s quality and safety
care team. The whole data is then used for validation in
a repeated cross-validation (RCV) process with different
numbers of folders; we carried out 10-fold, 5-fold, 4-fold,
and 3-fold RCV. Each cross-validation repetition consists
in the following steps: (1) partition of the dataset in the
selected number of folds, (2) each fold is alternatively used
as the test dataset while the remaining folders are used for
model training, and (3) average performance measures are

Table 1: Descriptive statistics of the dataset.

Dataset characteristic
Total number of admissions 56,558
Number of unique individuals 35,064
Percent readmission within 30 days 3.72%
Number of unique procedures (ICD-10 AM) 1,124
Number of unique diagnoses (ICD-10 AM) 4,370
Variables used in prediction
Age (years), mean (SD) 5.78 (5.04)
Male (%) 59.2
Public facilities 1
Number of Transfers (SD) 0.61 (0.8)
Length of Stay (days), mean (SD) 3.77 (10.03)

computed over all cross–validation folds and repetitions. As
illustrated in Figure 1, training at each RCV step is preceded
by a class balance process carried out on the training dataset.
We apply a SMOTE [19] upsampling procedure using the
five nearest neighbors of each minority class sample [7, 10].
The reported results are the average of the 30 repetitions of
the CV results. We have published the script of the imple-
mentation as open source code for independent examination
[20].

2.1. Cohort and Dataset. The descriptive statistics of the
dataset used for the study are summarized in Table 1. It
contains records of 56,558 admissionswith 2106 readmissions
in the period from July 2011 to October 2017 at the pediatric
Hospital Dr. Exequiel González Cortés in Santiago, Chile. All
data has been anonymized for the study. One author (PW)
acts as the honest data broker ensuring compliance with data
protection regulations. The categories of data available to
build machine learning based predictors are the following
ones:

(i) Data used by the administrative cost coding system,
specifically, age, sex, ethnic group, anonymized geo-
graphical information (i.e., postal code), public insur-
ance plan, principal diagnosis, secondary diagnosis,
tertiary diagnosis, and main procedure performed.

(ii) Information about patient’s admission: the date of
admission, the service in which he/she was admitted,
and his/her origin.

(iii) Information on internal transfers: date/hour, service
of origin and internal destination.

(iv) Information about the patient’s discharge: discharge
date, service that performs the discharge, and the
patient’s destination.

Though we have not carried out a detailed statistical survey
of the occurrence of readmissions according to specific
diagnostics [21], we have been able to identify the diagnostic
at discharge accounting for most of readmissions as detailed
in Table 2. There is a big prevalence of respiratory conditions
that can be attributed to pollution events in the city of
Santiago.
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Table 2: Diagnostics at discharge accounting for most readmission.

Diagnostic ICD10 %
Viral pneumonia J129 9.50
Respiratory syncytial virus pneumonia J121 9.16
Acute bronchitis J209 3.94
Unspecified gastroenteritis A090 2.80
Disorders of prepuce N47 0.90

To improve data quality a manual data curation process
was carried out. Identification of admissions that are actual
readmissions was carried out automatically. The resulting
labeled dataset is heavily class imbalanced. A taxonomy
of methods to deal with imbalanced data presented in
the context of readmission prediction is given in [6]. For
training, we applied a class balancing technique, specifically
a SMOTE [19] on the minority class using five nearest neigh-
bors. We have considered increasing sizes of the balanced
training set, leaving the remaining (imbalanced) as the test
set.

2.2. Classification Methods. Several machine learning [22,
23] approaches have been selected for predictive model
building. These models have been reported in the literature
about readmission prediction for adult patients [1, 6]. We
have discarded application of deep learning approaches [24]
because the available data is too shallow. There is no spatial
information, the time sequences of readmissions are too
short to be exploitable, and the number of variables per
patient data entry is too small to generate high dimensional
hierarchical representations. Therefore we focus on well-
known classical methods. The reported applications of deep
learning to readmission prediction are restricted to a specific
disease, i.e., lupus patients [13], for which there are long
clinical histories per patient accessible through the EHR, so
that the abundance of data allows for the training of deep
models.

2.2.1. Support Vector Machines [25]. Support Vector Ma-
chines (SVM) classifiers are linear discriminant functions
built from samples placed at the boundaries of the classes.
Their learning algorithm looks for the discriminating hyper-
plane maximizing its distance to the boundaries belonging
to each class, i.e., maximizing the margin of the decision
function relative to the class boundary. The parameters that
define the solution hyperplane come from the optimization
of a quadratic programming problem. When the classes are
not linearly separable, then it is possible to project the data
into a space of superior dimensionality using the kernel
trick [26], so that the transformed dataset becomes linearly
separable. The literature shows that SVMs are quite robust
against the curse of dimensionality, achieving good results
on small datasets of high dimensionality feature vectors. We
used LibSVM [27] library for training and estimation of
the SVM metaparameters via grid search. Best results were
obtained with a Radial Basis Function (RBF) kernel. We have
used LibSVM (https://www.csie.ntu.edu.tw/∼cjlin/libsvm/)
for SVM training.

2.2.2. Multilayer Perceptron. Multilayer perceptron (MLP) is
the classical feed-forward artificial neural networks (ANN)
composed of multiple densely interconnected layers of com-
putational units, aka artificial neurons. The output of each
unit is computed as the linear combination of the incoming
connection weights and their source units in the previous
layer filtered by a nonlinear activation function. The classical
sigmoid activation function has been replaced by others like
the rectified linear activation used in deep learning archi-
tectures. The connection weights implement a discriminant
function that may take arbitrary shapes. In fact it has been
shown that even with a single hidden layer, an MLP can
approximate any function. The connection weights can be
learned from data applying the back-propagation algorithm
[23].

We have applied two flavors ofMLP to pediatric readmis-
sion prediction. The first one (denoted MLP1 in the results
section) is an autotunable implementation, called AutoMLP
for short, which performs automatic online model parameter
tuning during training process, including the creation of an
ensemble of MLPs [28]. The number of maximum training
cycles used for the ANN training was 10 equals to the number
of generations for AutoMLP training and the number of
MLPs per ensemble chosen was 4.

The second (denoted MLP2 in the results section) is
a multilayer feed-forward artificial neural network trained
using back-propagationwith stochastic gradient descent [24].
The activation function used by the neurons in the hidden
layers was a Rectifier function. The MLP2 has two hidden
layer, each of 50 neurons. It was trained in 10 epochs
using an adaptive learning rate algorithm (ADADELTA) [29]
which combine the benefits of learning rate annealing and
momentum training to avoid slow convergence. We used the
𝐻

2
0 package (https://www.h2o.ai) for this MLP training and

validation [30].

2.2.3. Naı̈ve Bayes Method. The Naı̈ve Bayes (NB) approach
is based on the assumption that the individual features are
statistically independent; therefore we approximate the joint
probability distribution of a high-dimensional feature vector
as the product of the unidimensional distribution probabili-
ties of each feature. In our studyweuse unidimensional Gaus-
sian probability density models of the independent feature
distributions. Training was carried out by straightforward
estimation of these unidimensional probability densities.

2.3. Classification Performance Metrics. At each cross-valida-
tion fold we compute the confusion matrix and performance
metrics derived from it, finally reporting the average of these

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.h2o.ai
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Table 3: Average ± standard deviation Recall (R) performance [%] of SVM, MLP1, MLP2, and NB for decreasing number of folders in the
RCV process. no SMOTE = no oversampling correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 45.63 ±3.35 96.29 ±2.15 59.93 ±5.51 70.8 ±2.68
5 44.64 ±2.69 96.58 ±1.77 61.39 ±6.14 69.8 ±4.97
4 43.83 ±1 95.11 ±1.06 59.87 ±6.29 70.23 ±3.82
3 43.64 ±1.11 96.86 ±0.37 52.8 ±5.24 67.57 ±0.97

no SMOTE
SVM MLP2 MLP1 NB

10 0.95 ±0.76 27.60 ±11.13 0.00 ±0.00 14.81 ±1.83
5 1.04 ±0.71 33.24 ±8.65 0.00 ±0.00 14.77 ±1.43
4 1.00 ±0.21 29.11 ±13.90 0.00 ±0.00 14.91 ±1.6
3 1.14 ±0.23 30.32 ±17.48 0.00 ±0.00 14.67 ±1.89

results. Let us define TP, TN, FP, and FP as true positive, true
negative, false positive, and false negative counts. Then we
compute the Recall (aka sensitivity) as

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (1)

positive predictive value as

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

and f-score as

𝐹 =
2

1/𝑅 + 1/𝑃𝑃𝑉
(3)

These measures are more informative than the accuracy
(𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)) of the successful
detection of theminority class (i.e., the readmissions) because
the dataset is strongly class imbalanced. The analysis using
Receiver Operating Characteristic (ROC) curves has been
widely used to compare different binary classifiers. The ROC
is a plot of sensitivity versus the false positive rate (𝐹𝑃𝑅 =
𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)). It is widely used to compare performances
of state of art of supervised learning classification methods.
Specifically the integral of the ROC, i.e., the Area Under ROC
Curve (AUC), is often reported in readmission prediction
studies of adult patients [6].

We compute these measures over the test dataset after
training the models in an RCV process explained above. At
each fold test, the remaining folds are put together as the
training dataset. The training dataset is class-balanced using
SMOTE [19] with five nearest neighbors on theminority class
training samples until we have the same number of samples
of each class. However, the test set remains unaffected and
heavily imbalanced. One consequence is that small errors
in absolute terms (e.g., one misclassified sample) translate
into large reductions of the performance measures. The
proportion of samples of the minority class in the test dataset
depends on the number of folds used for RCV. High number
of folds implies big reductions in the number ofminority class
samples in the test fold, thus increasing its imbalance ratio

(the ratio of the majority class sample size to the minority
class sample size), which may lead to numerical instabilities
of the performance results. For this reason, we have explored
the results obtained using a decreasing number of RCV folds.

3. Results

Tables 3, 4, 5, and 6 show the average recall, positive predictive
value, f-score, and AUC, respectively, of themachine learning
techniques after 30 repetitions of the RCV experiments with
varying number of folders with and without SMOTE class
imbalance correction. The effect of the number of folds is
negligible. An F- test over the number of folds shows that
there is no statistically significant difference (p>0.1).

The difference between results due to the use of SMOTE
class imbalance correction at model building is largely sta-
tistically significant (p<0.00001 one sided t-test of PPV, f-
score, and AUC values almost for all models). For the results
without SMOTE are somehow paradoxical. The PPV grows
significatively in some cases (for SVM >40%), but the recall
is extremely low (for SVM<2%).The interpretation is that the
number of cases classified as positive is very small, so that a
small number of true positives gives high PPV. For MLP1 we
foundmany instances of NA values due to the lack of positive
responses.

Let us consider the case when we apply the SMOTE
class imbalance correction. Attending to recall (R) in Table 3,
MLP2 is well above SVM, MLP1, and NB; however, this is at
the cost of a high false positive ratio, as demonstrated by the
values of the PPV in Table 3, which is much lower for MLP2
than for SVM,MLP1, andNB. Figure 2 shows the ROC curves
for all approaches in the case of RCV with 5 folders.

The f-scores shown in Table 3 confirm that SVM, MLP1,
and NB improve over MLP2 regardless of RCV number of
folders. An F-test carried out over these results confirms
(p<0.01) that the performance differences between predictive
models are statistically significant. Ensuing specific one-sided
t-tests comparing each pair of modeling approaches confirms
that SVM, MLP1, and NB perform significantly better than
MLP2. The AUC results in Table 3 confirm that NB is
significantly better than the remaining approaches (F-test
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Table 4: Average ± standard deviation positive predictive value (PPV) [%] of SVM, MLP1, MLP2, and NB for decreasing number of folders
in the RCV process. no SMOTE = no oversampling correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 5.52 ±0.35 3.92 ±0.09 5.61 ±0.47 5.28 ±0.16
5 5.43 ±0.27 3.98 ±0.1 5.25 ±0.14 5.29 ±0.31
4 5.39 ±0.1 3.99 ±0.01 5.29 ±0.19 5.29 ±0.07
3 5.48 ±0.1 3.94 ±0.03 5.34 ±0.07 5.4 ±0.09

no SMOTE
SVM MLP2 MLP1 NB

10 42.22 ±29.86 6.23 ±1.53 NA 9.05 ±1.11
5 32.47 ±16.63 5.40 ±0.59 0.00 9.02 ±0.95
4 45.24 ±5.35 6.60 ±1.96 0.00 9.09 ±1.13
3 45.24 ±12.14 6.22 ±0.82 NA 8.90 ±0.89

Table 5: Average ± standard deviation f-score (F) performance [%] of SVM, MLP1, MLP2, and NB for decreasing number of folders in the
RCV process. no SMOTE = no oversampling correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 9.85 ±0.63 7.54 ±0.16 10.23 ±0.8 9.83 ±0.3
5 9.67 ±0.49 7.65 ±0.19 9.67 ±0.26 9.83 ±0.53
4 9.6 ±0.17 7.65 ±0.02 9.71 ±0.23 9.83 ±0.13
3 9.73 ±0.18 7.57 ±0.06 9.69 ±0.07 9.98 ±0.17

no SMOTE
SVM MLP2 MLP1 NB

10 1.86 ±0.00 9.70 ±1.45 NA 11.23 ±1.37
5 2.04 ±0.00 9.16 ±0.82 NA 11.20 ±1.14
4 1.95 ±0.40 9.62 ±0.75 NA 11.29 ±1.32
3 2.22 ±0.45 9.60 ±0.52 NA 11.08 ±1.23

p<0.01, pairwise t-test p <0.001). However, the superiority
of NB relative to MLP1 is less pronounced (pairwise t-test
p<0.05). Notice that statistical significance is due also to small
standard deviation of the results; if we consider the mean
performance values, we can assert that SVM and NB show
comparable performances.

4. Discussion

4.1. Readmission as a Healthcare Quality Measure. Readmis-
sions as a healthcare quality measure have been the subject of
strong debate both in adult and in pediatric hospital environ-
ments [2]. The cost of readmissions within a 365 day period
is estimated as $1 billion in United States pediatric hospitals
[31], hence the need for focused analysis and predictive tools.
There are, however, some studies that question the value of
readmissions as a quality of care metric for specific type of
patients, e.g., those suffering heart failure [32]. Other studies
argue that too much emphasis in readmissions as a measure
of the quality of care may lead to an increase of the unequal
distribution of resources [1]. There is a need to be precise
in the definition of which readmissions are to be penalized.
For instance, if there is not distinction between planned
and unplanned readmissions, there is a possibility that the
hospitals would tend to delay required readmissions after the

30-day limit to avoid financial penalties [33]. It is also well
known fact that a small percentage of pediatric patients with
chronic conditions and special technological assistance needs
account for a big percentage of the actual readmission costs
[34]. The emphasis is, therefore, in the identification of the
kind of readmission events that can be prevented through
special care after discharge, such as phone calls [35].

4.2. Quantitative Analysis of Readmissions in Pediatric Care.
Thought readmission prediction has been extensively studied
in adult patients, there is very little effort in children hospitals.
One reason is that the percentage of admissions that result
in readmission is much less frequent event in the pediatric
case, in the range 3% to 5% on average, than in adult patients,
which is close to 17% on average [4], so it was dismissed
in cost analysis studies until recently. To our knowledge,
our study is among the first ones applying machine learning
techniques to all-cause pediatric readmissions. We have
only found one similar study with a smaller cohort [17]
in an Italian hospital. Recent studies are devoted to the
characterization of the readmission events in the pediatric
setting. Auger et al. [33] propose a method for the iden-
tification of unplanned versus planned readmissions which
has many implications in the way readmissions are treated
in order to avoid financial penalties. For instance, planned
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Table 6: Average ± standard deviation AUC performance of SVM, MLP1, MLP2, and NB for decreasing number of folders in the RCV
process. no SMOTE = no oversampling correction of class imbalance is done.

nfolds SMOTE
SVM MLP2 MLP1 NB

10 0.597 ±0.022 0.539 ±0.022 0.643 ±0.020 0.654 ±0.014
5 0.587 ±0.010 0.55 ±0.018 0.634 ±0.011 0.653 ±0.014
4 0.585 ±0.008 0.548 ±0.021 0.63 ±0.009 0.655 ±0.008
3 0.584 ±0.009 0.55 ±0.011 0.628 ±0.010 0.653 ±0.011

no SMOTE
SVM MLP2 MLP1 NB

10 0.495 ±0.020 0.631 ±0.026 0.661 ±0.021 0.656 ±0.014
5 0.481 ±0.019 0.615 ±0.008 0.661 ±0.008 0.658 ±0.007
4 0.473 ±0.004 0.631 ±0.011 0.661 ±0.012 0.659 ±0.008
3 0.471 ±0.007 0.627 ±0.015 0.657 ±0.002 0.658 ±0.009

TP
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MLP1
MLP2

0.0 10.90.80.70.60.50.40.30.20.1
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Figure 2: Average ROCs of machine learning approaches in 5-
fold RCV (applying SMOTE class imbalance correction). Solid line
corresponds to the ROC mean.

readmissions may be delayed to avert financial penalties. It is
also important to identify which pediatric conditions lead to
higher readmission rates, realizing that they may be changing
from one institution to another due to local demographic
and environmental conditions; for instance, some studies
found strong dependence of frequency of readmissions on the
ethnic, disease, chronic condition, and other demographic
information such as the public versus private insurance [34,
36, 37]. Dependency of readmission frequency on clinical and
geographic factors for a specific chronic condition (i.e., sickle
cells disease) has been reported [38]. On the other hand,
shorter length of stay in pediatric hospitals is not a cause for
higher readmission rate [21]. Another issue is the impact of
the use by the administrations in charge of financial control
of the hospital of proprietary algorithms for the detection
of preventable readmission detection. Being proprietary, the
actual reasoning behind the decision is unknown, and thus it
is quite difficult to predict its outcome in order to optimize

patient care and financial management simultaneously
[39].

The difficulties are faced when trying to look for agree-
ment among readmission prediction research studies or
assessing the significance of a new study as follows:

(1) The conditions for readmission are local to the pop-
ulation treated by the hospital. It is unrealistic to
apply the same risk assessment/prediction model in
two countries with huge differences in life parameters
and conditions. Therefore, it is widely recognized that
predictive models need to be developed at each site
using local data [1, 16].

(2) Because hospital readmission is a much less frequent
event than no readmission, data used in all reported
studies is heavy class imbalance [17]. In our study, the
readmissions account for only 3, 7% of the samples.
Therefore, class balancing techniques are required to
avoid model bias towards the majority class [40].

(3) Often, EHR data has a lot of errors and missing
information due to the stressful conditions of its
capture. Moreover, there is no guarantee that the
collected variables are indeed the most relevant for
the intended prediction. However, it is the only
available data for this purpose most of the times.
Recent reviews and comparative studies [1, 4, 6] have
found that studies on adult readmissions reported low
values of area under ROCCurve (AUC aka c-statistic)
ranging between 0.56 and 0.72. One way to improve
prediction results is to carry out stratified studies, i.e.,
building specific predictivemodels for specific patient
categories [41].

4.3. Class Imbalance. The readmission rate in our case study
is 3, 7% which is similar to the percentage of readmissions
reported in other studies about pediatric readmissions, i.e.,
2.6% in [37]. Class imbalance poses great difficulties both
during training and validation. At training time, machine
learning approaches are biased towards the majority class,
so data preprocessing is required to create balanced training
datasets [6, 7]. We choose to upsample the minority class
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using SMOTE [19]. Additionally, care must be taken in the
selection of the performance metric. Overall accuracy is
strongly influenced by the majority class correct classifica-
tion; therefore we need to use performance measures that
take into account the performance regarding the minority
class; hence we consider the positive predictive value (PPV),
f-score (F), and the area under the ROC (AUC). The cost
of false positive decision is much lower than false negatives;
therefore we have not considered setting a false positive ratio
for all algoriths. The AUCmeasure has been reported inmost
predictive studies of readmission. Our top result (AUC=0.655
for NB) is similar to the results already reported for adult
readmissions (between 0.56 and 0.72). For a dramatic illus-
tration of the effect of the class imbalance, we report the
results without using SMOTE class imbalance correction. We
find a huge decrease in recall performance, meaning that
the readmission prediction drops drastically relative to the
models built upon SMOTE corrected training data, beause
of large bias towards the majority class in the non-SMOTE
models. The small number of positive predictions leads to
some paradoxical results, such as the increase of PPV value
relative to the SMOTE models, because the false positive
predictions are also very scarce.

4.4. Limitations of the Study. Thedataset comes from a single
hospital, so results reported need to be assessed with data
coming from a network of hospitals in the same country,
including data from other countries risk the introduction
of uncontrollable variations due to diverse data gathering
protocols and differences in prevalent morbid conditions.
For instance, sickle cell crisis is a costly and frequent
readmission condition in USA [39] while it is nonexistent
in Chile. Therefore, it is quite necessary to carry out local
studies in order to assess predictability and preventability
instead of importing models from other countries which
may be misleading. The existence of EHR data collection,
anonymization, and distribution infrastructures in United
States, such as the Pediatric Health Information System of the
Children’s Hospital Association (https://childrenshospitals
.org) or the Nationwide Readmissions Database (https://
www.hcup-us.ahrq.gov/nrdoverview.jsp), has favored the
realization of studies covering many institutions and large
cohorts [21, 31, 34, 36, 37, 39]. We hope that the study in this
paper will encourage the creation of similar infrastructures
outside United States.

4.5. On the Practical Implementation of the Predictive System.
Reviewers have raised the relevant question of the cost-
benefit tradeoff of the implementation of the predictive
approach in the clinical practice. In their words, a relevant
question is whether it is worth intervening almost twenty
patients in order to reduce the likelihood of one readmission
(according to PPV values). From the technical point of view,
the system would be implemented as an assistive device,
so that the intervention decision is always in the clinician
hands. Clinicians have expressed the desire to have some
kind of objective reference to help them focus on the risky
cases. On the other hand, implementation of a predictive
system as described in the paper would give a dichotomy

decision. However, there is a gradation of risk underlying
this decision, which may be modeled by the a posteriori
probability estimations computed by the predictive models.
In fact, the dychotomic decision is the result of the application
of an arbitrary threshold (often 0.5) to these a posteriori
probability estimations. Future work should be addressing
the task of providing a risk gradation to the clinicians,
easing the task of targeting really critical cases that need
more specific intervention, such as giving detailed training
to the parents for child treatment at home, or delaying the
child discharge from the hospital. From the administrative
point of view, the hospital is increasing the decision assistant
tools provided to the clinicians. For instance, there is a
tool providing triage recommendations. Therefore, they are
definitively in favor of the implementation of the kind of tools
described in the paper. Furthermore, the continuous inflowof
information and the addition of new variables will allow the
improved tuning of the tool. Finally, from the human point
of view, any parent will be in favor of the implementation of
such tools if they improve somehow the health care quality of
their children.

5. Conclusions

Following the track of political decisions in United States
regarding cost effective quality healthcare, hospital read-
missions have become a concern worldwide. There have
been many quantitative analysis, mostly for adult patients,
including predictive approaches based on machine learning.
However, pediatric hospital readmissions have received little
attention until recently. One of the lessons learned is that
there is much variability between locations so that it is
preferable to develop local predictive models than trying to
apply models developed upon foreign country data. Another
lesson learned is that it is desirable to have research oriented
nationwide data collection and distribution resources that
may allow carrying out precise and extensive quantitative
analysis.

In this paper, we report the results of an all-cause predic-
tive modeling study carried out over the anonymized dataset
collected over six years of operation in a public pediatric
hospital in Santiago, Chile. The amount of data gathered
is large for a single site study (56,558 discharges and 2,106
readmissions), but it would be desirable to enlarge it with the
contribution of other institutions in Chile. We have applied
four predictive methods upon the administrative data used
for patient cost estimation. The results are good, achieving a
top predictive performance AUC=0.65 that is comparable to
other predictive studies on adult patients data. However, this
is the result of a dychotomic decision, which puts together
mild risk cases with high risk cases. Future work should be
addressed to give a more precise quantification of the risk of
readmission, allowing for focus onmore efforts on the riskiest
cases.

To our knowledge this is the first study in Chile of
this kind and among the first ones worldwide, devoted to
pediatric readmissions. In the future, it will be desirable to
have access to a nationwide data repository, in order to be
able to derive general models upon which specific policies for

https://childrenshospitals.org
https://childrenshospitals.org
https://www.hcup-us.ahrq.gov/nrdoverview.jsp
https://www.hcup-us.ahrq.gov/nrdoverview.jsp
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optimal cost management maintaining while improving the
service quality could be formulated. The inclusion of other
data modalities, such as medication, international disease
code, laboratory, and clinical data, would help to extend this
study into the so-called phenomics realm, which aims to
exploit the big data contained in the EHRs in order to achieve
personalized medical recommendations and follow-up. Such
large data collections would allow also the application of
recent breakthrough technologies such as deep learning.

Data Availability

Data will remain proprietary of the hospital until aggregation
in a nationwide dataset.
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