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The opposite extreme of studies provides descriptive 
data only and has become particularly popular in modern 
data-rich scenarios. Rather than being hypothesis based, 
this approach of an unbiased, as complete as possible 
description of a cell response, can help to generate entirely 
new hypotheses. For obtaining a broad overview, a rather 
large observational distance is chosen. Thus, detail and res-
olution may be lost, if broad context is to be covered, and 
some observations may become so blurry that they are of 
no use.

There are many ways to combine such extremes of study 
approaches to the benefit of science. For instance, unbiased 
screens may be followed up by detailed mechanistic con-
firmations of a hypothesis or of findings derived from the 
screen. Or, a general description of transcriptome responses 
may be followed by the identification of gene regula-
tory networks that drive such responses. This latter type 
of combined approach is still relatively rare in toxicology, 
and a particularly interesting example has been presented 
by Maertens et al. (2015), who undertook the second step, 
on the basis of data already published and available in the 
public domain after the first step had been taken (Miller 
et al. 2004). Their approach demonstrates particularly well 
that additional mileage can be gained, on the basis of the 
same data, if new exploratory statistical and bioinformatics 
methods, algorithms and tools are used.

The Maertens study takes its starting point from the ques-
tion how 1-methyl-4-phenyl-tetrahydropyridine (MPTP) 
exerts its toxicity. This experimental neurotoxicant is 
extremely well studied (more than 3000 publications), and 
some features of its toxicity pathway are well established. 
For instance, the compound is metabolized in brain to 
1-methyl-4-phenylpyridinium (MPP+), and this metabolite 
is transported through the dopamine transporter into dopa-
minergic neurons of the S. nigra, where it blocks complex 

Toxicological studies can be designed in very different 
ways, and the 2007 suggestion of the National Academy of 
Sciences of the USA has shown that the mode of working 
of a whole field of science can be reconsidered (Blaauboer 
et al. 2012; Leist et al. 2008, 2012, 2014). As study design 
often heavily influences or even drives the type of outcome, 
it may pay off well to invest some thought about how sci-
ence is structured in most reports. Two extremes of a wide 
spectrum are considered here for simplification, the frog’s 
and the eagle’s perspective. The former one is the classical 
hypothesis-driven study that looks at the object of interest 
from very close by. In fact, the observer looks almost from 
below at her/his target, e.g. a favourite protein, and stud-
ies a specific feature, e.g. ubiquitination, with very high 
local resolution. During this type of research, most effort 
is invested in confirming a certain hypothesis that had been 
presented to granting bodies, in some cases years before 
the study even started. A danger with this approach, which 
predominates biological research at the moment, is that 
the context may get lost and that it often remains unclear, 
how broadly the highly detailed results may apply. More-
over, it is generally difficult to piece the individual local-
ized findings together to more general conclusions. Finally, 
the types of hypotheses that are being tested are typically 
biased towards prior knowledge.
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I of the mitochondria. This leads to the generation of reac-
tive oxygen species (ROS) and the impairment of ATP pro-
duction, and eventually to cell death. However, neurons 
can survive well the ATP reduction due to the direct inhibi-
tory effects of MPP+ (Pöltl et al. 2012; Schildknecht et al. 
2009; Krug et al. 2014), and it is not clear why cells in brain 
die after several days from ROS triggered by MPP+, even 
though the compound is washed out from the brain within 
hours (Cui et al. 2009). It is also unclear how the protec-
tion by cyclooxygenase inhibitors fits this sequence of 
events, why only some of the neurons die and what role the 
pronounced transcript alterations, peroxynitrite formation 
(Schildknecht et al. 2011), or mitochondrial fissions (Rap-
pold et al. 2014), play in cell death. A quantitative or, at least, 
semi-quantitative adverse outcome pathway has not yet been 
established for MPTP toxicity, although this is possibly the 
best-characterized experimental compound triggering neuro-
toxicity from animal to man.

A screening approach to gain more information would 
be to obtain transcriptome data from MPTP-treated mice 
or from human neurons treated with MPP+. Such data 
can be explored in different ways. The first level would 
use standard statistical methods to identify differentially 
expressed genes and possibly some gene signatures that 
distinguish different time points or doses or that separate 
MPTP responses from other toxicant responses. Usually, 
also overrepresented gene ontology terms are identified 
amongst the groups of co-regulated genes, or genes are 
clustered according to their statistical co-regulation behav-
iour (Krug et al. 2013b; Grinberg et al. 2014; Zimmer et al. 
2012; Balmer et al. 2012). This is where most studies stop, 
and the Martens study went further. In general, the next 
level switches attention from individual genes to gene net-
works and superordinate biological processes. The archi-
tecture of the transcriptome response is studied (Waldmann 
et al. 2014) with the intention to identify underlying path-
ways and transcription factors (Krug et al. 2013b), or rather 
transcription factor networks controlling the processes or 
giving evidence of cellular signalling events.

However, there is an apparently serious conceptual 
problem linked to this: key factors may not change their 
transcript level, as they may be regulated by phospho-
rylation or by post-transcriptional control of their protein 
level. Moreover, critical events may not occur on transcript 
level, but rather affect metabolism (Latta et al. 2000), pro-
tein phosphorylation (Selenica et al. 2007), cell morphol-
ogy/function (Krug et al. 2013a; Zimmer et al. 2014; van 
Vliet et al. 2014) or classical cell signalling events (cAMP, 
Ca2 + alterations). Does this limit the usefulness of tran-
scriptome analysis for pathway identification? To answer 
this, one may look at the study strategy in various other 
disciplines: geology, astronomy, history and paleontology. 
Scientists in these fields can hardly ever directly observe 

events of interest—there are no smoking guns that directly 
indicate who shot the sheriff. Still, these respectable dis-
ciplines have constructed impressive mechanistic/causal 
chains of events, not so different from a toxicity pathway 
that explains how a molecular initiating event triggered by 
a toxicant links to its adverse outcome for an affected per-
son. The solution in these other fields is based on following 
footprints instead of following the lion directly. Sometimes 
even footprints of footprints are sufficient: an eagle’s view 
observer would get a pretty good idea on where the lions 
are by observing the behaviour of prey and scavengers such 
as jackals and vultures. This approach can also be trans-
lated to transcriptome data. Transcriptome analysis can-
not measure oxidative stress, but it can very clearly detect 
its footprints, in the form of Nrf-2 target genes (Fredriks-
son et al. 2014; Limonciel et al. 2015; Wilmes et al. 2014; 
Hamon et al. 2014). For instance, a recent study identified 
ATF-4 as master regulator of cell adaptations to MPP+, 
although ATF-4 was not identified in the transcriptome 
data set directly (Krug et al. 2014). The same applies to the 
study of Maertens. The transcription factor SP-1 was iden-
tified as a main hub in a regulatory network, orchestrating 
the MPTP response, although SP-1 itself was not amongst 
the regulated genes.

This is an important lesson learnt from this study. But 
how was this achieved, and what steps need to be taken for 
such an approach? Two problems need to be addressed: 
the first is how to deal with noise in the data. A standard 
approach is to work only with information far beyond the 
signal-to-noise limit, typically with differentially expressed 
genes that are both highly significant and strongly regu-
lated. This procedure misses all real signals that are weak. 
This is a problem, since sometimes several weak, but coor-
dinated signals can have large consequences. The second 
issue is how to select biologically meaningful informa-
tion from everything that could be statistically meaning-
ful. Already, a dozen regulated genes can form billions 
of patterns and gene regulatory networks. Therefore, just 
finding the factors, i.e. the nodes of a network, is often of 
little use. One promising solution to both issues is to com-
bine the worlds of the eagle and the frog, by sequentially 
using different types of approaches; for instance an initial 
unbiased statistical method with high sensitivity and low 
specificity is overlapped with biological data to filter infor-
mation and to provide specificity. More such layers may 
be added. Even biased steps relying on expert knowledge 
may provide starting points that may then be further con-
firmed by non-biased methods (Zimmer et al. 2011; Kue-
gler et al. 2010). The power of using additional biological 
information to enhance results obtained from purely statis-
tical analyses has not been leveraged sufficiently to provide 
toxicological information, as this requires interdisciplinary 
work and combining very different types of expertise.



815Arch Toxicol (2015) 89:813–817 

1 3

The study of Maertens used a series of statistical and 
biological methods and tools in the following way: start-
ing point was a set of transcriptome data from mouse brain 
tissue, with four replicates each from day 0, day 1 and 
day 7 relative to MPTP dosing. The data were used for 
weighted gene correlation network analysis (WGCNA), i.e. 
a systems biology tool that allowed clustering of correlated 
genes. Thus, this first step was based on finding groups of 
genes (so-called modules) that were similar to one another 
concerning the time course of their regulation. The back-
ground consideration was that such co-regulated genes 
have a higher likelihood to be involved in common biologi-
cal functions.

This initial statistical step yielded 1247 genes arranged 
in five clusters. Such clusters were formed by groups of 
genes with stronger connectivity (with a mathematically 
defined threshold) to one another than to the genes outside 
the cluster. For the next steps of the work, the grouping of 
the genes within these clusters (=modules) was important. 
(The relationships between genes in a module were consid-
ered only in later steps.) For instance, gene ontology term 
overrepresentation was studied for the genes of the clusters, 
as conventional type of approach.

As next step, the study went beyond this very common 
form of analysis, and the clusters were analysed against the 
MSigDB database. This approach allowed for the search of 
many overrepresented features. Here, work concentrated on 
the overrepresentation of transcription factor (TF) binding 
sites (TFBS) in the promoters of the genes in the cluster, 
and for each of the five clusters, binding sites for more than 
10 TFs were found to be overrepresented. Such informa-
tion can be interesting, if several related situations are com-
pared, but it yields very few answers to the initial biologi-
cal question. Therefore, the next step provided a focus by 
incorporation of biology background data. It involved text 
mining of the biological literature, as all identified TFs 
were investigated (screening of MEDLINE entries). They 
were retained for further analysis, if more than two pub-
lications were found connecting the TF to either Parkin-
son’s disease or MPTP. On this basis, two interesting steps 
were taken to arrive at a new level of information: (1) the 
TF identified for each cluster during the previous steps was 
added to the group of genes belonging to that cluster. (2) 
Then, this slightly larger set of genes was used again for 
network construction.

However, the way this network was built differed from 
the WGCNA, in that existing biological information was 
used for its construction, instead of statistical correlations. 
The information was derived from the FANTOM4 database 
that contains multiple layers of information on gene inter-
actions. Some are derived from experimental studies, such 
as siRNA knockdown or chromatin immunoprecipitation 
(ChIP, a method to physically map TF binding sites). The 

latter two types of information were chosen to build a gene 
regulatory network (GRN), in which not only information 
on connections is given, but also information on the direc-
tionality of the connection (i.e. A regulates B, instead of A 
is connected to B). Within this new network, the component 
with most connected genes was identified and considered 
as biologically important regulation module. A variation of 
this approach was building the GRN without the TF added. 
This ‘control experiment’ showed that there were dramati-
cally less connections found in the largest component. 
Finally, the process of building a GRN was repeated for the 
entire pool of genes from all five clusters (plus the identi-
fied TF), in order to identify important hubs (nodes with 
particularly many connections), not just for one cluster, but 
also as links between clusters. This network consisted in 
the end of 256 genes, and SP1 emerged as the major hub in 
the network of most clusters (while it was not evident from 
the pure correlation analysis, that SP1 could play any role).

Thus, the study suggests approaches (only one of many 
is demonstrated) that combine various existing data to gen-
erate new hypotheses on toxicity networks. It might be an 
incentive for enhanced data mining efforts, with toxicolo-
gists, biostatisticians and systems biologists closely col-
laborating to form a discipline of systems toxicology. There 
is still hesitation, whether really new information can be 
gained from this. An analogy may help to start the thought 
process. Returning to the ‘eagle’s view’, we might observe 
a city’s traffic from very high above, continuously, or in the 
form of snapshots, like a transcriptome study. Many rea-
sons for large disturbances will be easy to observe directly: 
a traffic accident, a construction site, a street demonstra-
tion, etc. For others, we will only see the footprints, left 
in the traffic: signals by traffic lights, we cannot see from 
above. Traffic lights do not change in quantity and loca-
tion, they only change their functional state, and this can-
not be observed from above. Still, a good enough analy-
sis of the traffic flow will give very exact information on 
where they are and which role they play. We can predict 
their behaviour individually, or in coordination as ‘phased 
traffic lights’, and we can understand them as a cause for 
systems breakdown, when they stop working. This may be 
a farfetched comparison, but it appears to be worth giving it 
a try to explore how far it holds.

Such confirmation approaches will need to go one step 
further in the end. Ultimately, the circle of arguments needs 
to be closed by a biological confirmatory step in a similar 
model system, and attempts are needed to confirm such 
findings in related other model systems. Questions also 
need to be asked about the internal consistency of the data. 
For instance, the starting point of the study was a time-wise 
correlation of transcript responses. The follow-up question 
would be whether new hubs and networks follow a plau-
sible time course. For instance, damage-initiating genes 
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may need to be regulated fast, while late time points may 
rather reflect counter-regulations and secondary events 
(Balmer et al. 2014; Blaauboer et al. 2012). This is particu-
larly true when tissues or complex 3D cell cultures (Alépée 
et al. 2014) are studied. In this case, it is not clear whether 
the transcriptome changes studied actually occur within a 
single cell or whether they are a composite reaction of the 
tissue (Gantner et al. 1996), consisting of different neu-
ronal types plus microglia, activated astrocytes and possi-
bly even invading blood cells. To play the devil’s advocate, 
SP-1 may not play a role in neurons, but rather in the acti-
vation—or the dampening—of the inflammatory response 
in glia, or it may be a late signal due to removal of tissue 
debris (Falsig et al. 2006; Hirt et al. 2000). Deconvolution 
of this complexity may require additional approaches and 
refinement, such as a multi-omics approach (Ramirez et al. 
2013; Balmer and Leist 2014), or studies need to be limited 
to very early damage phases only. It is also still not clear, 
how this approach would best be applied in developmen-
tal toxicity, where the baseline of gene expression changes 
over time (Penschuk et al. 2006; Bal-Price et al. 2015; 
Smirnova et al. 2014). Finally, it needs to be considered, 
how far the changes observed in animals hold for gene reg-
ulatory networks in humans (Hartung and Leist 2008; Leist 
and Hartung 2013). A future example study in human cells 
would be an important complement to the present study.
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