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The EEG signature of sensory 
evidence accumulation during 
decision formation closely tracks 
subjective perceptual experience
Chiara F. Tagliabue   1,2, Domenica Veniero   3, Christopher S. Y. Benwell4, Roberto Cecere3, 
Silvia Savazzi   2 & Gregor Thut3

How neural representations of low-level visual information are accessed by higher-order processes 
to inform decisions and give rise to conscious experience is a longstanding question. Research on 
perceptual decision making has revealed a late event-related EEG potential (the Centro-Parietal 
Positivity, CPP) to be a correlate of the accumulation of sensory evidence. We tested how this evidence 
accumulation signal relates to externally presented (physical) and internally experienced (subjective) 
sensory evidence. Our results show that the known relationship between the physical strength of the 
external evidence and the evidence accumulation signal (reflected in the CPP amplitude) is mediated 
by the level of subjective experience of stimulus strength. This shows that the CPP closely tracks 
the subjective perceptual evidence, over and above the physically presented evidence. We conclude 
that a remarkably close relationship exists between the evidence accumulation process (i.e. CPP) 
and subjective perceptual experience, suggesting that neural decision processes and components of 
conscious experience are tightly linked.

A central question in the study of decision making is how lower-level sensory information is accessed by 
higher-order processes to inform decisions and form conscious percepts. Research on perceptual decision mak-
ing in human participants has established a late EEG potential characterized by a centro-parietal positivity (called 
CPP) as a neural correlate of sensory evidence accumulation1–3. The CPP is commensurate with the P300 family 
of event-related potentials (ERP)4 (for review, see5). In line with sequential information sampling models of deci-
sion making that assume integration of noisy evidence over time6, the CPP buildup rate increases proportionally 
with the strength of the exogenously presented sensory evidence to then peak at the time when a decision has 
been reached1. The CPP thus shows the defining “build-to-threshold” features of a decision variable7 and because 
it is neither specific to any particular sensory modality nor feature1, nor to any motor requirements2,8,9, it is 
believed to reflect evidence accumulation at an intermediate, abstract level of processing.

The process of evidence accumulation from early sensory stimulus representations depends not only on the 
strength of externally presented sensory evidence (stimulus intensity), but also on ‘internal’ sources of variabil-
ity such as neural noise, in particular when the stimulus is weak. This can explain misperceptions (such as false 
alarms) in terms of erroneous evidence accumulation in sequential sampling models. Accordingly, it has been 
shown that the CPP is present not only for correct but also erroneous decisions1,8,10. Hence, the CPP can reflect 
not only external evidence but also an internal decision quantity. In line with this, a growing number of stud-
ies have focused on subjective aspects of the decision process such as decision confidence11–13. Interestingly, an 
evoked potential of similar latency and topography (Late Positivity, LP) has been shown to scale with perceptual 
awareness14, hence to be associated with subjectively reported (experienced) evidence.

1CIMeC–Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy. 2Perception and Awareness (PandA) 
Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy. 
3Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, 
UK. 4Psychology, School of Social Sciences, University of Dundee, Dundee, UK. Chiara F. Tagliabue and Domenica 
Veniero contributed equally. Correspondence and requests for materials should be addressed to C.F.T. (email: chiara.
tagliabue@unitn.it)

Received: 10 August 2018

Accepted: 26 February 2019

Published: xx xx xxxx

OPEN

https://doi.org/10.1038/s41598-019-41024-4
http://orcid.org/0000-0002-4152-1668
http://orcid.org/0000-0001-8235-7270
http://orcid.org/0000-0002-5333-9046
mailto:chiara.tagliabue@unitn.it
mailto:chiara.tagliabue@unitn.it


2Scientific Reports |          (2019) 9:4949  | https://doi.org/10.1038/s41598-019-41024-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Here, we wanted to directly investigate how the neural correlate of evidence accumulation, reflected in the 
CPP, relates to the externally presented (physical) and subjectively experienced evidence. We therefore examined 
the CPP as to its co-variation with physical versus subjectively experienced stimulus intensity. We manipulated 
the amount of available sensory evidence and asked our participants to explicitly rate the strength of their subjec-
tive experience, here defined as the clarity of the percept (using a four point scale, the Perceptual Awareness Scale 
(PAS)15). Our data show that the CPP amplitude more closely tracks the subjective reports of stimulus clarity than 
objective stimulus intensity, suggesting that a close relationship exists between the neural correlates of evidence 
accumulation and conscious awareness.

Results
While recording EEG, we presented difficult-to-detect visual stimuli that were either brighter or darker than 
the background at three intensity levels (i.e. contrast-from-background), collected discrimination performance 
and then asked the participants to rate the clarity of their perception on the PAS scale (Fig. 1). This allowed us to 
investigate the relationship of the CPP to both the amount of external sensory evidence and the level of subjective 
clarity of the percept (the internally experienced evidence).

Behavioral responses to visual stimuli.  To manipulate the amount of sensory evidence, we varied stimu-
lus intensity (low, intermediate and high) by selecting 3 different contrast levels (i.e. stimulus levels corresponding 
to 25%, 50% and 75% detection rate, individually determined prior to the experiment; see experimental proce-
dures). Participants were asked to indicate the brightness of the stimulus relative to the background (“lighter” or 
“darker”, prompted by a first question screen) for assessing discrimination accuracy, and to then rate the clarity of 
their percept (“no experience”, “brief glimpse”, “almost clear” or “clear”, prompted by the second question screen) 
(Fig. 1).

Figure 2a illustrates the distribution of subjective perceptual awareness ratings across the three intensity levels. 
As expected, for low intensity stimuli (orange line), participants indicated most often “no experience” (PAS = 0), 
followed by a “brief glimpse” (PAS = 1), “almost clear” experience (PAS = 2), and very few “clear” experience 
(PAS = 3). For intermediate intensity stimuli (purple line), the percentage of responses was more equally dis-
tributed across awareness rating levels. For high intensity stimuli (cyan line), participants indicated least often 
having “no experience” (PAS = 0), followed by more frequent “brief glimpses” (PAS = 1), “almost clear” (PAS = 2) 
and “clear” experiences (PAS = 3). Finally, catch trials were rated in 88.1% of trials as PAS = 0 (“no experience”).

Sorting trials according to the clarity of subjective experience (i.e. PAS = 0, PAS = 1, PAS = 2, PAS = 3) 
revealed that as the clarity of the percept increased, accuracy also increased (Fig.  2b), as expected 
[repeated-measures ANOVA (degrees of freedom corrected using Greenhouse-Geisser estimates of sphericity): 
F(1.688,16.882) = 113.2, p < 0.01; linear trend F(1,10) = 1000.7, p < 0.01]. Similarly, sorting trials according to 
the strength of the presented evidence (i.e. low, intermediate, high stimulus intensity) showed that as objective 
sensory information increased, accuracy also increased (Fig. 2c) [repeated-measures ANOVA: F(2,20) = 35.5, 
p < 0.01; linear trend F(1,10) = 89.9, p < 0.01].

Overall, these results thus show that both factors of interest (visual awareness and stimulus intensity level), 
i.e. the internally experienced and externally presented sensory evidence, co-vary, but also show considerable 
trial-by-trial variability.

Next, we examined to what extent the CPP amplitude is varying with each measure, when the alternative 
measure is accounted for. In addition, we ran a mediation analysis to test whether the known relationship between 
stimulus intensity and CPP1–3,16 is mediated by subjective experience.

Event-related potentials.  We first plotted the CPP as a function of external physical evidence (stimu-
lus intensity), not taking into account internally experienced evidence (PAS ratings) (Fig. 3). As expected, the 
CPP scaled with stimulus intensity. However, note the large variability around the mean per stimulus intensity 

Figure 1.  Single trial structure: Following an acoustic alerting tone, a brief visual stimulus was presented 
always at the same position in the upper right visual field. Stimuli could be either brighter or darker than the 
background and were presented at 3 different individually adjusted stimulus intensities (low, intermediate and 
high). After 1000 ms, participants were asked to report the brightness of the stimulus relative to the background 
(Discrimination task) and then rate the clarity of their perception on the Perceptual Awareness Scale (PAS) 
(Awareness report).
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(Fig. 3, shaded areas). To test whether this variability is explained by the variability in PAS ratings observed for 
each stimulus intensity level (see Fig. 2a), we tested whether the CPP amplitude varies with subjective awareness 
ratings when physical stimulus properties were held constant. Conversely, we also tested whether this potential 
varies with physical stimulus properties when subjective ratings were held constant. That is, we compared ERP 
amplitudes evoked by different levels of subjective or objective evidence while controlling for the contribution of 
the alternative variable. To numerically equate the value of the alternative variable across all levels of comparison, 
we used random trial sub-sampling (see Methods).

Centro-parietal positivity co-varies with subjective clarity when stimulus contrast is equated 
across levels of comparisons.  We compared CPP amplitude between awareness ratings for which we could 

Figure 2.  Behavioral results. (a) PAS rating variability for each level of external sensory evidence. Error bars 
represent standard errors. Mean percentage of correct discrimination responses as a function of (b) PAS ratings 
and (c) stimulus intensity. Error bars represent standard errors and the solid line (50%) chance level.

Figure 3.  Grand average ERP waveforms over electrode Pz showing the late evoked potentials as a function of 
stimulus intensity, regardless of perceptual rating. Shaded areas represent standard errors at each time point.
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equate stimulus intensities with a sufficient number of trials using trial subsampling (see “Statistical Analysis” 
section for details). PAS = 0, PAS = 1 and PAS = 2 were compared for stimuli presented at low and intermediate 
stimulus intensities (Fig. 4a) and PAS = 1, PAS = 2 and PAS = 3 for stimuli presented at intermediate and high 
stimulus intensities (Fig. 4b). The results were identical for both comparisons (cf. Fig. 4a vs. b). A late posi-
tive deflection was observed over central electrodes, peaking around 400–600 ms, which scaled with subjective 
awareness ratings (Fig. 4a,b), increasing in amplitude with stronger subjective experience. For statistical testing, 
we ran a non-parametric cluster-based permutation test17,18 (see Methods). This revealed a positive cluster over 
centro-parietal electrodes between roughly 200–800 ms after stimulus onset (highlighted by the dashed rectangle 
in Fig. 4a,b), independently of the awareness levels compared (see Fig. 4c,d, left maps for the results of the initial, 
random sub-sample, pcluster < 0.01). We corroborated this result by repeating the analysis in another 500 runs, 
randomly selecting a different subset of trials on each iteration (and always equating stimulus intensity across 
awareness ratings), revealing this effect to be highly consistent across sub-samples (see Fig. 4c,d, right maps for 
the topography of averaged p-values across the total of 500 runs). Additional, pairwise post-hoc comparisons 
between each awareness level, performed through cluster-based permutation t-tests averaged over the significant 
time window identified in the main analysis, showed that the CPP differed in amplitude across all awareness 
levels (Fig. 4e,f). Overall, these results show that the CPP is strongly related to subjective clarity of the percept, 
with higher amplitudes corresponding to higher clarity of perceptual experience. This effect was consistent across 
subjects (see Supplementary Fig. 1a for single subject data).

Centro-parietal positivity shows no relation to stimulus contrast when subjective awareness 
ratings are equated across levels of comparisons.  Next, we compared CPP amplitude across stimulus 
intensity levels for which we could equate the value of awareness ratings with a sufficient number of trials through 
random trial subsampling. Low versus intermediate stimulus intensity levels were compared after equating PAS 
values 0, 1 and 2 across stimulus categories (Fig. 5a) and intermediate versus high stimulus intensity levels were 
contrasted after equating PAS values 1, 2 and 3 across stimulus categories (Fig. 5b). The results reveal very small 
variations of the CPP with stimulus intensity for both comparisons (see Fig. 5a,b: compare low vs. intermediate 

Figure 4.  CPP scales with the strength of subjective evidence. (a,b) Grand average ERP waveforms over 
electrode Pz, obtained for each visual awareness rating (a: PAS = 0 vs. 1 vs. 2; b: PAS = 1 vs. 2 vs. 3) for trials 
with equated stimulus intensity levels. Each waveform represents the average ERP over 500 random trial draws; 
shaded areas represent standard errors at each time point (note that the standard errors are very small and 
therefore almost invisible). Time windows of significant differences are highlighted by the dashed rectangle. 
(c,d) Cluster analysis results for awareness-related signals (based on ANOVAs across awareness levels). The 
maps on the left show the topographic distribution of F-values, while the black dots represent significant 
electrodes (initial draw out of 500 subsamples). The maps on the right show the topography of the p-values 
averaged over all 500 random draws in the time windows where the most consistent effects were found. (e,f) 
Pairwise post-hoc comparisons for awareness-related signals in the significant time window (dashed rectangle 
in a,b). Each map shows the t-value distribution with black dots indicating significant electrodes.
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intensity waveform in a; and intermediate vs. high intensity waveform in b), with the differences being an order 
of magnitude smaller than those observed for the awareness effects (cf. Fig. 4a,b). Running a non-parametric 
cluster-based permutation t-test per stimulus intensity comparison did not reveal any significant cluster of elec-
trodes (all pcluster > 0.5 for low vs intermediate comparisons, all pcluster > 0.3 for intermediate vs high comparisons). 
The absence of any effect was not driven by trial selection as confirmed by repeating the trial selection 500 times 
(random draws). Hence, the CPP was not modulated by the different stimulus intensities when accounting for the 
subjective experience ratings. The lack of effect was evident across subjects (see Supplementary Fig. 1b for single 
subject data).

Centro-parietal positivity: accuracy and catch trials.  Given the relatively stronger co-variation of the 
CPP with subjectively experienced than with physically presented sensory evidence, we expected an uncoupling 
of this potential from performance accuracy. This was confirmed in two separate analyses. First, we compared the 
CPP across PAS ratings on correct response trials only (PAS ratings from 0 to 3 included), and then repeated this 
analysis on incorrect response trials (only including PAS = 0 and 1 ratings to have a sufficient number of numer-
ically equated trials between the two categories, see Behavioral results).

For correct trials, we confirmed the existence of an awareness rating effect. The higher the visual awareness 
rating, the higher the amplitude of the CPP (Fig. 6a, left panel). As above, the cluster-based permutation test on 
ERPs across subjective rating (PAS), performed on the whole epoch (0 to 900 ms), revealed a significant positive 
centro-parietal electrode cluster (pcluster < 0.01, from 196 to 900 ms, Fig. 6a, left panel, map). The cluster was also 
present in each pairwise post-hoc comparison between PAS ratings when performed through cluster-based per-
mutation t-tests on the mean amplitude of the significant time window (p values ranging from 0.046 to 0.002).

Importantly, the awareness rating effect was also observed for incorrect trials, suggesting a dissociation of the 
effect from task accuracy (Fig. 6a, right panel). The cluster-based permutation t-test (performed on the whole 
epoch, 0 to 900 ms) again revealed a positive cluster over centro-parietal areas (pcluster < 0.01, from 248 to 788 ms, 
Fig. 6a, right panel, map).

As a variant of testing for a link of the CPP to an ‘internal’ decision quantity, we analysed catch trials to exam-
ine whether this late positivity can also occur in the absence of any external sensory evidence. The correspond-
ing cluster-based permutation t-test performed on the whole epoch (0 to 900 ms), with the pre-stimulus period 
(−300 to 0 ms) as a reference interval, again revealed a positive cluster over centro-parietal areas (pcluster < 0.01, 
starting at 248 ms until the end of the epoch, Fig. 6b, map). Therefore, even if no veridical sensory information 
is available, the CPP is still present, and its amplitude matches the amplitude of stimulus-present trials with PAS 
reports of zero (“no experience”) (Fig. 6b). Please note that the high number of PAS 0 reports in catch trials pre-
vented a comparison across PAS levels.

Mediation analysis.  To further investigate the relationship between CPP amplitude, stimulus strength and 
subjective experience, we ran a mediation analysis linking the three variables, without any prior trial selection. 
A mediation analysis allows for estimation of the extent to which a proposed mediator variable accounts for the 
relationship between a predictor and an outcome variable19,20. Here, based on the abundant literature linking the 
amount of available evidence to the CPP amplitude e.g.1,3,12,16, we considered stimulus intensity (from catch trials 
to High, 4 levels) as predictor of the EEG amplitude (outcome variable), while subjective experience measured by 
PAS scale ratings (0–3, 4 levels) was included as a proposed mediator (see Fig. 7a). The choice of the awareness 
rating as the mediator is also in line with our behavioural results (Fig. 2a), indicating that the awareness rating is 
predicted by the stimulus strength, thus acknowledging that subjective perception is mostly driven by external 
evidence. Indeed, in the mediation analysis, variations in levels of the predictor must significantly account for 
variations in the proposed mediator. Please note that by the use of the mediation analysis, we aimed to investigate 

Figure 5.  CPP amplitude and stimulus intensity: ERP amplitudes over electrode Pz per each of the stimulus 
intensity comparisons (a: low vs. intermediate; b: intermediate vs. high) for which awareness ratings could 
be equated. No differences were found across stimulus intensities with equated PAS ratings (compare low vs. 
intermediate waveform in (a) and intermediate vs. high waveform in (b)). Note that the amplitude-differences 
between a and b are due to the need for including different PAS ratings in the respective averages (PAS 0, 1 and 2 
for waveforms in (a), PAS 1, 2 and 3 for waveforms in (b)). Each waveform represents the average ERP over 500 
trial selections (random draws), shaded areas represent standard errors at each time point.
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the strength of the stimulus intensity-CPP amplitude relationship whilst controlling for subjective experience, 
without implying that the subjective evidence causally influences the CPP.

Therefore, in our model (Fig. 7a), path a represents the relationship between stimulus intensity and PAS rating 
and path b the relationship between PAS rating and EEG amplitude when controlling for stimulus intensity. Path 
c represents the total stimulus intensity effect (unmediated) on EEG amplitude and path c’ represents the direct 
stimulus intensity–EEG amplitude effect when controlling for PAS ratings. The product of the path a and path b 
coefficients (ab) represents the mediation effect. Testing for a significant mediation effect involves testing if the 
predictor-outcome relationship (stimulus intensity – EEG amplitude) is significantly reduced by including the 
mediator (PAS ratings) in the model (a*b = c-c′ > 0). To test this, ab coefficients calculated for each channel and 
each time point from 0 to 900 ms after stimulus presentation were tested against 0 by means of a cluster based 
permutation t-test. We found a significant positive cluster (pcluster = 0.007; also note path a p < 0.05), spanning 
from 300 to 800 ms and including several centro-parietal electrodes. Figure 7b shows ab values over time aver-
aged across electrodes within the significant cluster (on the left) and its corresponding topography (on the right). 

Figure 6.  Late evoked potential scales with awareness regardless of accuracy. (a) ERP waveforms over electrode 
Pz, obtained for each visual awareness level in correct trials (left panel) and for visual awareness levels PAS = 0 
and PAS = 1 in incorrect trials (right panel). The map illustrates the topographical distribution of F- and t-values 
for the significant time window (highlighted by the dashed rectangle). Black dots represent significant positive 
electrode clusters. (b) Evoked potentials in catch trials versus PAS = 0 trials (obtained after 500 random draws 
from low and intermediate stimulus intensity trials) over electrode Pz. Shaded areas around PAS = 0 waveforms 
represent standard errors at each time point. Map: t-value distributions from the comparison between catch 
trial data in the window after expected stimulus onset (marked by 0) versus its baseline “pre-stimulus” interval. 
Black dots represent significant positive electrode clusters.

https://doi.org/10.1038/s41598-019-41024-4


7Scientific Reports |          (2019) 9:4949  | https://doi.org/10.1038/s41598-019-41024-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Importantly, the time window and the topography of the mediation effect exactly mirrored the CPP component. 
This result indicates that the inclusion of the mediator “subjective report” in the model significantly decreased 
the predictive power of stimulus strength on CPP (compare dashed lines in Fig. 7b). In summary, the mediation 
analysis confirmed and extended our initial results, showing that when the subjective experience is accounted for, 
the stimulus strength does not significantly modulate the CPP amplitude anymore.

Discussion
Our study sheds light on how subjective and objective evidence strength relate to the known EEG evidence accu-
mulation signal (CPP): when the variation of the CPP amplitude with subjective stimulus clarity is accounted 
for, there is little residual variation as a function of physical stimulus intensity. In addition, this relationship with 
subjective evidence strength is observed for error as well as correct trials. Hence, the magnitude of the evidence 
accumulation signal is strongly linked to the subjective experience of stimulus clarity, irrespective of performance 
accuracy.

Our results are complementary to a recent study by Kang et al.21, in which participants were asked to report 
the timing of their commitment to a perceptual decision. By demonstrating that the subjective report corresponds 
to the time of decision termination, Kang et al. provided evidence that the neurophysiological mechanisms medi-
ating the decision completion might be also responsible for the piercing of conscious awareness. However, while 
Kang et al. focused on the timing of the decision process (its termination), we asked our participants to report 
the clarity of their percept, demonstrating that subjective reports closely match the absolute magnitude reached 
by the evidence accumulation signal (i.e. the CPP). Interestingly, this suggests that decision processes and mech-
anisms of conscious perception may be more tightly linked than commonly thought (see also21). Moreover, and 
in further analogy to Kang et al.21, our study suggests a remarkable degree of reliance that can be placed on 
observers’ subjective impressions to gain access to core internal decision quantities. Intriguingly, a parallel line 
of research on the neural correlates of consciousness22 has also identified a late potential of similar topogra-
phy and latency that tracks conscious reports23–28, further substantiating a link between the CPP and conscious 
perception.

With weak sensory stimuli as employed in the present study, the measure of the clarity of percepts will repre-
sent an ‘internal’ subjective quantity, which likely equates to another such quantity: the meta-cognitive measure 
of confidence in the decision. If participants perceive the stimulus more clearly, they are also likely to be more 
certain about their decision. A small number of single-unit recordings have demonstrated that neural evidence 

Figure 7.  Mediation hypothesis and results. (a) The mediation model included the independent variable 
(stimulus intensity) as predictor of the outcome variable (ERP amplitude). Subjective reports were introduced 
as a proposed mediator and tested as to whether they accounted for the relationship between predictor 
and outcome. (b) The mediation effect (ab) time course averaged across electrodes within the significant 
cluster is shown on the left, together with the total effect of stimulus intensity (c) and the direct effect (c′) 
when controlling for subjective reports. The rectangle represents the significant time window of mediation. 
On the right, the topography of the mediation effect is shown with the significant positive electrode cluster 
superimposed (black dots).
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accumulation signals in parietal neurons index choice confidence, besides representing the choice itself (e.g.11). 
Similar results have been reported in human studies for parietal and frontal sources of activity12,29–32, and for the 
decision-related P300 component33, (but see24 for a possible dissociation of response confidence from awareness). 
It is unclear whether the awareness rating scale used here relates to the confidence of having correctly detected 
the stimulus (its presence), or alternatively the confidence in having made the correct choice in the discrimina-
tion component of the task (darker/lighter than the background). Given the specific instructions provided to the 
participants (‘rate the clarity regardless of accuracy confidence’), we tend to favor the former scenario. Precisely 
how the CPP is related to different types of confidence report (see34) is worthy of further study. Irrespective of 
this, our findings represent a clear demonstration of the link between the CPP and subjective perceptual experi-
ence, by relying on the explicit report of subjective awareness, as opposed to indirect behavioral metrics such as 
post-decisional choice wagering and reaction times11,12. Overall, our findings demonstrate that the CPP reflects 
an evidence accumulation process, the output of which seems to relate not only to the decision itself but also 
to the associated visual awareness levels.

It is of interest to consider the differences in experimental design between our and previous works. In evidence 
accumulation experiments1–3,9, (see also35,36), sensory stimuli are classically shown continuously or sequentially 
(e.g. moving random dot sequences) until a decision is reached, i.e. until all of the evidence needed for a confident 
report is ‘accumulated’ and high awareness levels have presumably been reached. In contrast, we used brief static 
stimuli at peri-threshold levels to capture a range of subjective awareness levels across a range of sensory evi-
dence values. This design allowed us to examine the relationship between both experienced stimulus clarity and 
physical stimulus properties and the CPP. Our results are in line with previous studies revealing a buildup of the 
CPP even during erroneous decisions1,8,10 and earlier neuroimaging findings of stronger neural activity for false 
alarms compared to misses37 found even at low levels of sensory processing, i.e. in V1–V338. All of these findings 
follow from the core concept that random variability in noisy sensory signals impacts on perceptual experience 
and decisions (see the phenomenon of “choice probability”39). Moreover, our data show that the CPP was also 
present in catch trials, when no visual evidence was physically displayed. The signal recorded during catch trials 
resembles the shallow evidence accumulation signal observed in monkey parietal areas when no evidence was 
displayed40, and replicates previous findings in humans showing a low amplitude late potential in catch trials 
or when subliminal stimuli were presented26,41. This CPP buildup in catch trials also follows naturally from the 
evidence accumulation account of the CPP, given that the CPP builds positively for evidence that favors either 
decision alternative (see also1). By extension, the CPP is expected not to average to zero even in the absence of 
evidence as long as there is an attempt to read out sensory information. In the present work, the CPP therefore 
likely reflects an attempt to access evidence for report (regardless of the presence of the actual physical stimulus) 
that however fails in most catch trials (around 90%) to reach the threshold for categorizing the percept as a brief 
glimpse or more (PAS ≥ 1). Interestingly, previous research suggests that a small fraction of catch trials can even 
be associated with readout of visual information, as indicated by the finding of object perception in pure noise 
stimuli42,43.

Conclusion
Our results reveal that subjective perceptual experiences closely match the magnitude of the neural signature of 
sensory evidence accumulation (the CPP) during decision formation. Hence, when probed on clarity of percep-
tion, participants may directly ‘read’ the magnitude reached by the decision variable, showing a remarkably tight 
link between the neural correlates of evidence accumulation and conscious perception.

Materials and Methods
Participants.  14 participants (7 females, 2 left-handed, mean age ± standard deviation: 23.79 ± 3.17) were 
recruited. All reported normal or corrected-to-normal vision and no history of neurological or psychiatric dis-
orders. They all gave written informed consent to participate in the study, which was approved by the College 
of Science and Engineering Ethics Committee of the University of Glasgow and conducted in accordance with 
the 2013 Declaration of Helsinki. Data from three participants were excluded from the analysis because of a low 
number of trials ( < 20) in one or more conditions after artifact removal. The final sample was thus composed of 
11 participants (6 females, 1 left-handed, mean age ± standard deviation: 23.6 ± 3.32). Note that this dataset has 
been used in44 to address another question unrelated to the CPP.

Experimental Procedure.  The experiment comprised two sessions performed over two consecutive days. 
The first session served for calibrating stimulus intensity by threshold assessment (see Determination of Stimulus 
Intensity) and to familiarize participants with the behavioral task. During the second session, after a threshold 
re-assessment, participants were prepared for EEG recordings. They then performed a forced choice discrimina-
tion task, while EEG was continuously recorded (see “EEG Experiment”).

Stimuli.  The stimuli were black or white circular patches with a Gaussian envelope (size = 1.3°), presented 
on a gray background in the upper right visual field (5° of vertical and 10° of horizontal eccentricity from the 
fixation cross). The luminance of the stimuli was individually adjusted to obtain six contrast levels (three lighter 
and three darker than the background) by means of a threshold assessment procedure (see next paragraph for 
further details). The contrast of the stimuli presented varied from 0.025 to 0.116% of the maximal contrast of the 
black/white patch.

Determination of Stimulus Intensity.  Participants sat in a dimly lit testing room in front of a CRT moni-
tor (resolution 1280 × 1024, refresh rate of 100 Hz, viewing distance of 57 cm), with their head stabilized by a chin 
rest. The aim of the first session was to individually determine 3 levels of stimulus intensity (low, intermediate 
and high) that corresponded to 25%, 50% and 75% of correct detection rate (by manipulating contrast from the 
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medium gray background in both directions, leading to three lighter and three darker patches from background). 
The thresholds were measured using the method of constant stimuli45. At the beginning of threshold assess-
ment, ten evenly spaced contrast values ranging from 0.025 to 0.116% of the maximal contrast of the black/white 
patches were presented in a randomized order, in the upper periphery of the right visual field (see Stimuli for 
details). This first phase included two blocks: on each block, all contrast values were tested seven times together 
with 14 stimulus-absent trials (catch trials), resulting in a total number of 308 trials per participant. On each trial, 
the stimulus appeared after a 1000 ms interval following a brief (150 ms) warning tone (1000 Hz). Participants 
were asked to keep their eyes on a central fixation cross and to press the spacebar on a keyboard whenever they 
saw a stimulus. At the end of the two blocks, sigmoid functions were fit to the data from both the light and dark 
stimulus trials separately and contrast values yielding detection thresholds of 25%, 35%, 50%, 65% and 75% 
were extracted for each participant. These contrast levels were tested again in two blocks, including 10 trials for 
each contrast and stimulus type (light and dark stimuli) and 14 catch trials, resulting in a total of 228 trials per 
participant.

On the second day of testing and prior to EEG recording, a short threshold re-assessment was performed, to 
verify that participants’ performance was comparable to that obtained in the first session. The previously iden-
tified contrast values (5 for light and 5 for dark patches) and contrast levels corresponding to 0% and 100% 
detection accuracy were each presented seven times together with 14 catch trials, for a total of 182 trials. If con-
trast values resulting in detection thresholds of about 25%, 50% and 75% were confirmed, they were selected for 
the behavioral task during the EEG recording. Otherwise, sigmoid functions were again fit to the data and new 
contrast levels were extracted and tested with the same procedure. The threshold assessment procedure had to be 
repeated for 4 participants.

EEG Experiment.  During EEG recordings, participants performed a two-alternative forced choice discrimi-
nation task. Each trial (Fig. 1) started with a central black fixation cross, followed after 400 ms by a 1000-Hz warn-
ing tone (150 ms). After a 1000 ms interval, a light or a dark gray Gaussian patch (the luminance values of which 
had been determined by threshold assessment) was presented for 30 ms (3 frames) in the upper periphery of the 
right visual field. A 1000-ms blank screen was then followed by a response prompt asking the participants to judge 
the brightness of the stimulus relative to the gray background, pressing a button for “lighter” and another button 
for “darker”. The participants were asked to guess when they did not perceive any stimulus. After the button press, 
another response prompt asked participants to rate the clarity of their perception on the four-point Perceptual 
Awareness Scale (PAS15). The four PAS categories are: 0) “no experience” of the stimulus, 1) a “brief glimpse”, 2) 
an “almost clear experience” and 3) a “clear experience”. Responses were given by pressing four different buttons 
on the keyboard. The experimental session was divided into ten blocks. Each block was composed of 80 trials: 10 
trials for each individually adjusted stimulus contrast (25%, 50% and 75% of detection threshold) and stimulus 
type (light and dark), together with 20 catch trials, thus yielding a total of 800 trials. The order of the trials was 
fully randomized. Both the threshold assessment and the actual behavioral task were programmed and run in 
MATLAB (MathWorks Inc.), using the Psychophysics Toolbox extension46,47.

EEG recording and Event-Related Potential (ERP) Analysis.  EEG was continuously recorded with a 
BrainAmp system (Brain Products GmbH, Munich, Germany – BrainVision Recorder) using a Fast’n Easy cap 
with 61 Ag/AgCl pellet pin electrodes (EasyCap GmbH, Herrsching, Germany) placed according to the 10–05 
International System. An additional electrode was positioned below the left eye to record eye movements (after 
being referenced to Fp1), whereas horizontal eye movements were detected by referencing AF7 to AF8 off-line. 
Two extra electrodes served as ground (TP9) and on-line reference (AFz). All scalp channels were re-referenced 
off-line to the average of all electrodes. Electrode impedances were kept below 10 kΩ. The digitization rate was 
1000 Hz with a low cut-off of 0.01 Hz and a high cut-off of 100 Hz.

The continuous EEG signal was pre-processed off-line using Brain Vision Analyzer 2.0 (BrainProducts). Data 
were filtered with a second order high-frequency cutoff of 85 Hz and a second order low-frequency cutoff of 
0.1 Hz. A band rejection filter with a bandwidth of 2 Hz was then used to remove 50 Hz interference. Independent 
component analysis (ICA48) was applied to remove eye blinks and muscle artifacts. The EEG data were then 
cut into epochs of 1300 ms starting 300 ms before stimulus-onset and baseline corrected using the 300 ms 
pre-stimulus period. All segments were visually inspected and removed if still contaminated by residual eye 
movements, blinks, strong muscle activity or excessively noisy EEG. On average, ~5% of the trials were discarded. 
Finally, data were down-sampled to 250 Hz before averaging.

Analysis of the Event-Related Potentials (ERPs) was performed using the Fieldtrip toolbox18; (see http://www.
fieldtriptoolbox.org/). Averaging was carried out separately according to visual awareness (subjective rating) and 
stimulus intensity (detection threshold). To evaluate the impact of visual awareness on the late positivity, we 
randomly selected trials so that each PAS ERP average would include an equal number of trials with stimuli 
presented at the different intensities, in order to control for the stimulus intensity factor. In a second analysis, we 
focused on the impact of physical stimulus properties, i.e. different intensities. In this case, trials were randomly 
selected so that ERPs evoked by each stimulus intensity would include an equal number of trials receiving the dif-
ferent perceptual ratings on the PAS, to control for the visual awareness factor.

Because of a low number of trials for the combination of low stimulus intensity (25% detection threshold) with 
rating 3, and high stimulus intensity (75% detection thresholds) with rating 0, comparisons between perceptual 
ratings 0, 1 and 2 included trials with stimuli presented at low and intermediate intensity (25% and 50% detec-
tion thresholds), while comparisons between perceptual ratings 1, 2 and 3 included trials with stimuli presented 
at intermediate and high intensity (50% and 75% detection thresholds). For the same reason, the comparison 
between low and intermediate intensity levels only included ratings 0, 1 and 2 and the comparison between inter-
mediate and high intensity levels only included ratings 1, 2 and 3 (Fig. 8).

https://doi.org/10.1038/s41598-019-41024-4
http://www.fieldtriptoolbox.org/
http://www.fieldtriptoolbox.org/


1 0Scientific Reports |          (2019) 9:4949  | https://doi.org/10.1038/s41598-019-41024-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

The mean number of trials for each comparison was: 48.55 for rating 0 vs 1 vs 2 and 44.55 for rating 1 vs 2 vs 3; 
72.82 for the low vs intermediate stimulus intensities and 66.82 for the intermediate and high intensities.

To investigate the effect of accuracy, correct trials were averaged together according to their awareness rating 
and regardless of stimulus intensity. For PAS = 0 the mean number of correct trials was 115, 101 for PAS = 1, 
112.63 for PAS = 2 and 86.54 for PAS = 3 (the decrease in correct trials with increasing PAS depends on the pro-
portion of given ratings, i.e. there were overall more trials for lower PAS ratings. See also Fig. 2a). For incorrect 
trials, we could only compare PAS = 0 and 1. The difference in trial numbers between the two ratings was over-
come by equating the number of trials through a random selection, which resulted in a mean number of trials of 
39.81.

Finally, for each participant, average waveforms were computed for the catch trials (mean number of trials 
after artifact rejection: 186.18).

Statistical Analysis.  Behavioral data.  To evaluate the effectiveness of the experimental manipulations, two 
separate repeated-measures analyses of variance (ANOVA) were carried out on discrimination accuracy for trials 
sorted according to either awareness rating (within-subject factor: PAS rating. 4 levels: PAS = 0, PAS = 1, PAS = 2 
and PAS = 3) or stimulus intensity (within-subject factor: stimulus intensity. 3 levels: low, intermediate and high). 
We expected higher accuracy for higher ratings and intensity levels.

EEG data.  To investigate the effect of different levels of visual awareness (PAS = 0 vs. 1 vs. 2; PAS = 1 vs. 2 
vs. 3) and stimulus intensity (low vs. intermediate intensity; intermediate vs. high intensity) on EEG data, 
non-parametric cluster-based permutation analyses were used17,18. For every sample (channel x time point), con-
ditions were compared by means of a repeated-measures ANOVA (for awareness rating) or by a paired-samples 
T-Test (for stimulus intensity), on a time window spanning from 0 to 900 ms after stimulus presentation. Those 
samples whose F- or t-value exceeded a critical value (p < 0.05) were selected and clustered according to spatial 
and temporal adjacency. Following this, within every cluster, F- or t-values were summed to calculate cluster-level 
statistics. These cluster-based statistics were evaluated through a non-parametric permutation analysis, with 
labels from different conditions randomly permuted over 500 iterations. For each permutation, cluster-based sta-
tistics were calculated and a reference distribution was built, from which the Monte Carlo p-value was estimated 
according to the proportion of the randomization null distribution exceeding the maximum cluster statistic. 
When ANOVAs on visual awareness comparisons were significant, post-hoc analyses were performed through 
non-parametric cluster-based permutation t-tests between each rating condition. The paired-samples T-Tests 
were run on the mean amplitude of the significant time window identified by the main ANOVA.

In order to ensure that the random selection of trials performed to equate the number of trials was not biasing 
the results, trial sampling was repeated 500 times for each comparison and statistical analyses performed for each 
random draw. The p values obtained after each draw and statistical analysis were averaged together for each com-
parison, to confirm the significant effects.

Furthermore, a cluster-based permutation t-test was performed on catch trials to test whether the amplitude 
of evoked activity significantly differed from a baseline period (−300 to 0 ms before stimulus onset) including all 
channels and time points from 0 to 900 ms after stimulus presentation.

Figure 8.  Trial sampling and comparisons. Left panel: comparisons performed to investigate the visual 
awareness effect. Different rating scores were compared by including an equal number of trials for each 
stimulus intensity (low (L), intermediate (I) and high (H)). To compare PAS = 0 vs. PAS = 1 vs. PAS = 2, 
stimuli at low and intermediate intensities were included (left upper panel), whereas stimuli at intermediate 
and high intensities were included to compare PAS = 1 vs. PAS = 2 vs. PAS = 3 (left bottom panel). Right 
panel: comparisons performed to investigate the stimulus intensity effect. Different stimulus intensity levels 
were compared after equating the number of trials for each rating. Stimuli of low and intermediate intensities 
were compared including an equal number of trials rated with PAS 0, 1 and 2 (right upper panel), whereas 
intermediate and high intensities were compared including an equal number of trials with PAS ratings 1, 2 and 3 
(right bottom panel).
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To investigate the influence of discrimination accuracy on the visual awareness effect, ERP amplitudes evoked 
by different visual awareness ratings in correct trials only were compared by means of a cluster-based permutation 
ANOVA (500 permutations, time window from 0 to 900 ms after stimulus onset). Finally, incorrect trials receiving 
a rating of 0 or 1 were compared by means of a cluster-based permutation t-test (500 permutations, time window 
from 0 to 900 ms after stimulus onset).

Lastly, a hierarchical (two-level) mediation analysis was carried out using the Mediation Toolbox (http://
wagerlab.colorado.edu/tools19,49). First, each path was estimated for each participant, channel and data point 
(from 0–900 ms after stimulus presentation) using linear regression. The single-trial stimulus contrast values 
(coded as 0,1,2,3) were entered into the model as the predictor (X) variable and single-trial EEG amplitudes were 
entered as the outcome variable (Y). Single-trial PAS ratings were tested as a possible mediator (M) of the X-Y 
relationship. To test for a systematic mediation effect (ab) (i.e. if ab slopes across participants are significantly 
different from zero), we ran a cluster-based permutation t-test against 0, including all channels and data points.

Data Availability
The datasets generated and analysed during the current study are available from the corresponding author on 
reasonable request.
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