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The range of biological outcomes generated by many signalling proteins in

development and homeostasis is increased by their interactions with glycosami-

noglycans, particularly heparan sulfate (HS). This interaction controls the

localization and movement of these signalling proteins, but whether such control

depends on the specificity of the interactions is not known. We used five fibro-

blast growth factors with an N-terminal HaloTag (Halo-FGFs) for fluorescent

labelling, with well-characterized and distinct HS-binding properties, and

measured their binding and diffusion in pericellular matrix of fixed rat mam-

mary 27 fibroblasts. Halo-FGF1, Halo-FGF2 and Halo-FGF6 bound to HS,

whereas Halo-FGF10 also interacted with chondroitin sulfate/dermatan sulfate,

and FGF20 did not bind detectably. The distribution of bound FGFs in the peri-

cellular matrix was not homogeneous, and for FGF10 exhibited striking clusters.

Fluorescence recovery after photobleaching showed that FGF2 and FGF6

diffused faster, whereas FGF1 diffused more slowly, and FGF10 was immobile.

The results demonstrate that the specificity of the interactions of proteins

with glycosaminoglycans controls their binding and diffusion. Moreover, cells

regulate the spatial distribution of different protein-binding sites in glycosamino-

glycans independently of each other, implying that the extracellular matrix has

long-range structure.

1. Background
The extracellular matrix has a central role in mediating communication between

animal cells through mechanisms mediated by mechanical forces and soluble

effectors. A large proportion of the soluble effectors, morphogens, growth factors,

cytokines and chemokines that regulate animal development and homeostasis

interact with glycosaminoglycans, particularly heparan sulfate (HS), of the extra-

cellular matrix [1,2]. These interactions have been shown to exhibit varying

degrees of specificity and selectivity at the tissue and at the molecular

levels, and in a number of cases have been demonstrated to control the effectors’

transport and intracellular signalling.

The glycosaminoglycans HS, chondroitin sulfate and dermatan sulfate are linear,

sulfated polysaccharides covalently attached to core proteins to form proteoglycans.

These are eitherassociated with the cell membrane and resident in pericellular matrix

or secreted, so resident in extracellular matrix. The long chains of HS (approx. 25–100

disaccharide units) consist of repeats of a disaccharide: D-glucosamine b 1–4

glucuronic acid or its epimer iduronic acid. The mature chains have a distinct

domain structure of sequential blocks of unmodified disaccharides of N-acetyl

glucosamine b 1–4 glucuronic acid, transition domains where N-acetyl glucosa-

mine-containing disaccharides alternate with N-sulfated ones, and sulfated
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domains, where every glucosamine is N-sulfated and mayalso be

O-sulfated on C3 and C6, and the uronic acid is often epimerized

to iduronate, which may be 2-O-sulfated [1–3].

At least 435 extracellular regulatory proteins bind to tran-

sition and S-domains [4] (reviewed in [1,2]). At the molecular

level, analysis of the structural basis of the interaction of individ-

ual proteins with HS and model polysaccharides (derivatives of

the related heparin) shows that there is a selectivity by proteins

for particular patterns of sulfation [5–7]. At the tissue level, clear

differences in the expression of sulfated sugar structures have

been demonstrated, which impact on cell communication in

development, homeostasis and disease [8–13].

One important functional consequence of proteins binding

HS is its potential to control the movement of effectors between

cells. Endothelial cell extracellular matrix, in the 1980s, was

demonstrated to be capable of storing fibroblast growth factor

(FGF) 2, which could then transfer to its cellular receptors to

stimulate the cells [14]. Later, HS in extracellular matrix was

shown to control the diffusion of FGF2 [15], which indicated

that HS had the potential to shape FGF2 gradients (FGF2

being both a growth factor and a morphogen [16]). Sub-

sequently, the binding of a number of morphogens to HS

was shown to control their diffusion in contexts ranging from

Drosophila to vertebrates [17–22]. However, this may not be

universal [23–25]. Moreover, it is not clear whether it is

the selectivity of an effector for particular structures in the

polysaccharide or just non-selective ion-exchange protein–

polysaccharide interactions [26] that are important in regulating

the effector’s diffusion. A related issue is that HS in extracellular

matrix has been viewed as homogeneous, that is, there is no

variation in the distribution of binding sites below the scale

of tissue compartments. However, work with nanoparticle-

labelled FGF2 demonstrated that the distribution of its binding

sites in fibroblast pericellular matrix is heterogeneous and clus-

tered from length scales of approximately 20 nm to 1 mm and

above [27]. Recently, biophysical experiments have shown that

some effectors that bind HS can cross-link the chains of the poly-

saccharide [28]. This suggests that HS chains in extracellular

matrix may be organized into supramolecular structures,

which could impose selectivity on protein-binding that is of

higher spatial order than possible with individual chains.

To test these ideas, we have used five FGFs (FGF1, 2, 6, 10

and 20) with distinct HS-binding sites and binding selectivity

for structures in the polysaccharide [29,30]. These FGFs were

expressed as N-terminal HaloTag fusions (Halo-FGFs) [31],

which permitted specific fluorescent labelling. Measurement

of the binding and diffusion of the Halo-FGFs to glycosami-

noglycans in the pericellular matrix of fibroblasts revealed

that there were very substantial differences between these

FGFs in their level of binding, their spatial distribution and

their diffusion. These data indicate that HS chains in pericel-

lular matrix are organized over length scales far greater than

that of a single chain, and that this serves to present distinct

numbers and spatial patterns of binding sites for effectors,

which in turn modulates the diffusion of the proteins.
2. Material and methods
2.1. Protein production
The FGFs and Halo-FGFs were produced exactly as described

in detail previously [29,31]. HaloTag protein was produced
by digestion of Halo-FGF20 with TEV protease and purified

by anion-exchange on DEAE Sepharose Fast Flow (GE

Healthcare, Buckinghamshire, UK). Protein concentrations

were determined by measuring their absorbance at 280 nm

using a NanoDrop 1000 spectrophotometer (Thermo Scientific,

Leicestershire, UK).

2.2. Protein labelling
HaloTag and Halo-FGFs (0.5 mM) were incubated with

2.5 mM HaloTag TMR ligand (Promega UK Ltd, Hampshire,

UK) in 100 ml phosphate-buffered saline (PBS: 2.7 mM KCl,

10 mM Na2HPO4, 1.8 mM KH2PO4 and 0.15 M NaCl,

pH 7.4) at room temperature for 30 min, then kept on ice

before use the same day. To determine the extent of labelling,

TMR-dye-labelled Halo-FGFs were loaded onto a mini

heparin agarose (BioRad, Hertfordshire, UK) column (20 ml)

and washed with PBS containing 0.05% (v/v) Tween-20.

The bound TMR-labelled Halo-FGFs were eluted with

2 M NaCl buffered with phosphate (PB: 2.7 mM KCl,

10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4). The quantum

yields were measured in a fluorescence spectrophotometer

(Varian, Walton-on-Thames, UK) by excitation at 561 nm

and emission from 565 to 700 nm.

2.3. Cell culture
Rat mammary (Rama) 27 fibroblasts were cultured with

Dulbecco’s modified Eagle’s medium (Life Technologies,

Paisley, UK) supplemented with 10% (v/v) fetal calf

serum (Labtech International Ltd, East Sussex, UK), 4 mM

L-glutamine (Life Technologies), 0.75% sodium bicarbonate

(Life Technologies), 50 ng ml21 insulin (Sigma-Aldrich,

Dorset, UK) and 50 ng ml21 hydrocortisone (Sigma-Aldrich),

as described previously [32].

2.4. Cell labelling
Rama 27 cells were cultured on glass bottomed imaging

dishes (CELLview Culture dish: 35 mm non-treated glass

bottom, Greiner Bio-one, Stonehouse, UK) and fixed with

4% (w/v) paraformaldehyde dissolved in PBS. The fixed

cells were washed with PBS three times and then incubated

with 2 ml PBS containing 10 mg ml21 BSA to block any

remaining partially active fixative. The blocking medium

was discarded after 15 min, and the fixed cells were incu-

bated with 1.5 ml 10 nM TMR dye, 2 nM TMR-labelled

HaloTag or 2 nM TMR-labelled Halo-FGFs for 30 min at

378C. The excess TMR dye and TMR dye-labelled Halo-

FGFs (TMR-Halo-FGFs) were removed by three washes

with PBS. In competition experiments, the competitor was

added along with the labelled Halo-FGF at concentrations

indicated in the figure legends. Degradation of HS was

achieved in fixed Rama 27 cells by incubation with 1 ml

heparinase I, II and III (50 mU ml21 each in 100 mM

sodium acetate and 0.1 mM calcium acetate, pH 7.0; gift

from Prof. Jerry Turnbull, University of Liverpool). Chon-

droitin sulfate (including dermatan sulfate) was degraded

by incubation with 1 ml chondroitinase ABC (Sigma-Aldrich;

400 mU ml21 in PBS). In both cases, cells were incubated

with the enzymes overnight at 378C prior to incubation

with Halo-FGFs.
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2.5. Microscopy and imaging
A LSM780 confocal microscope with an environmental con-

trol chamber (Zeiss, Jena, Germany) was used to acquire

cell imaging data with a DPSS 561 nm excitation laser. For

all cell imaging, a 63X oil immersion lens (Plan-Apochromat

63� 1.4 oil DIC M27) and a 15.03 Airy Units pinhole were

used. Cell images (67.3 mm � 67.3 mm, 512 � 512 pixels,

16 bits) containing bright field and the red fluorescence

channels were collected for the binding assays. Images were

collected using identical microscope settings.

2.6. Fluorescence recovery after photobleaching
The fixed cells labelled with TMR-Halo-FGF1 (2 nM and

1 nM), TMR-Halo-FGF2 (2 nM), TMR-Halo-FGF6 (2 nM)

and TMR-Halo-FGF10 (2 nM) were used for the FRAP exper-

iments. The measurements were performed at 378C. A square

area (22.49 � 22.49 mm, 256 � 256 pixels, eight bits) was

imaged six times with the 63X oil immersion lens, and then

the selected 2.5 mm (radius) disc area was bleached with the

561 nm laser at full power for eight iterations (0.64 s in total).

After that, another 195.6 s of images (994 images) were

acquired to measure the fluorescence recovery. An area free

of cells and a non-bleached area on the same cell were selected

to determine the background (subtracted in quantifications)

and correct the photobleaching caused by the excitation laser

during imaging, respectively. The fluorescence intensities of

these three selected areas from 0 to 197.2 s were extracted

using ZEN 2012 software (Zeiss) for further analysis.
2.7. Data analysis
Fluorescence intensity of the labelled cells: the cell edges were auto-

matically identified by using published Matlab codes [33], and

the fluorescence intensities were averaged for each cell. The cell

edges of low fluorescence-labelled cells were detected in the

bright field channel image (electronic supplementary material,

figures) and high fluorescence-labelled cells were detected in

the fluorescence channel image. The Matlab program for cell

edge detection can be downloaded from GitHub (https://

github.com/hscsun/DrawCellEdges.git).

FRAP data analysis: the background fluorescence intensity

(Ib) was subtracted from both the bleached area (I ) and

non-bleached reference area (Ir). The photobleaching was cor-

rected by the reference area and Ic is the corrected

fluorescence intensity of the bleaching area.

Ic ¼ (I � Ib)� Ir[1� 6]� Ib

Ir � Ib

� �
: ð2:1Þ

Note: Ir[1–6] means the averaged fluorescence intensity of the

reference area of the first six images; the other fluorescence

intensities (I, Ib, Ic, Icn and Idcn) are applied to any image in

the frame, but they correspond to the same image number

in both sides of the equation for each calculation (from

frame 1 to 1000 in this FRAP experiment).

The fluorescence intensity of the bleaching area was nor-

malized to the averaged fluorescence intensity of the first six

images, where Icn is the corrected and normalized intensity of

the image.

Icn ¼
Ic

Ic[1� 6]
: ð2:2Þ
Note: Ic[1–6] means the average of the first six corrected

fluorescence intensities from equation (2.1).

To compare fluorescence recovery curves, the corrected

and normalized fluorescence intensity of the first bleached

image, Icn[7], was subtracted from the corrected fluorescence

intensity of bleached area and the FRAP curve was

normalized again, as in equation (2.2).

Idcn ¼
Icn � Icn[7]

1� Icn[7]
: ð2:3Þ

Note: here [7] means the seventh image (or the first

image after bleaching) for the normalized and corrected

fluorescence intensity.

The final recovery level (If ), the fluorescence intensity for

the last measurement and half recovery time (t1/2) were

extracted from the corrected and normalized curve acquired

from equation (2.3) by

If ¼ Idcnðt ¼ finalÞ ð2:4Þ

and

t1=2 ¼
ta þ tb

2
: ð2:5Þ

Note: t means time; final is the time at which the last image was

acquired in the actual experiments. ta is the time corresponding

to the maximum value of the fluorescence intensities smaller

than half of If; tbis the time corresponding to the minimum

value of the fluorescence intensities larger than half of If.

The radial profiles of the bleaching area were extracted

using a published Matlab code [34], and the photobleaching

was corrected for each analysed image as described in

equation (2.1). The Matlab program for FRAP data analysis

can be downloaded from GitHub (https://github.com/

hscsun/ImagingDataAnalyzerForFRAP.git).

All calculations and image montages were done with

Matlab R2014a.

Boxplots of the half recovery time and final recovery level

of different Halo-FGFs were prepared in ORIGINPRO v. 9. The

data plot with standard deviation area was prepared using a

published Matlab code [35].
3. Results and discussion
3.1. Labelling Halo-FGFs with TMR-Halo

ligand dye
The N-terminal HaloTag fusion does not affect the binding of

FGFs to heparin or their biological activity and they are effi-

ciently expressed [31]. So, they provide a convenient means to

prepare genetically encoded fluorescently labelled FGFs,

whose excitation and emission properties can be altered by

changing the HaloTag ligand [36]. We first tested whether

the HaloTag TMR ligand dye interacted with heparin or

grossly affected the interaction of the FGFs with heparin.

A mixture of HaloTag and a fivefold excess of Halo-TMR

dye was incubated for 30 min and loaded onto a mini heparin

column. After three 50 ml washes with PBS containing 0.05%

(v/v) Tween-20 (PBST) to remove the unbound dye, there

was no red fluorescence detectable on the heparin column

(figure 1a). This indicated that neither HaloTag nor the

TMR-Halo ligand dye bound to heparin. In contrast, the

heparin column loaded with TMR-labelled Halo-FGF2 gave

https://github.com/hscsun/DrawCellEdges.git
https://github.com/hscsun/DrawCellEdges.git
https://github.com/hscsun/DrawCellEdges.git
https://github.com/hscsun/ImagingDataAnalyzerForFRAP.git
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Figure 1. Conjugation and quantification of TMR dye-labelled Halo-FGFs. Halo-TMR dye was used to label HaloTag and Halo-FGFs at a ratio of 5 : 1 (mole/mole).
The labelled HaloTag and Halo-FGFs were loaded onto a mini heparin column, which was subsequently washed with PBST. (a) The HaloTag and Halo-FGF2-loaded
heparin columns were visualized under a red fluorescence filter (ImageQuant LAS 4000 imager, GE Healthcare). (b) The five TMR-labelled Halo-FGFs were loaded
onto mini heparin-affinity chromatography columns, washed with PBS buffer and eluted with 2 M NaCl in the same buffer. The fluorescence intensities of the five
purified Halo-FGFs were quantified in a fluorimeter by measuring the emission from 565 to 700 nm excited with 561 nm.
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strong red fluorescence (figure 1a), which demonstrated that

Halo-FGF2 was labelled with TMR-Halo ligand dye and

retained its heparin-binding properties. Following purifi-

cation of fluorescent-dye-labelled Halo-FGFs on mini

heparin columns, the bound TMR-Halo-FGFs were eluted

with 2 M NaCl. The fluorescence emission curves of the pur-

ified Halo-FGFs demonstrated that the emission peak of TMR

dye remained at 580 nm and that the emission curves of these

Halo-FGFs were quite similar (figure 1b). Although there was

a small difference of the fluorescence intensity for each TMR-

Halo ligand labelled Halo-FGF, especially for Halo-FGF20,

the results indicate that the labelling of different Halo-FGFs

was very consistent and efficient.
3.2. Binding of different Halo-FGFs to Rama 27
fibroblast pericellular matrix heparan sulfate

Rama 27 fibroblasts were fixed with paraformaldehyde with-

out permeabilization prior to imaging, so only extracellular

binding sites will be measured [27]. This will also stop cellu-

lar biochemical processes, so binding of FGFs to pericellular

matrix will not be affected by internalization.
3.2.1. Halo-FGF2

The fixed Rama 27 fibroblasts were incubated with 2 nM Halo-

FGFs to determine if their binding capacities to HS in the peri-

cellular matrix of these cells differed. Halo-FGF2 strongly

bound to Rama 27 fibroblasts (figure 2a). The bright spots

show the heterogeneities in the distribution of the Halo-FGF2

(figure 2a, arrows).

To detect the autofluorescence from the imaged cells and

the interactions of HaloTag with this pericellular matrix, a

number of controls were used. The BSA-blocked cell dish

was visualized by confocal microscopy. The cell edges were

detected by the bright field image (electronic supplementary

material, figure S1b), and no autofluorescence from the cells
was observed in the fluorescence channel image (figure 2b).

Using the same microscope settings, when TMR-Halo ligand

alone and TMR-Halo ligand-labelled HaloTag were incubated

with the fixed Rama 27 cells, the fluorescence was the same as

observed with a BSA-blocked culture dish with cells; no red

fluorescence was detectable (figure 2c,d ). When the fixed

cells were incubated with 2 nM TMR-labelled Halo-FGF2 and

with either of two unlabelled competitors, 8 mM unlabelled

FGF2 or Halo-FGF2, the binding was reduced to undetectable

levels (figure 2e,f ). These data indicate that non-specific bind-

ing of TMR-Halo ligand and of TMR-Halo ligand-labelled

HaloTag protein was within the levels of background fluor-

escence and that the fluorescence observed with labelled

Halo-FGF2 in Rama 27 pericellular matrix (figure 2a) was

entirely owing to the FGF2 moiety of the Halo-FGF2.

To determine what Halo-FGF2 was binding to in the pericel-

lular matrix of Rama 27 fibroblasts, a series of competition and

enzyme digestion experiments were performed, again using

the same microscope settings. Competition with heparin

(4 mg ml21 added with Halo-FGF2) abolished binding, and flu-

orescence was reduced to background levels (figure 2g). This

indicates that FGF2 is probably bound to glycosaminoglycans

of the pericellular matrix. Moreover, while heparin will effec-

tively compete for binding of FGF2 to glycosaminoglycans, it

still enables FGF2 to bind to the FGFR on these cells [37]. There-

fore, Rama 27 fibroblasts were subjected to heparinase and

chondroitinase ABC digestion to ascertain its binding partner(s).

Incubation of fixed Rama 27 fibroblasts with heparinases I, II and

III prior to the addition of Halo-FGF2 reduced the level of fluor-

escence to background levels (figure 2h). In contrast,

chondroitinase ABC digestion of the cells did not appreciably

alter the binding of TMR-Halo-FGF2 to Rama 27 cell

(figure 2i). These data demonstrate that TMR-Halo-FGF2 is pri-

marily bound to HS in the pericellular matrix of Rama 27

fibroblasts. Moreover, these results are consistent with previous

data, which indicate that more than 99% of binding sites for

FGF2 on Rama 27 fibroblasts are HS, and the FGFR less than

1% [27,38].
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Figure 2. Halo-FGF2 binding to Rama 27 fibroblasts. The binding specificity of Halo-FGF2 to Rama 27 cells was determined by competing with unlabelled FGFs and
heparin, and by digestion with heparinases and chondroitinase ABC. TMR-Halo-FGF2 (2 nM), Halo-TMR dye or TMR-HaloTag were used to label fixed Rama 27
fibroblasts for 30 min. The excess Halo-FGF2, Halo-TMR dye or TMR-HaloTag was removed by washing with PBS three times. The cell edges are highlighted
with white lines. (a) TMR-Halo-FGF2 (2 nM). (b) Unlabelled cells imaged to show the autofluorescence. (c) Halo-TMR dyes (2 nM) to measure the non-specific
binding of ligand dye to cells or glass dish. (d ) TMR-HaloTag (2 nM) to determine the level of binding of HaloTag. (e,f ) Cells incubated with 2 nM
TMR-Halo-FGF2 and (e) 8 mM unlabelled Halo-FGF2 or ( f ) 8 mM FGF2. (g) 2 nM TMR-Halo-FGF2 and 4 mg ml21 heparin. (h) Cells were incubated with hepar-
inases I, II and III to remove heparan sulfate and then incubated with 2 nM TMR-Halo-FGF2. (i) Cells were incubated with chondroitinase ABC to digest chondroitin
sulfate and then incubated with 2 nM TMR-Halo-FGF2. The corresponding bright field images are presented in electronic supplementary material, figure S1. Size of
the scale bar is 20 mm.
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3.2.2. Halo-FGF1

The binding of TMR-labelled Halo-FGF1 to Rama 27 cells was

somewhat stronger than that observed for Halo-FGF2

(figures 2a and 3a). Because the labelling efficiencies of the

Halo-FGFs are similar, this indicates that FGF1 at this concen-

tration possesses more binding sites on these cells than FGF2.

As for Halo-FGF2, the distribution of the fluorescence was not

homogeneous (figure 3a). The lower fluorescence intensity in

the centre of the cell was the result of the high focal plane of

the plasma membrane in this region owing to the underlying

cell nucleus. The same competition and enzyme digestion

experiments performed with Halo-FGF2 were done with

Halo-FGF1, to identify its binding partner(s) in Rama 27 pericel-

lular matrix. Both unlabelled 8 mM Halo-FGF1 and FGF1

effectively competed with 2 nM TMR-Halo-FGF1 (figure 3b,c).

Addition of 4 mg ml21 heparin with TMR-Halo-FGF1 also abol-

ished detectable binding of the latter to Rama 27 fibroblasts

(figure 3d). Treatment of fixed Rama 27 cells with heparinases
was similarly effective in reducing the binding of TMR-Halo-

FGF1 below the limit of detection (figure 3e). However,

digestion with chondroitinase ABC increased the level of fluor-

escence (figure 3f). The increase in binding of Halo-FGF1

observed after chondroitinase ABC treatment may indicate

that removal of chondroitin sulfate changed the structure

of ECM and somehow increased the number of available HS

binding sites for FGF1 (figure 3f). Collectively, these data

demonstrate that the detectable fluorescent Halo-FGF1, like

the Halo-FGF2, is bound to the HS of the pericellular matrix

of Rama 27 fibroblasts. Although FGF1 binds HS preferentially,

it also binds dermatan sulfate more weakly [29], but dermatan

sulfate binding sites are either not available or too weak in

Rama 27 pericellular matrix, because chondroitinase ABC treat-

ment increased, rather than decreased binding. Interactions

with the FGFR are below the level of detection, which is consist-

ent with the relative numbers of binding sites corresponding

to HS and the FGFR established previously for FGF2 in these

cells [27,38].



(b)(a) (c)

(d ) (e) ( f )

Figure 3. Halo-FGF1 binding to Rama 27 fibroblasts. The binding specificity of Halo-FGF1 to fixed Rama 27 fibroblasts was tested by competing with unlabelled
FGF1 and heparin and by digestion with heparinase and chondroitinase ABC. (a) Cells were incubated with 2 nM TMR-Halo-FGF1 at 378C for 30 min. (b,c) 2 nM
TMR-Halo-FGF1 was added with (b) 8 mM unlabelled Halo-FGF1 or (c) 8 mM unlabelled FGF1. (d ) TMR-Halo-FGF1 (2 nM) in the presence of 4 mg ml21 heparin.
(e,f ) TMR-Halo-FGF1 binding to Rama 27 fibroblasts previously subjected to digestion with heparinase I, II and III, and chondroitinase ABC, respectively. The cor-
responding bright field images are presented in electronic supplementary material, figure S2. Size of the scale bar is 20 mm.
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3.2.3. Halo-FGF6

Halo-FGF6 bound only slightly less than FGF2 to fixed Rama

27 fibroblasts, and again the fluorescence was not homo-

geneous (figure 4a). No binding of Halo-FGF6 was observed

on the fixed Rama 27 fibroblasts when TMR-Halo-FGF6 was

added with 4 mg ml21 heparin (figure 4b). Similar to FGF1

and FGF2, digestion of HS by heparinase decreased the binding

of TMR-Halo-FGF6 to undetectable levels (figure 4c), whereas

digestion of chondroitin sulfate and dermatan sulfate led to

an increase in Halo-FGF6 binding to the cells, as seen with

FGF1 (figure 4d). These results indicated that the detectable

Halo-FGF6 was bound to HS in the pericellular matrix of

Rama 27 fibroblasts. The number of these sites is similar to

those recognized by FGF2, but chondroitin sulfate (or derma-

tan sulfate) would appear to prevent directly or indirectly

some Halo-FGF6 binding to the HS in the pericellular matrix.
3.2.4. Halo-FGF10

Halo-FGF10 only bound to some areas of the pericellular

matrix, whereas in other areas, virtually no binding was

detected (figure 4e). Thus, the binding of Halo-FGF10 to

Rama 27 fibroblasts was characterized by very substantial het-

erogeneities. The binding sites on Rama 27 fibroblasts for FGF10

were also blocked by addition of 4 mg m21 heparin, which effec-

tively prevented FGF10 binding to fixed Rama 27 fibroblasts

(figure 4f ). Digestion of HS with heparinase I, II and III reduced

the level of binding of Halo-FGF10 (figure 4g), but unlike

Halo-FGF1, Halo-FGF2 and Halo-FGF6, did not abolish it

(figures 2h, 3e and 4c). Moreover, digestion of chondroitin sul-

fate/dermatan sulfate with chondroitinase ABC also reduced

the amount of bound Halo-FGF10 (figure 4h). These results

indicated that Halo-FGF10 may bind to both HS and
chondroitin sulfate in Rama 27 fibroblasts pericellular matrix.

Therefore, a double digestion (heparinase and chondroitinase)

was performed. When both sets of glycosaminoglycans were

digested, the level of bound Halo-FGF10 was nearly undetect-

able (figure 4i), demonstrating that FGF10 does indeed bind

to both chondroitin (dermatan) sulfate and HS.
3.3. Comparison of binding of Halo-FGFs to Rama 27
cell pericellular matrix heparan sulfate

Quantification of the level of binding of the Halo-FGFs to Rama

27 cell pericellular matrix revealed some marked differences.

The level of binding was determined by calculating the aver-

aged fluorescence intensity of the highlighted cell area to

compare their binding capacities with the pericellular matrix.

There were more binding sites for Halo-FGF1 than the other

Halo-FGFs (figure 5a). Based on a Tukey t-test, the binding

capacities of Rama 27 pericellular matrix for Halo-FGF2 and

for Halo-FGF6 were also significantly different ( p ¼ 0.005,

Tukey test) with Halo-FGF2 possessing more binding sites. In

terms of binding intensity, Halo-FGF6 and Halo-FGF10 did

not have significant difference ( p ¼ 0.08), but the distributions

of Halo-FGF10 and the other three Halo-FGFs were clearly not

the same (figure 5a). For example, Halo-FGF6 was more evenly

distributed in pericellular matrix, with a level of heterogeneity

similar to that seen with Halo-FGF2, whereas Halo-FGF10 only

bound to specific areas of the pericellular matrix. In contrast,

Halo-FGF20 bound extremely weakly, if at all, and it was

consistently under the detection limit (figure 5a; electronic

supplementary material, figures S4a,b).

These results differ from those obtained upon affinity

chromatography of these FGFs to heparin [31]. The previous

work indicated that Halo-FGF2, Halo-FGF1 and Halo-FGF10



(b)(a) (c)

(h)(g) (i)

(d ) (e) ( f )

Figure 4. Binding specificity of Halo-FGF6 and Halo-FGF10 to Rama 27 fibroblasts. Halo-FGF6 and Halo-FGF10 were used to label fixed Rama 27 fibroblasts and
heparin, and the enzyme digested fibroblast pericellular matrix was used to determine their binding specificity. (a) Rama 27 fibroblasts were incubated with 2 nM
TMR-Halo-FGF6. (b) 2 nM TMR-Halo-FGF6 in the presence of 4 mg ml21 heparin. (c,d) 2 nM TMR-Halo-FGF6 binding to Rama 27 fibroblast pericellular matrix
digested with heparinase I, II and III, and chondroitinase ABC, respectively. (e) Rama 27 fibroblasts were incubated with 2 nM TMR-Halo-FGF10. ( f ) TMR-Halo-
FGF10 (2 nM) in the presence of 4 mg ml21 heparin. (g,h) TMR-Halo-FGF10 (2 nM) binding to Rama 27 fibroblasts pericellular matrix digested with heparinase
I, II and III, and chondroitinase ABC, respectively. (i) 2 nM Halo-FGF10 binding to the pericellular matrix digested by both heparinase I, II and III, and chondroitinase
ABC. The corresponding bright field images are presented in electronic supplementary material, figure S3. Size of the scale bar is 20 mm.
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could bind to heparin in 0.6 M NaCl, and 1 M or higher NaCl

was required to efficiently elute them from heparin-affinity

chromatography matrices. Both Halo-FGF6 and Halo-FGF20

could stably bind to heparin in 0.4 M NaCl. Though less

Halo-FGF20 was bound than Halo-FGF6, this was due to a

reduced capacity of the heparin affinity column for Halo-

FGF20 [31]. This is consistent with the recent analysis of the

structures in glycosaminoglycans recognized by FGFs, includ-

ing FGF20, which requires long (more than 12 saccharides)

sequences of sulfated saccharides for binding [30]. Such

sequences would be rare in HS, though they may be present

in HS of particular cells (e.g. syndecan-2 heparan suflate from

liver) [39]. The present data also highlight that binding to

heparin, which is far more sulfated than HS, does not reflect

the binding capacity of HS, which is both less sulfated and

more structurally diverse [1–3,40], which allows a far more

selective interaction with individual proteins [7,41]. Moreover,

the affinity of HS for a particular FGF may not predict the level

of biding to the polysaccharide on the cell. Thus, the affinity of

FGF1 for HS purified from Rama 27 cells is at least an order of
magnitude lower than that of FGF2 [37], yet Halo-FGF1 binds

to a greater extent than Halo-FGF2 (figure 5a).

The binding and competition data demonstrate that the

detectable binding of the four Halo-FGFs is to glycosaminogly-

cans in the pericellular matrix. In the presence of heparin, these

FGFs will interact with their receptor tyrosine kinase [42]. Thus,

the absence of binding of Halo-FGF2 detected in the presence

of heparin is in agreement with previous work, which

showed that the number of HS-binding sites for FGF2 is several

orders of magnitude greater than the number of receptors [27].

A similar difference is therefore likely to exist for FGF1, FGF6

and FGF10, because binding was not detected in the presence

of heparin (figures 2g, 3d and 4b,f). Whereas Halo-FGF1,

Halo-FGF2 and Halo-FGF6 interacted only with HS, Halo-

FGF10 had a significant interaction with chondroitin sulfate

(and/or dermatan sulfate) species on Rama 27 fibroblasts

(figure 5b). FGF1 has previously been shown to interact with

dermatan sulfate, but not chondroitin sulfate, whereas FGF7,

which is in the same subfamily as FGF10, interacts weakly

with both chondroitin sulfate and dermatan sulfate [29].
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Figure 5. Quantification of binding of different Halo-FGFs to Rama 27 fibroblast pericellular matrix. (a) TMR-labelled Halo-FGF1, Halo-FGF2, Halo-FGF6, Halo-FGF10,
Halo-FGF20 and HaloTag (all 2 nM) were incubated with fixed Rama 27 fibroblasts, as described in figures 2a, 3a, 4a,e and electronic supplementary material, figure
S4a,b. The fluorescence in the highlighted cell area was averaged to quantify the level of binding of the FGF to Rama 27 pericellular matrix. Fluorescence intensities
on different cells in the same set of dish and different sets of dishes were acquired and are shown as a box plot. Each symbol corresponds to independent dishes of
cells measured on different days. (b) The binding intensities of Halo-FGF1, Halo-FGF2, Halo-FGF6 and Halo-FGF10 to Rama 27 fibroblasts pericellular matrix digested
with heparinase I, II and III, and with chondroitinase ABC were quantified and normalized to the values obtained with untreated matrix.
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Consistent with the latter result, FGF10 has recently been

shown to bind to chondroitin sulfate and dermatan sulfate

[30]. In the case of Halo-FGF1, either the interaction with der-

matan sulfate is too weak to be detectable or there is little

dermatan sulfate with appropriate binding structures in

Rama 27 cell pericellular matrix. In contrast, the interaction of

Halo-FGF10 with chondroitin sulfate and/or dermatan sulfate

on these cells is sufficiently strong to be detected (figure 5b).

The increase in binding observed with Halo-FGF1 and

Halo-FGF6 upon chondroitinase ABC treatment of cells

suggests that chondroitin sulfate may somehow mask HS

binding sites for these Halo-FGFs. Whether such masking

occurs directly or owing to bridging by endogenous proteins

that bind both chondroitin sulfate and HS is not known. It is

intriguing that the effect is not seen with Halo-FGF2, because

this is in the same subfamily as FGF1, and the major differ-

ence in binding selectivity between these FGFs is that FGF1

readily binds tracts of sulfated saccharides containing 6-O-
sulfated glucosamine with one of N-sulfated glucosamine

or 2-O-sulfated iduronic acid, whereas FGF2 binds these

poorly [5,7,43]. With respect to desulfated structures, the

binding selectivity of FGF6 lies between that of FGF1 and

FGF2, because FGF6 has a preference for structures contain-

ing 2-O-sulfated iduronate, but it does bind structures

containing N-, and 6-O-sulfated glucosamine that lack sulfate

on iduronate [30]. Thus, the masking effect of chondroitin

sulfate on Halo-FGF1 and Halo-FGF6 binding to HS may

be related to their interactions with such structures in HS.

The binding of all the Halo-FGFs was observed to be het-

erogeneous. This indicates that the distribution of binding

sites for Halo-FGF1, Halo-FGF2 and Halo-FGF6 in HS and

for Halo-FGF10 in HS and chondroitin sulfate are not

evenly distributed across the pericellular matrix. This is con-

sistent with similar imaging of gold nanoparticle-labelled

FGF2 by photothermal heterodyne imaging (optical resol-

ution) and by transmission electron microscopy [27,44].
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Taken together, these data indicate that the previously

observed clustering of FGF2 binding sites in HS of Rama 27

cell pericellular matrix may be a more general phenomenon,

because it is seen here with four FGFs from three different

subfamilies that possess different binding selectivity for HS

[29,30]. This suggests that the binding sites for these FGFs are

spatially organized in Rama 27 pericellular matrix, and this is

likely to extend to supramolecular length scales (distance equiv-

alent to several/many HS chains). Such organization would

arise from the interaction of HS and (for FGF10) chondroitin sul-

fate/dermatan sulfate chains with their endogenous binding

proteins, which for HS have been catalogued to at least 883 [4,45].
en
Biol.6:150277
3.4. Detection of FGF diffusion by fluorescence recovery
after photobleaching

The differences in the binding of Halo-FGF1, 2, 6, 10 and 20 to

Rama 27 pericellular matrix, relate, at least in part, to differ-

ences in the structures these FGFs bind in HS (and

chondroitin sulfate/dermatan sulfate for FGF10). It is estab-

lished in some cases that the interaction of proteins with

HS can control their movement in the extracellular space

[15,27,46–48]. Therefore, to determine if the differences in

HS binding may result in differences in movement in extra-

cellular matrix, we measured the diffusion of Halo-FGF1, 2,

6 and 10 in Rama 27 pericellular matrix by FRAP.

The FRAP experiments employed the same labelling proto-

col as the imaging ones. Fixed cells were again used, because this

allowed the measurement of the diffusion of each Halo-FGF in

pericellular matrix to be made without any confounding effects

that might have arisen owing to the movement of cells or of

membrane. Paraformaldehyde reacts with primary amine

groups and will not affect the binding structures of the FGFs

used here, because these do not bind tracts of saccharides con-

taining unsubstituted glucosamine [30] and in any event, such

residues are rare in HS [49]. However, the fixative may cross-

link endogenous multivalent HS-binding proteins and the

core proteins of HS proteoglycans. This may then restrict move-

ment of HS chains and diffusion in the membrane of the HS

proteoglycan core proteins, both of which will restrict the free-

dom of the HS chains [27], though this effect may be less

pronounced on glycosyl–phosphatidylinositol-anchored glypi-

cans than transmembrane core proteins such as syndecans [50].

Another important feature of these experiments is that follow-

ing the binding of Halo-FGFs to HS in the pericellular matrix,

the cells were washed to remove unbound Halo-FGF. Trapping

of FGF2 on HS in the extracellular matrix has been well docu-

mented [14,15,27,51–54] and, given a suitable density of HS-

binding sites, is a general property of extracellular matrix

[15,20,48,55]. As for FGF2 [27], Halo-FGF1, Halo-FGF2 and

Halo-FGF6 bound to the pericellular matrix did not dissociate

appreciably into the bulk culture medium over 270 s (electronic

supplementary material, figure S5). Thus, because FRAP

measurements were made in 197 s, dissociation into the bulk

culture medium followed by re-association with HS in the peri-

cellular matrix cannot contribute to the recovery of fluorescence.

Instead, the recovery of fluorescence will be due to diffusion of

these Halo-FGFs within the pericellular matrix.

After the bleaching iterations, the selected area became

dark (figure 6a,b,e,f,i,j). Recovery of fluorescence then occurred

(figure 6c,d,g,h,k,l ). These data demonstrate that the Halo-FGFs

were able to diffuse between the bleached and surrounding
areas of pericellular matrix in fixed Rama 27 cells. Thus,

while these Halo-FGFs were clearly trapped within the pericel-

lular matrix (electronic supplementary material, figure S5),

they were able to diffuse within it. Movement of nanoparti-

cle-labelled FGF2 has similarly been evidenced before by

photothermal imaging, tracking and raster image correlation

spectroscopy [27,44]. Earlier work also demonstrated that

FGF2 trapped on HS in extracellular matrix was mobile [15].

Thus, the present data demonstrate that the movement of pro-

teins bound to HS and trapped in extracellular matrix is likely

to be a more general phenomenon.
3.5. Quantification of diffusion of Halo-FGF1, Halo-FGF2,
Halo-FGF6 and Halo-FGF10

The fluorescence intensity of the bleached area during recovery

was quantified as the normalized fluorescence (Materials and

methods). In the case of Halo-FGF1, recovery was partial

after 64 s and still not complete by 196 s (figure 6c,d; electronic

supplementary material, videos S7 and S8). The fluorescence

recovery curve shows that Halo-FGF1 fluorescence in the

bleached area recovered relatively slowly and by 196 s only

half the fluorescence was recovered (figure 7a). The decrease

of fluorescence intensity of the reference area was due to the

photobleaching by the imaging laser (electronic supplementary

material, figure S6a,b), because Halo-FGF1, Halo-FGF2 and

Halo-FGF6 could be trapped in the pericellular matrix for

more than 4.5 min (electronic supplementary material, figure

S5), as discussed above. The recovery of fluorescence was

greater for Halo-FGF2, although the recovery was not complete

after 196 s (figure 6g,h; electronic supplementary material,

video S9). Quantification of the recovery of Halo-FGF2 fluor-

escence demonstrates that this is substantially faster than that

of Halo-FGF1 and the final level of fluorescence, 80%, was

higher (figure 7b). The fluorescence of Halo-FGF6 recovered

similar to that of Halo-FGF2 (figure 6k,l; electronic supple-

mentary material, video S10). The rate of fluorescence

recovery of Halo-FGF6 was somewhat faster than Halo-FGF2,

though the level of recovery attained after 196 s was similar

(figure 7c,e). The weaker photobleaching for Halo-FGF2

might suggest that the bleached Halo-FGF2 and Halo-FGF6

during imaging could be quickly exchanged into the surround-

ing areas that were not imaged (electronic supplementary

material, figure S6c,d).

The fluorescence recovery curves (figure 7a–c) allowed

the calculation of the half recovery time, which is directly

related to the movement of molecules in the FRAP experiments

and the relative proportions of mobile and immobile Halo-FGF.

The half recovery times demonstrated that Halo-FGF1 diffused

more slowly in the pericellular matrix of Rama 27 fibroblasts

than Halo-FGF2 or Halo-FGF6 (figure 8a). Moreover, Halo-

FGF6 had the shortest half recovery time (16 s), which was

significantly ( p ¼ 0.0008, Tukey test) faster than that of

Halo-FGF2 (22 s) and of Halo-FGF1 (49 s). Thus, the difference

of final level of recovered fluorescence and the initial fluor-

escence is indicative of the fraction of immobile Halo-FGFs.

Only 52% of Halo-FGF1 was mobile, whereas 81% of

Halo-FGF2 and 82% of Halo-FGF6 were mobile (figure 8b).

Previous work demonstrates that FGF2 that appears immobile

at the resolution of a confocal microscope will in fact be under-

going confined motion, diameter approximately 100 nm [27].

Like Halo-FGF2, Halo-FGF1 and Halo-FGF6 are also bound
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Figure 6. FRAP of Halo-FGF1, Halo-FGF2 and Halo-FGF6 in Rama 27 fibroblast pericellular matrix. Fixed Rama 27 fibroblasts were used to provide a pericellular
matrix that could be probed with Halo-FGF1, Halo-FGF2 and Halo-FGF6. A 5 mm radius disc area on the cell was bleached by full power laser to measure the
recovery of the fluorescence in the bleached area. (a,e,i) TMR-Halo-FGF1, -FGF2 and -FGF6 labelled cells before bleaching. (b,f,j) Same areas as (a,e,i), but following
the bleaching of a 5 mm radius disc. (c,g,k) The partial recovery of fluorescence in the bleached area 64 s after bleaching. (d,h,l) Images acquired when the bleached
area had recovered to a stable level (196 s). Size of the scale bar is 5 mm.
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to HS in the pericellular matrix. Although there are clear differ-

ences in the distribution and number of their available binding

sites on HS chains, it seems reasonable to suggest that the

immobile fraction of Halo-FGF1 and Halo-FGF6 are also

undergoing similar confined motion.

Analysis of the movement of FGF2 at the single molecule

level revealed that it undergoes different types of diffusive

motion over different length scales. To see if some insight

could be gained from the present average measurements of

Halo-FGF diffusion into the types of movements the FGFs

underwent, the fluorescence of the bleached area and sur-

rounding unbleached area were determined as a series of

radial profiles, diameter 14 mm. These analyses are presented

as the radial profile at selected times: before bleaching, after

bleaching, at the time corresponding to half recovery of the

final fluorescence and at final recovery. The results show that

the radial profile after bleaching (figure 7d–f, blue lines) is

‘U’ shaped, but, as the bleached area recovered, the profile

(figure 7d–f, pink lines) it became more ‘V’ shaped. Moreover,

for Halo-FGF1, as the recovery profile of the bleached area

(2.5 mm radius) increased, there was a small decrease in fluor-

escence in the surrounding unbleached area (figure 7d, pink

line and green line). Together, this suggests that the majority

of the movement of the Halo-FGFs at these time scales is over

1 mm or less, corresponding to the confined and simple diffu-

sive motion observed previously with FGF2, and that FGF1

may undergo comparatively less fast and directed diffusion

[27]. In contrast, the half recovery profiles of Halo-FGF2 and

Halo-FGF6 (figure 7e,f, pink lines) were more ‘U’ shaped, and

the fluorescence of the surrounding unbleached areas was
not much affected during recovery (figure 7d, pink line). More-

over, the final recovery profiles of Halo-FGF2 and Halo-FGF6

were close to that seen before bleaching (figure 7e,f, green

lines). These data are consistent with the previous demon-

stration that FGF2 can undergo fast and directed diffusion in

addition to confined and simple diffusive motion, and it

would appear that Halo-FGF6 may undergo similar types

of movement.

Because the distribution of Halo-FGF10 in Rama 27 fibro-

blast pericellular matrix was very heterogeneous, FRAP

experiments were conducted to determine the diffusion of

Halo-FGF10 in both areas of high (figure 9a–c) and lower

binding (figure 9d–f). As for Halo-FGF1, Halo-FGF2 and

alo-FGF6, a small area of the cells was bleached, and the

fluorescence recovery was measured over the following 196 s

(figure 9a–c,d–f). Compared with the image acqui-

red immediately after bleaching, there was no obvious

recovery of fluorescence after 196 s (figure 9b,c,e,f). The

averaged fluorescence recovery curve demonstrates that the

TMR-Halo-FGF10 in the bleaching area did not exchange

appreciably with the TMR-Halo-FGF10 outside the bleached

area (figure 9g). These data suggest that FGF10 does not dis-

sociate readily from the HS, chondroitin sulfate and dermatan

sulfate chains it is bound to. Interestingly, the thermal shift

assay used to identify its selectivity for sulfation patterns with

a library of modified heparins shows that rather than equilibrat-

ing between bound and unbound forms, FGF10 appears to

partition into two populations, FGF10 and FGF10 bound to

heparin [30]. This is consistent with a very slow dissociation

of FGF10 from heparin, because faster dissociation would
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Figure 7. Fluorescence recovery curves and recovery radial profiles of Halo-FGF1, Halo-FGF2 and Halo-FGF6 in Rama 27 fibroblast pericellular matrix. The fluorescence
intensity of the bleaching area was analysed, as described in materials and methods, to identify the different recovery patterns. The radial profile of the bleached
area was extracted from the imaging data to reflect how the FGFs exchanged between the bleached area and the surrounding non-bleached pericellular matrix.
(a,b,c) The normalized fluorescence intensities of (a) Halo-FGF1, (b) Halo-FGF2 and (c) Halo-FGF6 in the bleached area were plotted against time (average of 10
measurements for Halo-FGF1, 17 measurements for Halo-FGF2 and 28 measurements for Halo-FGF6). (d,e,f ) The radial profiles of the bleached area before bleaching,
immediately after bleaching, when fluorescence had reached half the final recovery value and at final recovery were extracted from the imaging data. Multiple
repeats were applied to acquire the standard deviation. The mean of radial profiles for each FGF was plotted with standard deviation area against the distance
to the centre of the bleached disc area (18 measurements for Halo-FGF1, 23 for Halo-FGF2 and 17 for Halo-FGF6). m is the mean value of multiple fluorescence
intensity curves for each FGF; s is the standard difference; ‘before’ is before bleaching; ‘after’ is the image immediately after bleaching; ‘half ’ is the time when the
fluorescence was recovered to half of the final recovery level; ‘final’ is the time for the last measurement.
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enable exchange of FGF10 molecules on the heparin, and so an

averaging of the measured thermal stability of bound and

unbound species. Work in two development models where

FGF10 has a role in epithelial morphogenesis, in lung and sali-

vary gland morphogenesis, also indicate that FGF10 bound to

glycosaminoglycans does not readily dissociate and that
FGF10 diffusion requires either suboptimal binding structures

or the action of heparanase [21,56].

The substantial differences in diffusion observed between

Halo-FGF1, Halo-FGF2 and Halo-FGF6 may be a consequence

of differences in the number and spatial organization of their

respective binding sites on HS chains. Alternatively, the
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much greater level of binding of Halo-FGF1 may reduce its

mobility, owing to crowding and a consequent lower avail-

ability of free binding sites. To distinguish between these

possibilities a lower concentration of Halo-FGF1 was used to

measure its diffusion.

3.6. Effect of changing the concentration of Halo-FGF1
The level of bound TMR-Halo-FGF1 was changed by halving

the concentration of Halo-FGF1 added to fixed Rama 27 cells,

which reduced the fluorescence intensity to levels similar to

that observed with 2 nM TMR-Halo-FGF2 (figure 10a). How-

ever, at the lower level of binding of Halo-FGF1, the recovery

of fluorescence following bleaching was similar to that

observed with 2 nM Halo-FGF1. The half recovery time for

1 nM Halo-FGF1 was 45 s, and only 50% of the fluorescence

was recovered. Consequently, reducing the amount of Halo-

FGF1 bound to the HS in pericellular matrix by a factor of

2 had no strong effect on the diffusion speed of the Halo-

FGF1 or on the relative proportions that were mobile and
immobile (figure 10b,c). These results indicate that the

slower diffusion observed with 2 nM Halo-FGF1 is unlikely

to be due to the larger amount of Halo-FGF1 bound to HS

in the pericellular matrix. Instead, the slower diffusion of

Halo-FGF1 is more likely to be due to differences in the

number and spatial organization of these binding sites, and

the rate of association and disassociation of the FGF1 from

them. Thus, the diffusion measurements suggest Halo-FGF1

is less mobile in pericellular matrix than FGF2 or FGF6 and

it moves in smaller steps. If there was a focal source of

FGFs, then FGF1 would form shorter and steeper gradients

than FGF2 and FGF6 in Rama 27 fibroblast matrix.
3.7. Binding and movement of fibroblast growth factors
in extracellular matrix

The expansion of the FGF family is associated with an increase

in the complexity of multicellular organisms, highlighting its

importance in mediating cell communication in development
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and homeostasis [57–59]. FGFs in a subfamily are more closely

related in amino acid sequence and in function than FGFs in

different subfamilies. The functional relations are evidenced,

for example, by the selectivity of FGFs in different subfamilies

for isoforms of the FGFR [42,60], for the patterns of sulfated

sugars they bind in HS, and for the number and location of

HS binding sites on the FGF [29,30,61]. Previous work with

FGF2 demonstrated that its diffusion in pericellular matrix of

Rama 27 fibroblasts was controlled by the spatial organization

of its HS-binding sites [27]. This raises an important question:

whether the diffusion of other HS-binding effectors, with

different selectivity for patterns of sulfated sugars, also possess

heterogeneous networks of binding sites that control their dif-

fusion. To tackle this question, we have used five FGFs from

four different subfamilies, with well-characterized HS-binding

properties. This allows the effects of subtle differences between

members of the same subfamily (FGF1 subfamily: FGF1 and

FGF2) and more substantial differences between members of

different subfamilies (FGF6 is in the FGF4 subfamily, FGF10
in the FGF7 subfamily and FGF20 in the FGF9 subfamily) to

be measured.

There are differences between the diffusion of FGFs occur-

ring in the experiments described here and in vivo. First, the

Halo-FGF is bound to pericellular matrix and any unbound

ligand is removed by washing. Thus, unlike in vivo, there is

no source of diffusing ligand. Second, because the cells are

fixed, receptor-mediated endocytosis cannot occur, so there is

no sink to remove ligand. Therefore, the binding experiments

(figures 2–4) provide a snapshot of the distribution of binding

sites on glycosaminoglycans in pericellular matrix. The FRAP

experiments measure the movement of the FGF owing to its

dissociation and re-association to sites on glycosaminoglycans,

without any effects of concentration gradients or cell biochem-

istry (membrane protein movement, membrane flow and cell

movement).

There are a large number of binding sites for FGFs and

other HS-binding proteins on the polysaccharide in pericellular

matrix; for FGF2 in Rama 27 fibroblasts these amount to 3 � 106
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sites per cell [27]. The five FGFs used here preferentially bind

different structures in HS and, perhaps unsurprisingly, their

level of binding differed considerably; FGF1 bound to the

greatest extent, whereas the binding of FGF20 was undetect-

able, because it was within the threshold of background

fluorescence (figures 2–4; electronic supplementary material,

figure S4). In all cases, the distribution of the FGFs was hetero-

geneous (figures 2–4), indicating that their binding sites are not

evenly distributed in pericellular matrix. This has been shown

previously for FGF2 over length scales ranging from 10 nm to

several micrometres in the same cells [27,44]. The clustering

of HS proteoglycans in lipid rafts would be one mechanism

that could contribute to the heterogeneous distribution of

HS-binding sites [62,63]. Other mechanisms may operate in

parallel. For example, interactions of transmembrane proteo-

glycans (e.g. syndecans [64]) with the cytoskeleton through

their cytoplasmic domains may lead to their localization to

particular membrane microdomains.

The present data demonstrate that the heterogeneous

distribution of binding sites observed previously with nano-

particle-labelled FGF2 [27,44] and in experiments with

radiolabelled FGF2 [65] is likely to be a more general
phenomenon, because it was observed here also with FGF1,

FGF6 and FGF10. One interpretation is that the HS chains pos-

sessing binding sites for a particular protein (FGFs in the

present case) are at least in part differently localized in pericel-

lular matrix, through, for example, the various clustering

above-discussed mechanisms. However, this interpretation is

likely to be too simplistic. For HS, there are 883 extracellular

proteins that bind it in the human proteome [4,45]. Thus, the

subset of the HS-binding proteins expressed by Rama 27 fibro-

blasts will have a substantial portion of their binding sites

engaged with HS. Consequently, the HS-binding sites available

to a particular FGF (3 � 106 for FGF2 [27]) are likely to be

less than the total possible binding sites. Moreover, these

HS-binding proteins also have very extensive networks of

protein–protein interactions [4,45], which will influence their

protein–polysaccharide interactions. One consequence of this

multiplicity of interactions is that there are many free binding

sites for exogenously added proteins on HS (figures 2–4) and

there are many free binding sites on endogenous HS-binding

proteins for exogenously added polysaccharide [66]. Thus,

pericellular matrix is not at equilibrium and the ingress of an

HS-binding protein may perturb a wide range of interactions.
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Such perturbations may involve substantial changes in the

three-dimensional structure of HS chains. For example, a

number of HS-binding proteins are multivalent, that is they

have more than one binding site for the polysaccharide

[28–30,61,67–70]. A recent biophysical analysis of brushes of

HS chains demonstrated that some HS-binding cytokines and

growth factors with multiple binding sites are able to cross-

link the chains [28]. Because HS-binding matrix proteins such

as collagens and fibronectin have multiple binding sites for

the polysaccharide, it seems reasonable that they too will in

some instances cross-link HS chains. Thus, the HS chains in

pericellular matrix are likely to be engaged in large-scale supra-

molecular networks, which may ultimately be responsible for

the heterogeneous distribution of binding sites and through

which the Halo-FGFs diffuse.

The FRAP data for the four FGFs with detectable binding

show that they move differently in Rama 27 fibroblast pericel-

lular matrix (figures 7–10). In the case of FGF1 and FGF2, the

slower movement of the former may be explained by its

larger number of binding sites. Within the FGF1 subfamily,

FGF1 binds to any disulfated saccharide structure of degree

of polymerization (dp) 4 or longer, whereas FGF2 requires

N-sulfate and 2-O-sulfated groups [5,7,43,71]. Thus, even

taking into account occupation of some sites by endogenous

proteins, the greater promiscuity of FGF1 is likely to explain

why Halo-FGF1 binds Rama 27 pericellular matrix to a

greater extent than Halo-FGF2. The larger number of sites

in HS that FGF1 can bind may also underlie its more

restricted mobility; a greater density of binding sites would

reduce the distance the protein can travel in a given time,

because the likelihood of rebinding will be greater. Indeed,

binding site density and clustering have been shown to pre-

vent effective dissociation of HS-binding proteins such as

FGF2 from pericellular matrix and are likely to alter the

distance a protein can travel within pericellular matrix

before re-binding [15]. The differences in movement of the

other FGFs would then similarly reflect their selectivity

for binding structures in HS and how the available binding

structures are presented. In the extreme, as seen with

FGF10, the FGF does not diffuse appreciably over the time

of the FRAP measurement. In such instances, the movement

of the HS-binding protein would require additional mechan-

isms. This could be provided by heparanase, an extracellular

b glucuronidase, which cleaves HS chains in their transition

domains. This would release cargoes of S-domains and

bound protein, as shown for FGF2 in a skin wound healing

model [72]. Indeed, heparanase has been shown to be impor-

tant for the stimulation of ductal morphogenesis by FGF10 in

salivary gland [56].
4. Conclusion
The selectivity of FGFs for different binding structures in gly-

cosaminoglycans provides a means to probe the distribution

of these binding sites in Rama 27 cell pericellular matrix and
to determine the effect this has on the diffusion of the FGFs.

The results show that protein-binding sites in HS (and chon-

droitin sulfate/dermatan sulfate for FGF10) of pericellular

matrix are not homogeneously distributed. A number of

different mechanisms are likely to regulate the distribution

of these binding sites, including the biosynthesis of the HS

chains, the localization of core proteins in membrane micro-

domains and the interactions of the polysaccharide chains

with endogenous HS-binding proteins. The high multiplicity

of interactions, both between proteins and polysaccharide

and between the polysaccharide-binding proteins themselves

[4] (reviewed in [1,2]), is likely to produce a dynamic network

of interlinked molecules. This would then be responsible for the

long-range (supramolecular) structure of the pericellular matrix,

which determines its spatial binding capabilities for individual

proteins. Such a structure would be sensitive to perturbations,

such as the ingress of an HS-binding protein from a neighbouring

cell (in the same or different tissue compartment), and can control

the diffusion of such effector proteins. Supramolecular structure

in extracellular matrix has been shown in cartilage [73], where

there are also definitive structural and functional differences

between the pericellular matrix of chondrocytes, and the territor-

ial and inter-territorial matrices that are more distant from the

cells. Thus, although extracellular matrix in cartilage is special-

ized, in other tissues, an analogous situation may exist, where

pericellular, extracellular and basement membrane matrices

may exhibit different types of supramolecular structure and

consequently have different functions.
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