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Abstract: Matrix metalloproteinases (MMPs) are endopeptidases that degrade components of the
extracellular matrix, but also modulate inflammation. During bacterial infections, MMPs are
important in the recruitment and migration of inflammatory cells. Besides facilitating cell migration
by degrading extracellular matrix components, they potentiate the action of several inflammatory
molecules, including cytokines, chemokines, and antimicrobial peptides. Staphylococcus aureus
secretes an arsenal of immune evasion molecules that interfere with immune cell functioning and
hamper proper immune responses. An earlier study identified staphylococcal superantigen-like
protein 5 (SSL5) as an MMP9 inhibitor. Since multiple MMPs are involved in neutrophil recruitment,
we set up an in-depth search for additional MMP inhibitors by testing a panel of over 70 secreted
staphylococcal proteins on the inhibition of the two main neutrophil MMPs: MMP8 (neutrophil
collagenase) and MMP9 (neutrophil gelatinase B). We identified SSL1 and SSL5 as potent inhibitors of
both neutrophil MMPs and show that they are actually broad range MMP inhibitors. SSL1 and SSL5
prevent MMP-induced cleavage and potentiation of IL-8 and inhibit the migration of neutrophils
through collagen. Thus, through MMP-inhibition, SSL1 and SSL5 interfere with neutrophil activation,
chemotaxis, and migration, all vital neutrophil functions in bacterial clearance. Studies on MMP-SSL
interactions can have therapeutic potential and SSL based derivatives might prove useful in treatment
of cancer and destructive inflammatory diseases.

Keywords: S. aureus; immune evasion; matrix metalloproteinase; enzyme-inhibitor; neutrophil;
innate immunity; staphylococcal superantigen-like proteins

1. Introduction

Matrix metalloproteinases (MMPs) constitute a large, structurally related, family of
zinc-dependent proteases with in the human system currently up to 23 distinct members described.
They are named after their initially described role: the turnover and degradation of extracellular matrix
(ECM) components [1]. More recently, also non-matrix substrates have been identified for the MMPs,
including chemokines, cytokines, growth factors, and receptors [2]. Since then, it has been recognized
that they have a much broader function than breakdown of ECM and also play an important role in
inflammation and immunity [2,3]. MMPs are directly implicated in bacterial infection, wound healing,
and cancer cell invasiveness and they can have both anti- and pro-inflammatory effects, depending
on the MMP, the situation, and the target molecule. Chemokines and cytokines can be broken down
or converted to antagonists by MMPs, but in recent years, it has been realized that, during bacterial
infections, MMPs are widely involved in immune cell recruitment and have been shown to facilitate
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cell migration to the site of inflammation through several processes [2–5]. First, breakdown of ECM
components opens up a path that can directly lead to enhanced immune cell migration. Secondly, the
MMP-induced release of ECM-bound components can result in additional pro-inflammatory signals
with chemotactic properties. Thirdly, MMPs directly affect chemoattractant molecules; chemokines
can be effectively potentiated through MMP cleavage, thereby enhancing inflammation and aiding in
bacterial clearance.

Staphylococcus aureus is a highly successful manipulator of the host immune response and has
evolved numerous ways to interfere with proper immune functioning [6]. It does so through the
secretion of small immune evasion molecules, that bind to and inhibit distinct parts of the immune
system, both innate and adaptive. In the defense against S. aureus, there are multiple host cells and
proteins of importance, with a key role for neutrophils [7]. In order to successfully limit S. aureus
infections, neutrophils need to be activated, drawn to the site of infection, and extravasate from the
circulation. Thus, the secretion of proteins hindering one or more of these processes is beneficial for
staphylococcal survival, and, indeed, S. aureus secretes several proteins that interfere in these stages. For
example, the chemotaxis inhibitory protein of S. aureus (CHIPS) interferes with neutrophil chemotaxis
through blocking FPR1 and C5aR and superantigen-like proteins 5 (SSL5) and 11 (SSL11) inhibit
neutrophil extravasation by blocking the interaction of PSGL-1 with P-selectin [8,9]. Furthermore,
SSL5 is described to block the enzymatic activity of MMP9, one of the two main MMPs secreted by
neutrophils, to interfere with leukocyte trafficking [10].

MMP9 is not the only MMP involved in antibacterial defense mechanisms; many MMPs have
been shown to directly facilitate neutrophil migration to the site of inflammation. MMP1, 8, 9, 13,
and 14 are described to enhance two highly important neutrophil chemo-attractants, CXCL8 (IL-8)
and CXCL5 (ENA-78) [11–14]. Additionally, MMP2 works synergistically with MMP9 in vivo to
potentiate the action of CXCL5 to promote neutrophil recruitment to the peritoneal cavity in mice [15].
In vivo studies with MMP8 knock-out mice showed deficient neutrophil influx in these mice through
impaired release of LIX, the murine homolog of CXCL5 [11]. Furthermore, many MMPs can release the
pro-inflammatory cytokine TNF-α from its membrane-anchored precursor [4]. Moreover, IL-1β, which
is produced by neutrophils upon S. aureus infections and important for proper host defense [16], can be
activated by at least MMP2, 3, and 9 [17]. MMP7 is important in neutrophil transepithelial migration
and MMP7 deficient mice have inhibited neutrophil recruitment. MMP9 driven proteolysis of collagen
has been shown to result in cleavage of fragments with chemotactic potential that stimulate neutrophil
migration [18] and MMP1, 2, 3, 9, and 13 induce chemotaxis of human neutrophils and T cells by
releasing cyclophilin B [19]. Furthermore, MMP7 has been described to activate pro-α-defensin [20],
an antimicrobial peptide, while the hemopexin-like domain of MMP12 might have direct bactericidal
activity [21]. Thus, the whole arsenal of MMPs is crucial in a large number of aspects that together
allow for optimal neutrophil function. Thus, interference with a large range of MMPs is beneficial
for pathogens in order to inhibit proper neutrophil migration and functioning and thereby enhance
bacterial survival.

Therefore, we hypothesized that staphylococci secrete additional proteins targeting MMPs to
protect themselves from neutrophil-mediated killing. We set up a systematic search for MMP inhibitors
by testing a large set (>70) of secreted staphylococcal proteins on the two main neutrophil MMPs:
MMP8 and MMP9. We identified SSL1 and SSL5 as potent neutrophil MMP inhibitors, which is
for SSL1 its first function ever described. Moreover, we found that the effects of SSL1 and SSL5
are not limited to neutrophil MMPs, but that the staphylococcal proteins are actually broad range
MMP inhibitors, inhibiting the full spectrum of human MMPs. We show that SSL1 and SSL5 prevent
the potentiation of the important neutrophil chemokine IL-8 and limit MMP-mediated neutrophil
migration through collagen. Thus, this study reveals a new function of a staphylococcal immune
evasion protein and adds to our understanding of the biological consequences of MMP inhibition by
secreted staphylococcal proteins.
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2. Results

2.1. Identification of Two Staphylococcal Inhibitors of Neutrophil Matrix Metalloproteinases (MMPs)

To determine whether S. aureus produces additional MMP inhibitors, we broadly screened for the
effects of secreted staphylococcal proteins on the activity of the two most important MMPs secreted by
neutrophils: MMP8 and MMP9. Both MMP8 and MMP9 are produced by neutrophils in high amounts,
stored in secondary or tertiary granules, and secreted upon neutrophil activation. We incubated
activated recombinant MMP8 and MMP9 with 10 µg/mL of 76 different purified staphylococcal
proteins and assessed MMP activity by measuring the conversion of a fluorogenic peptide substrate
that gains fluorescence upon MMP cleavage of the quenching group. From this screen, we identified
two S. aureus proteins that inhibit the enzymatic activity of both MMP8 and MMP9: two staphylococcal
superantigen-like proteins, SSL1 and SSL5, effectively inhibited the conversion of the peptide substrate,
as shown in Figure 1A. None of the other staphylococcal proteins, including the other SSL family
members, were capable of inhibiting MMP8 or MMP9. SSL5 was previously described to inhibit MMP9
activity [10], but this screen determined that its activity is not limited towards MMP9. Moreover, for
SSL1 this is its first discovered function.

The binding of SSL1 and SSL5 to MMP8 and MMP9 was further confirmed through far Western
blotting. PSGL-1, a known ligand for SSL5, MMP8, and MMP9, was run on an SDS-PAGE gel. After the
proteins were transferred to blot, they were incubated with SSL1, SSL2, SSL5, and SSL10 and binding
of the SSLs was subsequently visualized using anti-HIS detection (Figure 1B). Both SSL1 and SSL5, but
not SSL2 and SSL10, can be detected on the lanes run with MMP8 and MMP9, and SSL5 to PSGL-1
binding can also be detected. The specific binding of MMP8 and MMP9 to SSL1 and SSL5 has also
been confirmed in ELISA (Figure 1C).

Several of the SSL proteins, including SSL2-6 and SSL11, contain a sialic acid binding motif in
their C-terminal β-grasp domain through which they bind glycoproteins. Most previously described
functions for SSL5, including PSGL-1 binding, are fully dependent on this sugar-binding motif. Since
MMPs can be heavily glycosylated, the interaction between the SSLs and MMPs could also be based on
carbohydrate moieties. To examine this, MMP8 and MMP9 were treated with neuraminidase, which
removes terminal sialic acid residues, before SSL binding was assessed in ELISA. Neuraminidase
treatment did not alter the binding of SSL1 and SSL5 to either MMP8 or MMP9, whereas it did
fully abrogate SSL5 to PSGL-1 binding (Figure 1C). Furthermore, neuraminidase treatment did not
functionally affect the inhibitory capacity of SSL1 and SSL5 on MMP-mediated fluorogenic peptide
conversion (Figure 1D). Thus, the inhibition of MMP8 and MMP9 by SSL1 and SSL5 is not sialic acid
dependent, in contrast to the binding of SSL5 to PSGL-1.

As SSL5 can bind both to the MMPs and PSGL-1, we investigated whether SSL5 can also
simultaneously bind to these proteins. Therefore, MMP8 was loaded on an SDS-gel in non-denaturing
conditions before a far Western blot was performed. The blots were incubated with SSL1 or SSL5
before incubation with PSGL-1, after which both SSL and PSGL-1 binding was determined. We
found that both SSL5 and PSGL-1 were bound to MMP8, indicating formation of a triple complex
containing MMP-SSL5-PSGL-1 (Figure 2A). SSL1, which does not bind PSGL-1, was used as a control.
Furthermore, in ELISA we found that addition of MMP8 or MMP9 does not affect PSGL-1 binding to
SSL5 (Figure 2B), again implying that MMP-SSL5 binding does not interfere with subsequent PSGL-1
binding. Lastly, using the functional fluorogenic peptide conversion MMP activity assay, pretreatment
of SSL5 with PSGL-1 did not alter the inhibitory potential of SSL5 on MMP8 and MMP9 (Figure 2C).
Together, this shows that SSL5 can simultaneously bind PSGL-1 and MMPs in a sialic acid dependent
and independent manner, respectively.
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Figure 1. Identification of SSL1 and SSL5 as inhibitors of neutrophil MMPs. (A) The effects of 76 
secreted staphylococcal proteins (10 µg/mL) on the activity of MMP8 (left) and MMP9 (right) was 
assessed by measuring the conversion of a fluorogenic peptide substrate. SSL1 and SSL5 are shown 
in red. One representative out of three separate experiments is shown; (B) SSL to MMP binding was 
visualized in far Western blot. PSGL-1 (lane 1), MMP8 (lane 2), MMP9 (lane 3), each 0.2 µg/lane, 
were loaded on gel and subsequently blotted and incubated with 10 µg/mL HIS-tagged SSLs and 
detected with anti-HIS (anti-X-Press). The expected height of all proteins is indicated on the right. 
One representative experiment is shown; (C) Neuraminidase treatment (neur) of 3 µg/mL coated 
MMP8 (upper graph) and MMP9 (lower graph) did not alter SSL to MMP binding, as measured by 
anti-HIS detection in ELISA, whereas it did abrogate SSL5 to PSGL-1 (coated, 3 µg/mL) binding 
(right graph); Data points represent the mean and standard error (SE) from three independent 
experiments; (D) Neur treatment of MMP8 (left graph) and MMP9 (right graph) did not alter the 
inhibitory activity of 10 µg/mL SSL1 and SSL5 on MMP8/9 activity as measured in the fluorogenic 
peptide substrate assay. Data points represent the mean fluorescence and SE of three independent 
experiments. 

Figure 1. Identification of SSL1 and SSL5 as inhibitors of neutrophil MMPs. (A) The effects
of 76 secreted staphylococcal proteins (10 µg/mL) on the activity of MMP8 (left) and MMP9 (right)
was assessed by measuring the conversion of a fluorogenic peptide substrate. SSL1 and SSL5 are
shown in red. One representative out of three separate experiments is shown; (B) SSL to MMP
binding was visualized in far Western blot. PSGL-1 (lane 1), MMP8 (lane 2), MMP9 (lane 3),
each 0.2 µg/lane, were loaded on gel and subsequently blotted and incubated with 10 µg/mL
HIS-tagged SSLs and detected with anti-HIS (anti-X-Press). The expected height of all proteins
is indicated on the right. One representative experiment is shown; (C) Neuraminidase treatment
(neur) of 3 µg/mL coated MMP8 (upper graph) and MMP9 (lower graph) did not alter SSL to MMP
binding, as measured by anti-HIS detection in ELISA, whereas it did abrogate SSL5 to PSGL-1 (coated,
3 µg/mL) binding (right graph); Data points represent the mean and standard error (SE) from three
independent experiments; (D) Neur treatment of MMP8 (left graph) and MMP9 (right graph) did not
alter the inhibitory activity of 10 µg/mL SSL1 and SSL5 on MMP8/9 activity as measured in the
fluorogenic peptide substrate assay. Data points represent the mean fluorescence and SE of three
independent experiments.
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Figure 2. SSL5 binds MMPs and PSGL-1 simultaneously. (A) Formation of the triple  
MMP-SSL5-PSGL-1 complex was examined by far Western blot. MMP8 (0.2 µg/lane) was loaded on a 
gel that was subsequently blotted and incubated with 10 µg/mL SSL1 or SSL5, after which 2 µg/mL 
PSGL-1-Fc was added and both SSL and PSGL-1 binding was assessed using anti-HIS (anti-X-Press) 
and anti-Fc detection, respectively. One representative experiment is shown; (B) PSGL-1 (10 µg/mL) 
binding to SSL5 (3 µg/mL, coated) was not affected by the addition of (10 µg/mL) MMP8 or MMP9 in 
ELISA. PSGL-1 binding was assessed by anti-Fc detection and data points represent the mean 
absorption and SE of at least three independent experiments; (C) Addition of a 10-fold excess of  
PSGL-1 (10 µg/mL) to the fluorogenic peptide substrate assay did not affect the SSL5 (1 µg/mL) 
inhibitory potential on MMP8 (left) or MMP9 (right). Data points represent the relative mean 
fluorescence and SE of at least three independent experiments. 
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MMP8 and MMP9 are the main MMPs produced by neutrophils, but many other members of 
the MMP family have been implicated to play a role in neutrophil trafficking and function. More so, 
the MMP family is highly structurally related and MMP8 and MMP9 are not the closest related 
family members, both in sequence and structure. This implies that other MMP family members may 
also be inhibited by SSL1 and SSL5 through a more general mechanism that may be similar to that of 
endogenous broad-spectrum MMP inhibitors (the TIMPs). Therefore, we tested an array of distinct 
MMPs that have been suggested to be involved in enhancing neutrophil function. We tested MMP1, 
2, 7, 8, 9, 12, 13, and 14 and pre-incubated the activated MMPs with a concentration range of SSL1 
and SSL5, before addition of the fluorogenic peptide substrate. All tested MMPs were efficiently 
inhibited by both SSL1 and SSL5, in a concentration dependent manner, indicating that SSL1 and 
SSL5 are actually broad range MMP inhibitors (Figure 3A). Activity seems limited to the MMP 
family however, as the activities of ADAM10 and ADAM17 were not inhibited by a high 
concentration (30 µg/mL) of either SSL1 or SSL5 (Figure 3B). 

Figure 2. SSL5 binds MMPs and PSGL-1 simultaneously. (A) Formation of the triple MMP-SSL5-PSGL-1
complex was examined by far Western blot. MMP8 (0.2 µg/lane) was loaded on a gel that was
subsequently blotted and incubated with 10 µg/mL SSL1 or SSL5, after which 2 µg/mL PSGL-1-Fc
was added and both SSL and PSGL-1 binding was assessed using anti-HIS (anti-X-Press) and anti-Fc
detection, respectively. One representative experiment is shown; (B) PSGL-1 (10 µg/mL) binding to
SSL5 (3 µg/mL, coated) was not affected by the addition of (10 µg/mL) MMP8 or MMP9 in ELISA.
PSGL-1 binding was assessed by anti-Fc detection and data points represent the mean absorption and
SE of at least three independent experiments; (C) Addition of a 10-fold excess of PSGL-1 (10 µg/mL)
to the fluorogenic peptide substrate assay did not affect the SSL5 (1 µg/mL) inhibitory potential on
MMP8 (left) or MMP9 (right). Data points represent the relative mean fluorescence and SE of at least
three independent experiments.

2.2. Staphylococcal Superantigen-Like Protein 1 and 5 (SSL1 and SSL5) are Broad-Range MMP Inhibitors

MMP8 and MMP9 are the main MMPs produced by neutrophils, but many other members of
the MMP family have been implicated to play a role in neutrophil trafficking and function. More
so, the MMP family is highly structurally related and MMP8 and MMP9 are not the closest related
family members, both in sequence and structure. This implies that other MMP family members may
also be inhibited by SSL1 and SSL5 through a more general mechanism that may be similar to that of
endogenous broad-spectrum MMP inhibitors (the TIMPs). Therefore, we tested an array of distinct
MMPs that have been suggested to be involved in enhancing neutrophil function. We tested MMP1, 2,
7, 8, 9, 12, 13, and 14 and pre-incubated the activated MMPs with a concentration range of SSL1 and
SSL5, before addition of the fluorogenic peptide substrate. All tested MMPs were efficiently inhibited
by both SSL1 and SSL5, in a concentration dependent manner, indicating that SSL1 and SSL5 are
actually broad range MMP inhibitors (Figure 3A). Activity seems limited to the MMP family however,
as the activities of ADAM10 and ADAM17 were not inhibited by a high concentration (30 µg/mL) of
either SSL1 or SSL5 (Figure 3B).
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Figure 3. SSL1 and SSL5 are broad-range MMP inhibitors. (A) The indicated MMPs were incubated 
with concentration ranges of SSL1 and SSL5 and MMP activity was measured using the fluorogenic 
peptide substrate assay. Relative MMP activity was determined based on activity with no SSL 
present. Data points represent the mean and SE from at least three independent experiments;  
(B) ADAM10 and ADAM17 were treated with a high (30 µg/mL) SSL concentration before activity 
was assessed in the same assay as in (A). Data points represent the mean and SE from at least three 
independent experiments. 
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MMPs can affect neutrophil function in multiple ways, including the enhancement of leukocyte 
trafficking through the cleavage of chemokines. The two main chemokine receptors expressed by 
human neutrophils are CXCR1 and CXCR2 and these receptors play a central role in neutrophil 
activation, transmigration, and chemotaxis. Their main corresponding ligand, IL-8, requires 
proteolytic processing to gain full stimulatory capacity and MMPs have shown to be involved herein 
[3,13]. MMP1, MMP8, MMP9, MMP13, and MMP14 have all been previously described to cleave and 
potentiate IL-8. During the potentiation, there is loss of only five amino acid residues, but this results 
in an enhanced IL-8 activity of 3–10 times. Therefore, one of the functional consequences of SSL1 and 
SSL5 could be to limit the generation of potentiated neutrophil chemokines. To investigate this, we 
visualized the cleavage of IL-8 by MMPs on Western blot, using an anti-IL8 antibody that recognizes 
both full length (77 aa) and truncated (72 aa) IL-8. We found that, in our hands, MMP1, MMP2, 
MMP7, MMP9, MMP12, MMP13, and MMP14 were able to cleave IL-8, and all of these cleavages 
were fully inhibited by SSL1 and SSL5 (Figure 4A). We could not confirm IL-8 cleavage by MMP8, 

Figure 3. SSL1 and SSL5 are broad-range MMP inhibitors. (A) The indicated MMPs were incubated
with concentration ranges of SSL1 and SSL5 and MMP activity was measured using the fluorogenic
peptide substrate assay. Relative MMP activity was determined based on activity with no SSL
present. Data points represent the mean and SE from at least three independent experiments;
(B) ADAM10 and ADAM17 were treated with a high (30 µg/mL) SSL concentration before activity
was assessed in the same assay as in (A). Data points represent the mean and SE from at least three
independent experiments.

2.3. The Potentiation of Neutrophil-Attracting Chemokines Is Inhibited by SSL1 and SSL5

MMPs can affect neutrophil function in multiple ways, including the enhancement of leukocyte
trafficking through the cleavage of chemokines. The two main chemokine receptors expressed by
human neutrophils are CXCR1 and CXCR2 and these receptors play a central role in neutrophil
activation, transmigration, and chemotaxis. Their main corresponding ligand, IL-8, requires proteolytic
processing to gain full stimulatory capacity and MMPs have shown to be involved herein [3,13]. MMP1,
MMP8, MMP9, MMP13, and MMP14 have all been previously described to cleave and potentiate IL-8.
During the potentiation, there is loss of only five amino acid residues, but this results in an enhanced
IL-8 activity of 3–10 times. Therefore, one of the functional consequences of SSL1 and SSL5 could be
to limit the generation of potentiated neutrophil chemokines. To investigate this, we visualized the
cleavage of IL-8 by MMPs on Western blot, using an anti-IL8 antibody that recognizes both full length
(77 aa) and truncated (72 aa) IL-8. We found that, in our hands, MMP1, MMP2, MMP7, MMP9, MMP12,
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MMP13, and MMP14 were able to cleave IL-8, and all of these cleavages were fully inhibited by SSL1
and SSL5 (Figure 4A). We could not confirm IL-8 cleavage by MMP8, and, with MMP2, only minor
IL-8 cleavage was seen. To continue examining the effects on the inhibition of IL-8 potentiation in a
functional assay, we measured IL-8-mediated calcium mobilization through U937 CXCR1-expressing
cells for all MMPs that showed clear cleavage on Western blot. After overnight incubation of full length
IL-8 with all tested MMPs, an increase in calcium mobilization on U937-CXCR1 cells is seen, that
corresponds to the activity of the shorter, more potent, IL-8 (Figure 4B and Figure S1 for a representative
example of the calcium flux image). In the presence of both SSL1 and SSL5, this increase is abolished,
showing that SSL1 and SSL5 inhibit the MMP-mediated IL-8 enhancement. Thus, SSL1 and SSL5
interfere with neutrophil chemotaxis.
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Figure 4. SSL1 and SSL5 interfere with MMP-mediated chemokine potentiation. (A) IL-8 72 aa (lane 1),
IL-8 77 aa (lane 2), MMP-treated IL-8 77 aa (lane 3), and IL-8 77 aa with MMP pre-incubated with
10 µg/mL SSL1 or SSL5 (lane 4 and lane 5, respectively). All conditions (in each case 0.1 µg/mL IL-8
and 10 µg/mL MMP were used) were incubated overnight and loaded on Tris-Tricine gels. After
transfer to blot, IL-8 was visualized with an anti-IL8 antibody. One representative image is shown
for all MMPs out of two to three independent experiments per MMP; (B) Calcium mobilization in
U937-CXCR1 cells was monitored after incubation with different conditions of IL-8. IL-8 (77 aa,
1 ˆ 10´7 M) was incubated overnight with the different MMPs (10 µg/mL) with or without 10 µg/mL
SSL1 and SSL5 present. The flux was determined by subtracting the mean fluorescence pre stimulus
from the mean fluorescence post stimulus. Data represents mean plus SE for at least two to five
independent experiments.
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2.4. SSL1 and SSL5 Inhibit Neutrophil Migration through Collagen

To effectively reach the place of infection, neutrophils need to migrate through the ECM, of which
collagen is the major constituent. Several MMPs are capable of breaking down collagen, including
the two neutrophil secreted MMPs, MMP8 and MMP9. We first visualized collagen degradation
by the neutrophil MMPs and confirmed the inhibition thereof by SSL1 and SSL5 (Figure 5A). Next,
we assessed whether SSL1 and SSL5 affect the migration of neutrophils through a collagen matrix.
Therefore, a Transwell system was set-up with a collagen gel layer in between chemo-attractant
and neutrophils. Neutrophils were stimulated with the peptide and lipid-based chemo-attractants
fMLP and LTB4 to prevent inhibition of migration by SSL5 through its interaction with chemokine
receptors [22]. Neutrophils were allowed to migrate through the gel for up to 4 h and migration was
assessed every hour. Addition of SSL1 and SSL5 showed a decrease of neutrophil migration at all
time-points and significant inhibition of neutrophil migration was seen after 3 and 4 h (Figure 5B).
When neutrophils were allowed to migrate without the presence of a collagen layer, no inhibition by
SSL1 and SSL5 could be detected. Here, maximum migration was already reached after 1 h (Figure 5C).
These results show that the SSL1 and SSL5-induced inhibition of migration is collagen-dependent.
Thus, SSL1 and SSL5 interfere with neutrophil migration through the ECM.
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Figure 5. SSL1 and SSL5 limit neutrophil migration through collagen. (A) MMP-mediated collagen
degradation was visualized using SDS-PAGE. Collagen (0.5 mg/mL) was incubated overnight with
MMP8 and MMP9 (10 µg/mL) with and without the SSLs (10 µg/mL). Samples were loaded on gel and
visualized using Instant Blue; (B,C) Migration of neutrophils was assessed in presence (B) or absence
(C) of a collagen gel layer in the upper compartment of a Transwell system. Fluorescently labeled
neutrophils, untreated (white bars) or treated with 10 µg/mL SSL1 (black bars) or SSL5 (gray bars), and
placed on top of the collagen layer, were allowed to migrate for 1, 2, 3 and 4 h through the gel towards
the chemo-attractants fMLP and LTB4 present in the lower compartment. Migration was monitored
every hour by measuring the amount of fluorescence present in the lower compartment. Data points
represent mean plus SE for at least three independent experiments. * p ď 0.05, ** p ď 0.01.
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3. Discussion

MMPs are important host factors in fine-tuning immune responses and in the defense against
invading pathogens. During many bacterial, including staphylococcal, infections, several MMPs are
upregulated in different cell types, to enhance local immune cell trafficking and to aid in bacterial
clearance. Exposure to staphylococci induces upregulation of active MMP9 in the spleen [23], and
human fibroblasts treated with culture supernatant or whole cell lysates of S. aureus show enhanced
expression of many MMPs [24]. Several staphylococcal evolutionary conserved components have been
shown to directly induce MMP expression, including S. aureus peptidoglycan and LTA [25–27], and
staphylococcal bound plasmin has been shown to activate MMP1 [28]. Here, after an intensive and
broad screen, we identified two proteinaceous inhibitors of MMPs, the two staphylococcal superantigen
family members SSL1 and SSL5.

MMPs supply direct cues for leukocyte migration and activation. The secretion of SSL1 and SSL5
might help S. aureus to avoid MMP-mediated immune activation. We have shown two direct functional
implications of MMP inhibition by SSL1 and SSL5: limiting chemokine potentiation and inhibiting
neutrophil migration. We found that all MMPs tested, besides MMP8, effectively cleave IL-8, which
results in a shorter but enhanced form of IL-8. Besides enhancing chemokine function, MMPs can also
destroy signaling molecules or convert them to antagonists, thereby dampening immune responses.
These two seemingly opposite effects exemplify the fine-tuning abilities of MMPs. This will affect the
spatiotemporal inflammatory conditions in infections and thereby strongly influence the outcome of
disease. Interestingly, IL-8, the most important chemokine involved in neutrophil chemotaxis and
migration is specifically potentiated by MMPs [2,3]. Thus, for staphylococcal infections, in which
neutrophils play a key role in bacterial clearance, inhibiting MMP activation could be greatly beneficial
for bacterial survival. The potentiating effects however are not limited to neutrophil chemokines.
CCL15 and CCL23 were also shown to be potentiated by MMP-mediated cleavage to promote monocyte
recruitment [29]. Furthermore, by breaking down components of the extracellular matrix, besides
directly facilitating immune cell motility, the ECM-fragments can be a source of chemotractant potential,
also called matrikines [30]. MMP1, MMP2, MMP8, MMP9, and MMP12 have all been implicated in
the formation of these fragments with chemotactic potential. The chemotactic fragments have also
shown to induce inflammation that in turn leads to more production of MMPs, thereby initiating a
circle of inflammation [31]. Thus, by preventing MMP-induced extracellular matrix cleavage, SSL1 and
SSL5 inhibit neutrophil migration in several ways. They preserve the physical barrier formed by dense
ECM matrices, thereby preventing the formation of an accessible path of migration. Moreover, by
inhibiting ECM component cleavage, SSL1 and SSL5 prevent formation of ECM-derived chemotactic
peptides. Earlier described chemotaxis inhibitors of S. aureus generally inhibit migration by interfering
with chemokine-receptor interactions. The migration that we measured through collagen matrices is
a special case and highly dependent on MMPs. In our view, this migration in more complex in vitro
systems is more close to the in vivo situation, and is, therefore, of high clinical relevance.

MMP8 and MMP9 are produced in high amounts by neutrophils, but many more MMPs have
immune potentiating effects. Other cell types that secrete a lot of different MMPs are epithelial and
endothelial cells, and macrophages [3]. Epithelial cells, besides producing MMPs, are also capable of
producing IL-8 and thus interfering with IL-8 potentiation through broad-spectrum MMP inhibition
would be advantageous for S. aureus to limit initial danger signals by epithelial cells. Mechanistically,
the broad-range MMP inhibition by the SSLs resembles the activity of the endogenous broad-spectrum
MMP inhibitors, the TIMPs. All MMPs consist of a minimal domain containing a signal peptide, a
pro-domain, and a catalytic domain. Most MMPs contain an additional hinge region followed by
a hemopexin-like domain that can be involved in mediating protein–protein interactions and can
facilitate binding to the TIMPs [1,32]. MMP7 only consists of the minimal domain and is still effectively
inhibited by SSL1 and SSL5, indicating that binding and inhibition is most likely in the minimal
catalytic domain. Interestingly, the only pronounced difference in activity between SSL1 and SSL5,
SSL1 being approximately 60 times more active than SSL5, was found for MMP7. This could indicate
that SSL5 might use an additional region in the MMPs to strengthen its interaction. A few MMPs
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contain a transmembrane region and are membrane-bound. MMP14, the only membrane-type MMP
that we tested, is less efficiently inhibited by SSL1 and SSL5 as compared to the other MMPs. In that
sense the inhibitory activity of the SSLs appears to mostly reflect that of TIMP-1, which is also a weak
inhibitor of the membrane MMPs [32]. Unlike most TIMPs, the SSL activity seems limited to the MMP
family, as ADAM10 and ADAM17 activity was unaffected by SSL1 and SSL5 treatment. Structurally
speaking, there are interesting parallels between the TIMP and the SSL families: they both contain
an N-terminal OB-fold. This leads us to hypothesize that the SSLs might follow a similar mode of
inhibition as the TIMPs. To confirm this hypothesis and also understand why the SSL activity is limited
to the MMP family, crystal structures of the SSL1/SSL5 and MMP complexes would have to be solved.
Structural information could reveal more on inhibitory specificity, which can be useful in therapeutic
setting where you might want to target a specific subgroup of MMPs.

The family of SSL proteins is widely involved in staphylococcal immune evasion with emphasis
on direct inhibition of enzymes or immune receptors. Like the MMP family, the SSLs are highly
structurally related and sometimes share common interaction partners, as shown for SSL3/SSL4 [33],
SSL5/SSL11 [9,34], and now for SSL1/SSL5. There are some common principles of inhibition used
by the SSL family, including a shared sugar binding motif in the C-terminal β-grasp domain that is
involved in interactions with terminal sialic acid residues. For SSL5, this glycan binding motif and
sialic acid binding is essential for its interaction with PSGL-1. Itoh et al. previously described that this
motif is also involved in SSL5 to MMP9 binding [10], which is in contrast with our own findings. We
found no differences in SSL binding after neuraminidase treatment of MMP8 and MMP9 and sialic
acid removal also showed no difference in the functional inhibition of the MMPs by SSL1 and SSL5.
SSL1 is not previously described to contain the conserved glycan binding motif, in contrast to SSL2-6,
and SSL11 [35], which is in accordance with our data that indicates that these glycans are not involved
in formation of the specific inhibitory complexes. Additionally, we found that SSL5 can bind to MMPs
and PSGL-1 simultaneously, further indicating a different mode of interaction for the two proteins.
This is also reflected by the differences in affinities of SSL5 for MMP9 and PSGL-1: the Kd for the
SSL5-PSGL-1 interaction was found to be 820 nM [9] as compared to the higher-affinity interaction of
SSL5-MMP9 (Kd of 1.9 nM) [10]. This is indicative of a glycan–protein interaction for PSGL-1/SSL5
versus a protein–protein based interaction for the SSLs/MMPs. It is tempting to speculate that the dual
binding of SSL5 to MMPs and PSGL-1 increases its potential to inhibit neutrophil-secreted MMP8 and
MMP9. Neutrophils express high levels of PSGL-1 and this could ensure a high local concentration of
SSL5 at the cell surface of neutrophils, better-suited to directly inhibit neutrophil MMPs upon secretion.
We suggested a similar mechanism for TLR2 inhibition by SSL3. Binding of SSL3 to TLR2 was shown
to be independent of glycans [36], however, glycan-dependent binding of SSL3 to the cell surface of
neutrophils and monocytes increases its TLR2 inhibitory potential [33,37]. SSL5 is also not the first
SSL described to bind multiple proteins simultaneously: SSL7 binds both complement C5 and IgA by
using its C-terminal β-grasp domain for C5 binding and its N-terminal OB-fold for IgA binding [38].
Since the β-grasp domain of SSL5 is involved in PSGL-1 binding, it is likely that the SSL OB-fold is
involved in the MMP interactions. This strengthens the earlier discussed hypothesis that the SSLs
could use a similar mode of inhibition as the OB-fold containing TIMPs.

This paper illustrates and adds to our understanding of the host–pathogen interaction, how
widespread the immune evasion strategies of S. aureus are, and how important it is for staphylococci
to prevent neutrophil activation. The fact that a bacterial pathogen produces two MMP inhibitors
underscores the importance of MMPs in bacterial clearance. However, further in vivo studies are
required to shed more light on this. A study by Calander et al. revealed a protective role for MMP9 in
clearance of S. aureus in mice [23] and MMP7 deficient mice showed increased bacterial growth [39].
Controlled MMP expression is necessary for an efficient immune response against invading pathogens,
but when this activation becomes excessive, uncontrolled MMP activation can lead to detrimental
consequences for host cells and lead to tissue damage and eventually immunopathologies [40]. During
these situations with excessive MMP activation, SSL-derived therapeutics could be of interest. This
study improves our knowledge of the molecular mechanisms of enzyme–inhibitor interactions that
could prove useful in therapeutic settings.
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4. Materials and Methods

4.1. Reagents and Chemicals

NS0-expressed ADAM10, ADAM17, MMP1, 2, 7, 8, 9, 12, 13, and 14 were purchased from R & D
Systems (Oxon, United Kingdom). They were diluted to a concentration of 100 µg/mL in assay buffer
(50 mM Tris, 10 mM CaCl2, 150 mM NaCl, 0.05% Brij-35 (w/v), pH 7.5, for MMP14 supplemented
with 5 µM ZnCl2) and stored at ´80 ˝C in aliquots until further use. Recombinant human IL-8
(CXCL8, 72 aa and 77 aa) was purchased from PeproTech. All chemokines were diluted to 100 µg/mL
in PBS and stored at ´20 ˝C. Mca-K-P-L-G-L-Dpa-A-R-NH2 Fluorogenic Peptide Substrate IX (R & D
Systems) was stored as 2 mM in dimethyl sulfoxide (DMSO) at ´80 ˝C. PSGL-1-Fc was purchased
from R & D Systems.

4.2. Cloning, Expression and Purification of Recombinant Staphylococcal Proteins

SSL1 and SSL5 were cloned and expressed as previously described [9]. In short, they were cloned
into the pRSETB vector (Invitrogen, Carlsbad, CA, USA), containing an N-terminal HIS-tag with
an additional X-press epitope, and generated in E. coli Rosetta Gami (DE3) plysS. Expression was
induced with 1 mM Isopropyl β-D-1-iogalactopyranoside (IPTG). All other used staphylococcal
proteins were cloned similarly; some are expressed with a shorter N-terminal HIS-tag, using
a slightly modified pRSETB vector [33]. Some proteins were expressed in E. coli BL21 (DE3).
Proteins were isolated from a HiTrap chelating HP column under either denaturing or native
conditions and eluted using an imidazole gradient. Proteins were stored in PBS and purity was
confirmed with SDS-PAGE (purity > 95%). SSL1 (SAOUHSC_00383) and SSL5 (SAOUHSC_00390)
were cloned from S. aureus strain NCTC8325. Other tested S. aureus proteins are: CHIPS
(NWMN_1877), EAP (SAV1938), EAP-H1 (SA2006), EAP-H2 (SA0841), Ecb (SA1000), Efb (SA1003),
Enolase (SA0731), EsaC (SAV0289), EsxA (SAV0282), EsxB (SAV0290), FatB (SA0691), FLIPr (SA1001),
FLIPr-like (MW1038), GAPDH (SA0727), GDPD (glycerophosphoryl diester phosphodiesterase;
SAOUHSC_00897), Hla (Newbould305 1801), Hlb (PHLC STAAU), HlgA (NWMN_2318), HlgB
(HLGB STAAU), HlgC (HLGC STAAU), IsdA (SA0977), IsdC (SA0978), Lipase (MW0297), LukA
(NWMN_1928), LukB (NWMN_1927), LukD (SAUSA300_1768), LukE (SAUSA300_1769), LukF-PV
(O50604 STAAU), LukS-PV (O50603 STAAU), LukM (Acc No: WP 063651016), ORF-D (MW0205),
MW1225, NWMN_0337, NWMN_0401, NWMN_0402, NWMN_2283, PrsA (SAOUHSC_01972), rplQ
(SAOUHSC_02484), rpsM (SAOUHSC_02487), SA0092, SA0104, SA0129, SA0182, SA0357, SA0570,
SA0710, SA0719, SA0745, SA0908, SA1633, SA1737, SA1743, SA1774, SA1818, SAOUHSC_00704,
SAR0846, SAR1886, SAV0301, SAV0302, SCIN-A (SA1754), SCIN-B (SA1004), SCIN-C (SAR1131), Snase
(SA0746), Sortase A (SAOUCHSC_02834), SSL2 (SAOUHSC_00384), SSL3 (SAOUHSC_00386), SSL4
(SAOUHSC_00389), SSL6 (SAOUHSC_00391), SSL7 (SAOUHSC_00392), SSL8 (SAOUHSC_00393),
SSL9 (SAOUHSC_00394), SSL10 (SAOUHSC_00395), SSL11 (SAOUHSC_00399), and SSL13 (NWMN_1076).

4.3. Cells

U937 human pro-monocytic cells were obtained from ATCC (American Type Culture Collection)
and grown in RPMI 1640 medium supplemented with 100 U/ml penicillin, 100 µg/mL streptomycin
and 10% FCS. For stable expression of human CXCR1 in U937 cells, we used a lentiviral
expression system. Therefore, we cloned human CXCR1 cDNA (XM_002581) in a dual promoter
lentiviral vector, derived from No. 2025.pCCLsin.PPT.pA.CTE.4x-scrT.eGFP.mCMV .hPGK.NGFR.pre,
kindly provided by Luigi Naldini, San Raffaele Scientific Institute, Milan, Italy), as described by
Michael L. van de Weijer et al. [41]. This altered lentiviral vector (BIC-PGK-Zeo-T2a-mAmetrine;
EF1A) uses the human EF1A promoter to facilitate potent expression in immune cells and expresses the
fluorescent protein mAmetrine and selection marker ZeoR. Virus was produced in 24-well plates using
standard lentiviral production protocols and the third-generation packaging vectors pMD2G-VSVg,
pRSV-REV, and pMDL/RRE. Briefly, 0.25 µg lentiviral vector and 0.25 µg packaging vectors were
cotransfected in 293T cells by using 1.5 uL Mirus LT1 tranfection reagent (Sopachem, Ochten, The
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Netherlands). After 72 h, 100 µL unconcentrated viral supernatant adjusted to 8 µg/mL polybrene
was used to infect approximately 50,000 U937 cells by spin infection at 1000ˆ g for 90 min at 33 ˝C.
U937-CXCR1 expressing cells were selected by culturing in 400 µg/mL zeocin (Life technologies).
Blood from healthy volunteers was collected in heparin tubes and neutrophils were isolated by
Ficoll/Histopaque centrifugation, as described previously [9]. Informed consent was obtained from
all subjects, in accordance with the Declaration of Helsinki. Approval from the medical ethics
committee of the University Medical Center Utrecht was attained (METC-protocol 07-125/C approved
on 1 March 2010).

4.4. Trypsin Activation of the MMPs

As an alternative for the highly toxic APMA, bovine pancreas trypsin (Sigma-Aldrich, St. Louis,
MO, USA) was used for the activation of the MMPs. MMP2 was found to be degraded by trypsin
treatment, but showed sufficient auto-activity in our assays. MMPs were activated at a concentration
of 100 µg/mL in assay buffer (buffer as described, except for MMP14, the buffer of which consists
of 50 mM Tris, 3 mM CaCl2, 1 µM ZnCl2, pH 8.5) for different times (see Table S1), with a final
concentration of 5 µg/mL or 10 µg/mL trypsin. Afterwards, trypsin was inactivated with either or a
combination of alpha-1 antitrypsin (final concentration of 100 µg/mL, Sigma-Aldrich), soybean trypsin
inhibitor (SBTI, final concentration of 100 µg/mL, Sigma-Aldrich), or 1 mM phenylmethylsulfonyl
fluoride (PMSF, Sigma-Aldrich). During all assays, controls for the effect of possible residual
trypsin activity were performed and these were excluded. ADAM10 and ADAM17 did not require
trypsin activation.

4.5. Fluorogenic Peptide MMP Activity Assay

Twenty-five microliters of diluted activated MMP or ADAM (see Table S1) was incubated with
25 µL of the distinct staphylococcal proteins for 30 min at room temperature. Following this, 50 µL of
Fluorogenic peptide substrate (20 µM) was added, making a total assay volume of 100 µL. Fluorescence
intensity was measured directly over time, with a total of 16 min, in the CLARIOstar microplate
reader (BMG Labtech, Ortenberg, Germany) using excitation and emission wavelengths of 320 and
405 nm, respectively. When indicated, MMPs were pretreated with 0.2 U/mL neuraminidase (from
Clostridium perfringens, Roche, Basel, Switserland) for 1 h at 37 ˝C. When indicated, a 10-fold excess
of PSGL-1 (10 µg/mL) was allowed to bind to SSL5 (1 µg/mL) for 30 minutes at room temperature
before the activity assay was performed. MMP activity was assessed by determining the area under
the curve after subtracting the area from a blank measurement.

4.6. Far Western Blot to Detect MMP-SSL Binding

MMP8, MMP9, and PSGL-1-Fc (0.2 µg/lane) were loaded on 10% SDS-PAGE gels in native
conditions (no boiling of the samples, and non-denaturing conditions). Samples were transferred to
a PVDF blotting membrane, blocked with 4% skimmed milk in PBS 0.05% Tween-20 (PBS-T), after
which the membrane was washed and incubated with 10 µg/mL of HIS-tagged SSL1, SSL2, SSL5, and
SSL10. Subsequently, the membrane was washed and incubated with anti-X-Press mAb (recognizing
the HIS-tag, 1 µg/mL, Thermo Fisher Scientific, Breda, The Netherlands) and goat anti-mouse HRP
(1:10,000, Bio-Rad, Hercules, CA, USA). Blots were developed with ECL Western Blotting Substrate
(Thermo Fisher Scientific) and visualized on a LAS 4010 imaging system (GE Healthcare, Hoevelaken,
The Netherlands). To assess formation of the MMP8-SSL5-PSGL-1 triple complex, MMP8 was loaded
on gel. In this case, blots were first incubated with 10 µg/mL of HIS-tagged SSL1 or SSL5 before
washing extensively and incubating the blot with 2 µg/mL of PSGL-1-Fc. PSGL-1 binding was
determined by a mouse anti-human IgG Fc peroxidase conjugated antibody (1:5000, Calbiochem,
Darmstadt, Germany).
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4.7. MMP-SSL Binding Enzyme-Linked Immunosorbent Assay (ELISA)

Non-activated MMPs and PSGL-1-Fc were coated overnight at 4 ˝C in a concentration of 3 µg/mL
in 96-well Nunc MaxiSorp ELISA plates in 0.1 M sodium bicarbonate buffer. Blocking was performed
with 4% skimmed milk in PBS-T for 1 h at 37 ˝C, after which HIS-tagged SSLs (10 µg/mL) were added
and incubated for 1 h at 37 ˝C. SSL binding was detected using anti-X-Press mAb (1 µg/mL) and
goat anti-mouse HRP (0.1 µg/mL, SBI). Washes were performed 5 times with PBS containing 0.05%
Tween in between all steps. Fresh tetramethylbenzidine (TMB) substrate was prepared and the reaction
was stopped by the addition of 4 N sulfuric acid before the OD450 was measured. When indicated,
coated MMPs and PSGL-1 were treated with 0.2 U/mL neuraminidase, for 1 h at 37 ˝C prior to SSL
binding. To determine whether MMP binding to SSL5 affects SSL5/PSGL-1 binding, SSL5 was coated
in a concentration of 3 µg/mL, after which 10 µg/mL of MMP8 and MMP9 were allowed to bind for
1 h at 37 ˝C, before PSGL-1 (10 µg/mL) was added and PSGL-1 binding was assessed by a mouse
anti-human IgG Fc peroxidase conjugated antibody (1:10,000).

4.8. Western Blot to Visualize IL-8 Cleavage

In total, 10 µg/mL of activated MMP, in some cases pretreated with 10 µg/mL SSL1 or SSL5, was
incubated with 0.1 µg/mL of IL-8 (77 aa) overnight in activation buffer supplemented with 0.05%
human serum albumin. The 72 aa and 77 aa variant of IL-8 were taken along as controls and treated
exactly the same as the MMP samples. Samples (10 µL) were loaded on 16.5% Tris-Tricine gels and
run for 2 h at 100 V, after which they were transferred to a blotting membrane using Trans-Blot®

Turbo™ Transfer System (Bio-Rad). Blots were blocked with 4% skimmed milk in PBS-T. Subsequently,
the membrane was incubated with 10 µg/mL anti-IL8 (R & D Systems, clone 6217.111) and goat
anti-mouse HRP (1:10,000, Bio-Rad) for 1 h at 37 ˝C. In between incubation steps, the blots were
extensively washed with PBS-T. Finally, blots were developed with ECL (Thermo Fisher Scientific) and
visualized on a LAS 4010 imaging system.

4.9. Calcium Mobilization Assay

IL-8 (77 aa) in a concentration of 1 ˆ 10´7 M was mixed with a final concentration of 10 µg/mL
activated MMP, that was in some cases pretreated with 10 µg/mL SSL1 or SSL5 for 30 min at room
temperature. IL-8 (72 aa) was taken along as a control, in the same concentration. The mixes were
incubated overnight at 37 ˝C before a calcium mobilization assay was performed on a flow cytometer
(FACSVerse). U937 cells expressing CXCR1 were labelled for 20 min at room temperature with 1 µM
of Fluo-3-AM (Life Technologies, Carlsbad, CA, USA). Afterwards, cells were washed once and
resuspended in RPMI supplemented with 1% HSA, after which they were diluted to 1 ˆ 106 cells/mL
and plated out in 180 µL/well. Twenty microliters of stimuli was added to the cells after 10 s of
measurement and the relative calcium flux was determined pre and post stimulus.

4.10. Visualization of MMP-Mediated Collagen Degradation

To visualize the degradation of collagen by MMPs we used SDS-PAGE. Collagen Type I
(0.5 mg/mL) (from human, Sigma-Aldrich) was incubated overnight with MMP8 and MMP9 (final
concentration, 10 µg/mL), in absence of presence of SSL1 and SSL5 (final concentration 10 µg/mL).
After overnight incubation, 2 ˆ sample buffer was added and samples were run on a 10% SDS-PAGE
gel for 1 h at 200 V. Afterwards, the gel was stained with Instant Blue protein stain (Expedeon,
Cambridgeshire, United Kingdom).

4.11. Neutrophil Migration Assays

To measure migration of human neutrophils through collagen, we set up a Transwell migration
assay. Transwell filters (8.0 µm) (Costar) were filled with 40 µL of collagen solution, containing
1.5 mg/mL collagen (rat tail collagen, type I (BD Biosciences) and 8.6 mM NaOH in PBS, prepared
on ice). Filters were put at 37 ˝C for 90 min to induce collagen gelling. The lower compartment
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of the Transwell system was filled with 600 µL buffer (HBSS, containing 1% HSA (HBSS/HSA)), or
HBSS/HSA containing the chemoattractants fMLP (1 ˆ 10´8 M) and LTB4 (1 ˆ 10´7 M). Human
neutrophils (5 ˆ 106 mL´1) were loaded with 4 µM Calcein-AM (Molecular Probes) in HBSS/HSA
for 20 min, protected from light. After washing in HBSS/HSA, 100 µL labelled cells (5 ˆ 106 mL´1)
were added to the upper compartment of the Transwell filters on top of the collagen gel. Next,
the Transwell filters were carefully placed in the lower compartment 24 wells. Control migrations
were also performed without the addition of collagen. To test inhibition of migration, neutrophils
were pre-incubated with 10 µg/mL SSL1 or SSL5 for 30 min at room temperature, before Transwell
filters were loaded to the lower 24 well compartments. Migration was allowed for 1, 2, 3, and 4 h
at 37 ˝C. At each time point, the Transwell filters were carefully removed from the lower wells and
fluorescence of the migrated neutrophils present in the lower compartment 24 wells was measured in
a CytofluorII plate reader. After measurement, the Transwell filters were carefully placed back in the
lower compartments to allow further migration in time.

4.12. Statistical Analysis

Statistical analysis was performed in Prism (GraphPad Software, La Jolla, CA, USA). The data
(for Figure 4) was analyzed with a two-way ANOVA with time as repeated measures, followed by
Holm-Sidak’s multiple comparisons test to compare treatments.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
7/1072/s1.
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