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Abstract: Because of its tunable textural properties and chirality feature, chiral mesoporous silica
(CMS) gained significant consideration in many fields and has been developed rapidly in recent
years. In this review, we provide an overview of synthesis strategies for fabricating CMS together
with its main applications. The properties of CMS, including morphology and mesostructures and
enantiomer excess (ee), can be altered according to the synthetic conditions during the synthesis
process. Despite its primary stage, CMS has attracted extensive attention in many fields. In particular,
CMS nanoparticles are widely used for enantioselective resolution and adsorption of chiral compounds
with desirable separation capability. Also, CMS acts as a promising candidate for the effective delivery
of chiral or achiral drugs to produce a chiral-responsive manner. Moreover, CMS also plays an
important role in chromatographic separations and asymmetric catalysis. There has been an in-depth
review of the synthetic methods and mechanisms of CMS. And this review aims to give a deep insight
into the synthesis and application of CMS, especially in recent years, and highlights the significance
that it may have in the future.
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1. Introduction

Chirality is a universal feature of the universe, embodied in the generation and evolution of life.
In 1848, chemists first came up with the definition of isomers in the study of tartaric acid, which led to
the concept of chirality. The so-called chirality refers to the feature that the object and its mirror image
cannot overlap exactly, which can also be explained as the lack of Sn symmetry element. Enantiomers
almost share the same physical properties (melting point, boiling point, etc.), thermodynamic properties
(free energy, enthalpy, entropy, etc.), and chemical properties. While in a chiral environment (e.g., a chiral
reagent, a chiral solvent), a difference in physic-chemical properties appears.

In biology, chirality can be found in a variety of biomolecules, including amino acids, sugars,
proteins, and DNA. It is widely acknowledged that many functions of living organisms are performed
by proteins, which are made up of amino acids. Of the twenty amino acids that make up life,
except for glycine, which is not chiral, the other nineteen are almost always left-handed. The sugars in
living organisms, however, are all right-handed, including deoxyribose. Thus, naturally produced
DNA with transcriptional activity is mainly dextrorotatory. Vines of plants, organisms such as
conches, and even microorganisms themselves also possess chiral structures. Nevertheless, if the
compounds with stereoisomerism happen to be drugs then it may result in significant differences
in pharmacology, metabolic process, toxicity, and efficacy of different enantiomers in the human
body. Other fields such as mechanical engineering also face the mystery of chirality. For example,
helical springs reversibly store energy by elastic deformation of wires to distribute the induced strain
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evenly. Now chirality describes not only the symmetry of objects and molecules but also inorganic
nanostructures. Chiral nanostructures have attracted much attention due to their favorable interactions
with chiral molecules, and many researchers have been devoted to the synthesis and formation
mechanism research of chiral nanostructures.

Chiral assemblies can be classified by various methods, and a typical classification is based on
the inorganic raw materials for synthesis, including chiral silica nanostructures [1–6], chiral metal
nanostructures [7,8], chiral carbon nanomaterials [9–11], chiral semiconductor nanoparticles [12–14],
and other nanomaterials [15,16]. One of the general approaches for the preparation of chiral nanostructures
is through the assembly of chiral templates or chiral building blocks and organic molecules such
as amino acids and sugars, some of which are called biomimetic synthesis due to the similarities
between these initial units and the biomolecules [17]. Besides, the assembly of achiral basic units into
well-organized nanostructures in specific handedness is another important design. When it comes to
the synthesis of chiral nanostructures, CMS probably is one of the most common examples. Generally,
typical mesoporous silica can be obtained via the self-assembly of amphiphiles and inorganic silica
sources since its first discovery in the 1990s by the Mobile Oil Corporation. Since then, mesoporous
silica has come into focus due to its superior properties such as tunable textural properties [18–20],
biocompatibility [21,22], biodegradability [23–25], etc. There have been considerable reports available for
the synthesis, functionalization, and application of mesoporous silica [26–29], and numerous researches
are still underway. Based on mesoporous silica, chiral mesoporous silica is endowed with chirality due to
the chiral modification or the existence of helical channels, which broadens its applications in areas such
as drug delivery, chiral separation of biomolecules, and asymmetric catalysis, although some of these are
still in initial stages.

2. Synthesis of Chiral Mesoporous Silica (CMS) Nanoparticles

CMS nanoparticles are mainly prepared via cooperative self-assembly of chiral or achiral
amphiphiles and silica precursors, as well as other methods (Table 1). The typical synthetic pathways
of CMS in the presence of surfactants are illustrated in Figure 1, and the specific strategies are discussed
in the following sections.
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Table 1. The synthesis method, morphology, and textural properties of chiral mesoporous silica.

Synthesis Method Morphology
Textural Properties

ReferencesSpecific Surface Area
(m2/g)

Pore Diameter
(nm)

Pore Volume
(cm3/g)

Chiral anionic surfactant C14-l-AlaS as a template, TMAPS, or APS as CSDA. Twisted hexagonal rod-like 600 2.20 0.37 [30]

Chiral anionic amphiphilic molecules (N-acyl-l-alanine) as template, TMAPS as CSDA, and various acids
including HCl, HBr, HNO3, or H2SO4. Twisted hexagonal rod-like 577–974 2.40–2.96 0.43–0.90 [31]

Chiral anionic surfactant C14-l-AlaS as a template, APTES as CSDA Twisted-ribbon-like and various
twisted-rod-like 400 3.60 0.50 [32]

Achiral CTAB as template and a chiral metal complex Λ-[Co(+)(chxn)3]I3 as contemplate. Twisted hexagonal rod-like 1047 2.60 1.90 [33]

Chiral anionic surfactants C14-l/d-AlaA as template. Twisted hexagonal rod-like 603; 735 2.20 N/A [34]

Chiral anionic surfactant, C14-l/d-AlaA, and an organosilane compound, BTEE, in the presence of l/d-arginine. Twisted hexagonal rod-like 853 2.10 0.66 [35]

Chiral anionic surfactant C16-l-Ala, C16-l-Val C16-l-Ile, and C16-l-Phe as templates and TMAPS as CSDA. Twisted hexagonal rod-like N/A N/A N/A [36]

Chiral anionic surfactant N-acylamino acid with a bulky substituent as template and TMAPS as CSDA. Twisted hexagonal rod-like 496–884 2.10–3.20 0.23–0.99 [37]

Chiral cationic surfactant l-4PyCl as template by sol-gel transcription in different solvents. Helical 730 3.80 1.56 [38,39]

Chiral cationic gelators l-PhePyBr, l-ValPyBr, and l-IlePyBr as template by sol-gel transcription. Helical, balls 354; 628 5.20; 5.00 N/A [40,41]

Room-temperature ionic liquids 1-octadecyl-3-methylimidazolium bromide as template Helical 893 3.270 0.99 [42]

Achiral cationic surfactant CTAB as template. Helical 998 2.80 N/A [43]

Achiral cationic surfactant CTAB and perfluorooctanoic acid as co-templates. Helical rod-like 462–635 2.60 0.59–0.73 [44]

Achiral cationic surfactant CTAB as template and achiral alcohols as CSDA. Helical 459–842 2.00–4.20 N/A [45]

CTAB as a template and either n-heptanol or n-nonanol as CSDA. Twisted hexagonal rod-like 930; 1329 6.83; 6.97 1.40; 2.30 [46]

Achiral cationic surfactant CTAB as template. Helical rod-like 1027 3.40 1.02 [47]

Achiral cationic surfactant C18-TMS as a template in the presence of arginine, histidine, isoleucine, and proline
in basic media.

Pores with an “eight-like”
morphology 840–1130 2.80–3.30 0.80–1.13 [48]

Tetraethyl orthosilicate and quaternized aminosilane as silica sources together with l-phenylalanine as a
chiral imprinted reagent Irregular 730 2.30–2.50 0.47 [49]

Achiral cationic surfactant CTAB as template together with APTTES-l or APTTES-d (synthesized with APTES
and l/d-tartaric acid) as chiral silica coupling agent. Spherical 565; 387 3.30; 3.20 0.40; 0.30 [50]

Achiral cationic surfactant CTAB as template together with APTTES-l or APTTES-d (synthesized with APTES
and l/d-tartaric acid) as chiral silica coupling agent. Spherical 578; 441 3.47; 2.98 0.50; 0.33 [51]

Achiral cationic surfactant STAB as template together with APTTES-l or APTTES-d (synthesized with APTES
and l/d-tartaric acid) as chiral silica coupling agent. Spherical 571; 585 2.71; 2.74 0.69; 0.75 [52]

Achiral cationic surfactant STAB as template together with APTTES-d (synthesized with APTES and d-tartaric
acid) as chiral silica coupling agent, and TMB as pore-enlarging agent. Spherical 441; 474 2.20; 4.30 0.36; 1.10 [53]

N-myristoyl-l-alanine sodium salt (C14-l-AlaS), N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAPS), 3-aminopropyltrimethoxysilane (APS), co-structure-directing
agent (CSDA), 3-aminopropyltriethoxysilane (APTES), N-myristoyl-l/d-alanine (C14-l/d-AlaA), N-Palmitoyl-l-Ala (C16-l-Ala), N-palmitoyl-l-Val (C16-l-Val), N-palmitoyl-l-Ile
(C16-l-Ile), and N-palmitoyl-l-Phe (C16-l-Phe), cetyltrimethylammonium bromide (CTAB), N-3 [3-(trimethoxysilyl)propyl]-N-octadecyl-N,N-dimethylammonium chloride (C18-TMS),
Stearyltrimethylammonium Bromide (STAB).
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2.1. CMS Templated by Chiral Anionic Surfactants

CMS material was firstly discovered by using amino acid-derived chiral anionic template
N-myristoyl-l-alanine and N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TMAPS) or
3-aminopropyltrimethoxysilane (APTES) as a co-structure-directing agent (CSDA) [30]. The assembly of
anionic surfactant and silicate is assisted by CSDA via electrostatic interactions. The positively charged
ammonium ion and the alkoxysilane sites of APS or TMAPS interact with the negatively charged head
group of anionic amphiphile and tetraethoxysilane (TEOS), respectively [2]. Helical nanotubes [54] and
twisted mesoporous silica nanoribbons [55] derived from other amino acid derivatives and silicates via
sol-gel transcription process can also be obtained.

Structural control has always been a long-term research topic in the field of material science due
to its characteristics and diverse application requirements. Similar to traditional mesoporous silica,
the control of CMS involves morphology and mesostructures, but the ratio of left-/right-handedness
(enantiomer excess, abbreviated as ee) is also a core point of research. Jin et al. synthesized helical
CMS via the self-assembling of chiral anionic amphiphiles N-acyl-l-alanine by CSDA method and
further systematically discussed how different anionic ions influenced the morphology, mesostructured,
and pore size of the CMS, including Cl−, Br−, NO3

−, and SO4
2− [31]. Che et al. demonstrated that

the stirring rate can alter the morphology and helicity of the CMS during the self-assembly of chiral
surfactant [32]. Stirring rates higher than 400 rpm are conductive to improve the uniformity of
mesoporous silica nanorods with different diameters and helical pitches. Unlike the CMS which
owes its chirality to helical channels and twisted morphology and helical nanochannel, the chirality
of mesoporous silica can also be derived from the silicate building blocks, where achiral templates
and a chiral cobalt complex act as co-templates via electrostatic interaction [33]. Yokoi et al. reported
predominantly left-handed or right-handed CMS by using C14-l-AlaA and C14-d-AlaA respectively or
in combination. They also confirmed how synthetic conditions including gel compositions, stirring, and
agitation periods affected the CMS synthesis greatly [34]. Later work confirmed the important role of
chiral dopant and 1,2-bis(triethoxysilyl)ethylene (BTEE) in the controlled synthesis of enantiomerically
pure CMS [35]. This research was performed by using a chiral anionic surfactant, C14-l-AlaA, as a
template together with l-arginine or d-arginine as a chiral dopant. Both right-handed and left-handed
CMS (r- and l-CMS) were produced when only l-enantiomer was employed as the chiral surfactant,
proving that the ratio of the r- and l-CMS was not only governed by the intrinsic chirality of the
surfactant template but other factors [30]. In another work, they claimed that ee of the CMSs formed
with C16-l-Phe was inversely associated with the basicity of the reaction solution [36]. Although the
specific mechanism has not been completely disclosed, there is no doubt that the ratio of r- and l-CMS is
controlled either by kinetics or by thermodynamics throughout the synthesis process. By further effort,
it was found that both the substituent’s steric bulk and the temperature were key factors influencing
the ee of the CMS [37]. The amphiphilic molecules may present helical packing, the handedness of
which is dependent on the chirality of the amphiphilic molecule (Figure 2). Based on thermodynamics
principle, the ee of the CMS is determined by the relative rate constant for l- and r-CMS formation or
by the relative stability of l- and r-CMS, and the generation of the diastereomeric conformer can be
explained as a result of the rotation of the Cα-N single bond of the amphiphilic molecule.

Generally, the two rotational isomers reach the equilibration quickly at ambient temperature.
However, the equilibration is significantly slowed down due to the stacked micellar structure.
Consequently, for the l-form N-acylamino acids, the conformer of lower energy led to l-CMS when
stacking, while the less unstable conformer produced r-CMS. As mentioned above, the emergence
of a chiral or helical structure in CMS is a confluence of factors that come together to cause this,
including the inherent chirality of molecules together with thermodynamic factors such as temperature,
stirring rate, and pH (Figure 1B).
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2.2. CMS Templated by Chiral Cationic Surfactants and Gelators

Aside from the chiral anionic surfactants, chiral cationic surfactants have also been applied to
synthesize CMS. Yang et al. successfully prepared helical CMS via sol-gel transcription by using
gelators-like cationic surfactants l-4PyCl as a template, which was derived from l-isoleucine [38].
As depicted in Figure 3, the helical structure varied with the concentration of NH3, and the helical
pitch was correlated reciprocally with the concentration of NH3. The structure can be controlled by
the volume ratio of water to alcohol. In later work, they obtained helical or twisted mesoporous
silica of different pitches by varying the concentration of NH3, and the volume ratio of water to
alcohol or other solvents [39]. It can be explained that the controllable formation depends on the
speed of the silica oligomer’s condensation and the l-4PyCl self-organization. A lower volume
ratio of alcohol to water prompted the synthesis of mesoporous silicas because of the resulted faster
condensation speed of silica oligomers and slower self-organization speed of l-4PyCl. Otherwise,
silica nanotubes or nanoribbons were obtained. Then, Yang’s group prepared helical mesoporous
silica nanotubes composed of two left-handed twisted nanoribbons templated by chiral cationic
gelators which were derived from l-phenylalanine, l-valine, and l-isoleucine, respectively [40,41].
Take l-PhePyBr (prepared in the presence of l-phenylalanine) as a typical example: the reorganization
of l-PhePyBr self-assemblies was closely related to the ethanol hydrolyzed from TEOS and orthosilicate
anionic ions. Silica oligomers penetrated the voids between the l-PhePyBr self-assemblies and then
polycondensed on the surface after the cationic–anionic ion interactions based on orthosilicate anionic
ions and the single organic self-assemblies.
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Figure 3. (a) TEM image of calcined mesoporous silica nanofibers (preparation condition: (10 mg
l-4PyCl: 0.9 mL 1.0 wt% NH3 aq.: 0.1 mL ethanol: 20 mg TEOS)); (b) SEM and (c) TEM images of
calcined mesoporous silica nanofibers (Preparation condition: (10 mg l-4PyCl: 0.6 mL 1.0 wt% NH3

aq.: 0.4 mL ethanol: 20 mg TEOS)); (d,f) SEM and (e,g) TEM images of calcined mesoporous silica
nanofibers (preparation condition: (10 mg l-4PyCl: 0.7 mL 11.3 wt%NH3 aq.: 0.3 mL ethanol: 20
mg TEOS)). (h) SEM image of calcined mesoporous silica nanofibers (Preparation condition: (10 mg
l-4PyCl: 0.5 mL 1.0 wt% NH3 aq.: 0.5 mL ethanol: 20 mg TEOS)). Credit: republished with permission
of Royal Society of Chemistry, from [38], Copyright (2005); permission conveyed through Copyright
Clearance Center, Inc.
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2.3. CMS Templated by Achiral Templates

In contrast to CMS synthesized based on chiral templates, CMS materials can also be prepared by
using achiral templates. Lin et al. proposed that the tight intermolecular packing based on long alkyl
chains of achiral C18MIMBr molecules induced the formation of helical micelles [42]. Besides, CMS was
fabricated by a simple system composed of achiral cationic surfactant, and meanwhile, the entropically
driven model was introduced to explain the formation mechanism, which was described by the
Equation (1):

∆F ∝ 1/2 Llpk2
− nVoverlap (1)

where lp is the length scale over which a rod can bend, n is the sphere concentration, ∆F is the bending
stiffness, and r is the radius of the sphere [43,56]. As shown in Figure 4A, shorter particles (L) with less
curved channels (k) will be formed with decreasing ammonia concentration (n), to keep ∆F < 0. Also,
rod-like micelles formed with shorter hydrocarbon chains are more rigid and thus difficult to bend
into the helix (Figure 4B). Therefore, the ammonia concentration required in the C14TMAB system is
higher than that of the C16TMAB system in order to achieve the same helicity.
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conveyed through Copyright Clearance Center, Inc.

Differently, Yang et al. attributed the origin of the helical mesostructured materials as a result of
morphological transformation along with the reduction in the surface free energy [44]. They obtained
helical CMS in the presence of cetyltrimethylammonium bromide (CTAB) and perfluorooctanoic acid,
proposing that the spiral morphology is derived from bundles of straight rod-like composite micelles
with equal length rather than a single rod-like micelle (Figure 5).
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Helical mesoporous silica nanorods can also be successfully synthesized using CTAB as a template
and achiral alcohols as CSDA, where the formation of the helix was driven by the reduction in
surface free energy [45]. This is based on the fact that higher molarity of alcohol contributes to
the transformation of spherical micelles to rod-like and worm-like micelles. Long alkyl chains of
alkyl alcohols decrease the critical micelle concentrations of CTAB in aqueous solution. Likewise,
twisted rod-like CMS prepared with CTAB and n-heptanol or n-nonanol also demonstrated the
significance of the molar ratio of alcohol/CTAB and chain length of alcohols for the generation of
chirality [46]. In another work, Gao et al. reported a facile method to prepare CMS by using CTAB as a
template without any other additives [47]. They suggested that the morphology can be controlled by
varying the concentration of the ammonia solution.

Although there is no certain mechanism for the synthesis of CMS via achiral templating process,
what we can confirm from the above results is that molecular chirality is not the only determinant;
that is, there are other driving forces. Moreover, this also puts forward the new expectations for the
follow-up research of CMS, which is to elaborate on the concrete mechanism of its synthesis.

2.4. CMS with Molecular Chirality

The molecular imprinting technique acts as a methodology for the formation of specific cavities to
selectively bind ‘guest’ molecules in the presence of templates [41]. These resulting molecularly imprinted
materials are characterized by a high degree of stereo- and regiospecific selectivity, offering enormous
potential for chiral separation [57–61] and antibody mimics [62–65]. It has been logical, therefore,
to apply chiral imprinting in the design of CMS with amino acids [48]. Figure 6A confirmed the
efficient transference of chirality from amino acid to the ordered mesoporous silica. The formation was
hypothesized to be driven by the electrostatic interaction between amino acid molecules and positively
charged N-3[3-(trimethoxysilyl)propyl]-N-octadecyl-N,N-dimethylammonium chloride (C18-TMS) dimers
together with the covalent bonds between hydrolyzed C18-TMS surfactant molecules and silanol groups
of silicate species (Figure 6B). Su et al. obtained l-phenylalanine imprinted CMS in the presence of
phenylalanine and speculated that electrostatic interaction existed between the negatively charged amino
acid molecules and the positively charged C18-TMS that formed the micelles. Also, the silica skeleton was
formed by covalent bonds between C18-TMS micelles and silica species. Afterward, the chirality was
effectively transferred from the amino acid to the silica [49].

CMS with molecular chirality can also be fabricated by grafting molecular functional groups.
Li et al. successfully synthesized spherical CMS nanoparticles with concealed pore channels by grafting
l-tartaric acid or d-tartaric acid, respectively [50,51]. Considering the defect of reducing pore space
due to the grafting group, Guo et al. designed enlarged pore CMS nanoparticles via the introduction
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of pore-enlarging agent 1,3,5-trimethylbenzene (TMB) while functional groups were grafted [52,53].
This provides more possibilities for further modification of CMS via grafting groups.
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3. Applications of Chiral Mesoporous Silica

The excellent properties of chiral nanomaterials have triggered their multi-field applications and
evaluation [66–69]. Unique structural features make CMS attractive for various purposes (Figure 7 and
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3.1. Enantioselective Resolution and Adsorption

As the demand for pure enantiomers increases significantly, it is urgent to provide efficient
strategies for analytical and preparative separations of enantiomers. To date, a series of effective
techniques for the resolution of enantiomers have been developed [70–73]. CMS material presents
unique chiral-structural features and desirable stereoselective adsorption capacity, making it an
emerging candidate for chiral adsorption and enantiomeric separation. As proved by circular
dichroism (CD) spectroscopy, monodispersed CMS spheres with chiral pores showed the asymmetric
preferential adsorption of alanine with a chiral selectivity factor of 3.15 [74]. Interestingly, it was found
that the adsorption of d-proline by CMS synthesized with d-proline was higher than that of l-proline,
while the adsorption of l-proline by CMS synthesized with l-proline was significantly higher than
that of d-proline [75]. This adsorption difference could be ascribed to the imprinting left by the amino
acid during the preparation process. CMS templated by chiral block copolymers was demonstrated
to be effective in the preferable adsorption of a specific enantiomer of valine with a desirable chiral
selectivity factor [76,77]. Previously reported results proved that some chiral sol-gel silica materials with
various chiral entities lost the enantioselective preferences after surfactant removal [78,79]. However,
the calcined CMS prepared with l-proline still exhibited favorable potential for enantiomeric separation
in the resolution of racemic mixtures [48]. This could be explained by the chiral and quite rigid
pyrrolidine ring of proline. The imprinting chirality of CMS can also make it work in stereoselective
adsorption of l- and d-phenylalanine with a chiral selective factor of 3.24 [49]. The chiral transcription of
guanosine monophosphate and folic acid onto mesoporous silica is disclosed via the kinetic adsorption
of enantiomeric pairs including d-(−)-Tartaric acid and l-(+)-Tartaric acid, l-Valine, and d-Valine, as well
as (+)-a-Pinene and (−)-a-Pinene [80]. The two samples exhibited opposite enantiomeric selectivity for
enantiomeric pairs due to the chiral transcription process. Therefore, CMS shows a promising prospect
in the field of chiral adsorption and separation.

3.2. Chromatographic Separations

As effective instrumental techniques for the separation of chiral enantiomers, high-performance
liquid chromatography (HPLC) [81], gas chromatography (GC), thin-layer chromatography (TLC) [82]
and capillary electrophoresis (CE) make great contributions and account for a great proportion [83–85].
Owing to the nematic structure, chirality, and large pore size of chiral nematic mesoporous silica (CNMS),
it attracted considerable attention as a chiral stationary phase. An example is the enantioseparation
of chiral amino acids using microchip electrophoresis (MCE), where CNMS acted as the chiral
stationary phase and hydroxypropyl-β-cyclodextrin was selected as the chiral selector [86]. Besides,
CNMS derived from nanocrystalline cellulose shows desirable separation performance in GC or HPLC.
As a stationary phase for high-resolution GC, it can give good selectivity for the separation of many
achiral compounds and enantiomeric pairs [87]. It also worked as a stationary phase for HPLC,
which showed better selectivity for separation of positional isomers when compared with commercial
β-cyclodextrin HPLC columns [88].

Owing to the thermal and mechanical stability together with the high selectivity of CMS, it may
be a favorable strategy for the high-resolution gas chromatographic separations. Yuan group was the
pioneer in applying highly ordered CMS as a stationary phase for high-resolution GC separations,
which presented excellent selectivity for the separation of many organic compounds [89]. Later,
they reported a CMS-coated open tubular column for the separation of eighteen racemates. The CMS
was prepared via the self-assembly of sodium dodecyl sulfate (SDS) together with chiral amino
alcohols [90,91]. It not only showed excellent selectivity but short analysis times and high-temperature
resistance. To sum up, CMS has a broad prospect as a stationary phase in chromatographic analysis,
which will be of great help for the resolution of compounds.
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3.3. Chiral Drug Delivery

Mesoporous silica has been widely utilized as a drug carrier in drug delivery since its first report
in 2001 [92–96] along with many other nanoparticles [97–100]. Despite the presence of many identical
physical and chemical properties in a pair of chiral drugs under achiral conditions, differences will
emerge when it comes to the chiral environment of the human body, mainly in the pharmacological
activity and toxicological effects. In other words, one isomer may exert the expected active effects,
while the other may be inactive or even produce toxic effects. In the pharmaceutical field, chiral drugs
account for more than 50% of the total number of drugs according to statistics [101]. Take ofloxacin,
for instance; it is a fluoroquinolone antibiotic against both gram-negative and gram-positive bacteria,
and levorotatory ofloxacin exerts superior pharmacological activity than the dextral form. Picenadol is
an opioid mixed agonist-antagonist for the relief of pain, whose d-optical isomer acts as an opioid
agonist, while the l-isomer is an opioid antagonist [102]. Another example is that thalidomide was a
major teratogen that caused birth defects in the 1960s. It was found that the (R)-thalidomide inhibited
the reaction of pregnancy, while the (S)-thalidomide could lead to miscarriage and even teratogenicity
of newborns. Therefore, it is of great practical significance to promote the in-depth study of chiral
drugs in the pharmaceutical field as well as for in-clinic application. Therefore, the rational use of
chiral drugs not only contributes to improving pharmacological activity but reducing side effects.
The emergence of CMS paved a new way for the effective delivery of chiral drugs. As demonstrated in
experiments, chiral mesoporous silica can exhibit desirable selectivity for chiral drugs (metoprolol) due
to the preferential binding of one enantiomer over that of the other to the asymmetric specific binding
sites in CMS, without any other chemical modifications [103]. Another such study was reported by
Xu’s group, where levofloxacin was loaded into the CMS with opposite chirality, demonstrating the
difference in drug release [46]. Wang et al. successfully designed twisted rod-like CMS by using
l- and d-alanine derivatives as templates for the release differentiation of ibuprofen in simulated
intestinal fluid and simulated gastric fluid (Figure 8) on account of the ionization of ibuprofen and
the effect of pore geometry on the drug loading and dissolution process [104,105]. Therefore, CMS is
promising to be carriers not only for the preferential delivery of enantiomerically pure drugs but for the
enantioselectively controlled release of racemic mixtures by the combination of mesoporous structure
and helical channels or chiral modification in one CMS nanoparticle.
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3.4. Achiral Drug Delivery

CMS has also been employed as a drug carrier to adjust and enhance the release of achiral drugs.
When CMS with different morphology and helicity but similar pore sizes were utilized as drug carriers
for aspirin and indomethacin (IMC), variable release profiles were observed, where longer and more
twisted diffusion channels led to a slower release rate [106,107]. After being loaded into the CMS,
the improved drug dissolution and a significant rapid release of curcumin (poorly water-soluble
drug) under different dissolution media can be accomplished due to the crystalline-to-amorphous
transformation [47].

Furthermore, it was disclosed that the chirality-responsive drug delivery systems can be
constructed to endow achiral drugs with specific selectivity in the simulated chiral environment
to exert functions. When CMS templated by histidine-derivative (C16-l-histidine) via biomimetic
synthesis was employed as a drug carrier for nimodipine (poorly water-soluble drug), it can significantly
improve the dissolution rate and bioavailability as well as the brain distribution in vivo [108]. Li et al.
successfully prepared the concealed body mesoporous silica nanoparticles that exerted different chiral
recognition functions for the delivery of (IMC) [50]. IMC loaded Cb-d-MSN and IMC loaded Cb-l-MSN
showed quite similar dissolution behaviors in enzyme-free simulated intestinal fluid. However,
an obvious difference can be seen in plasma drug concentration profiles after oral administration:
the Cmax of Cb-d-MSN was much higher than that of IMC loaded Cb-l-MSN. This could be explained
by the molecular simulation results as shown in Figure 9, where the adsorbed IMC was distributed
in these two carriers differently as a result of the chiral modification and pore properties. Their later
work fabricated On-Off CMS nanoparticles for delivering IMC in the chiral environment and owed the
differences in dissolution and anti-pharmacodynamics to on or off chiral recognition functions [51].
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In another work, Guo et al. prepared two CMS at the molecular level by grafting l-/d-tartaric
acid, namely FL MSNs and FD MSNs [52]. Apparently, nimesulide (NMS) loaded FD-MSNs and
NMS loaded FL-MSNs displayed almost the same dissolution behaviour, but the cumulative release
amounts were both much higher than that of pure NMS in PBS. However, more NMS released
from NMS loaded FL-MSNs in l-Ala-PBS and NMS loaded FD-MSNs in d-Ala-PBS, respectively
(Figure 10), which was consistent with the results of in vivo pharmacokinetics and anti-inflammatory
pharmacodynamics studies. These results suggested that FL-MSNs and FD-MSNs can respond to
the prepared chiral medium, and FD-MSNs performed better than FL-MSNs for the release of NMS
on account of less steric hindrances. Furthermore, mesoporous silica nanoparticles with enlarged
chiral pore size were synthesized aiming at the decreased drug load capacity and the increased steric
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hindrance of the drug release resulted from the grafting group [53]. Moreover, the properties of
the modified CMS nanoparticle as drug carriers were basically investigated, demonstrating good
wettability, fast degradation rate, high mucosa-adhesion ability, and long retention time [109].
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3.5. Asymmetric Catalysis

Besides the applications mentioned above, it is also found that CMS is useful for understanding
asymmetric catalysis. In the past decades, there has been tremendous progress in catalytic
enantioselective synthesis, which is an effective method for synthesizing copious chiral products with
only a small amount of chiral compounds [110]. CMS acted as a heterogeneous chiral trigger and
proved to be effective for the enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde
1 due to its large reactive surface [111]. Admittedly, the application of CMS for asymmetric synthesis is
still at its infancy. The outstanding features such as large surface area and thermal and mechanical
stability have made them ideal candidates for asymmetric synthesis.
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Table 2. Applications of CMS in various fields.

Applications Compound or Drug Key Points Reference

Enantioselective adsorption l- and d-alanine With a chiral selectivity factor of 3.15 [74]

Enantioselective adsorption l- and d-proline l/d-proline shows different adsorption preference on CMS prepared with l-proline or d-proline [75]

Enantioselective adsorption Racemic valine With a chiral selectivity factor of 5.22 [76]

Enantioselective resolution Racemic valine and alanine With a chiral selectivity factor of 7.52 for alanine and high enantiomeric excess of ca. 45% for valine [77]

Enantioselective resolution Racemic proline, isoleucine, trans-4-hydroxyproline, pipecolic acid, valine,
leucine, and phenylglycine

The CMS prepared via chiral imprinting still exhibits enantioselectivity for racemic mixtures
after calcination. [48]

Stereoselective adsorption d,l phenylalanine, d,l alanine, d,l tryptophan, d,l lysine, racemic naproxen,
and racemic chlorpheniramine maleate

l-Phenylalanine imprinting exhibits enantioselective adsorption for l- and d-phenylalanine with a chiral
selectivity factor of 3.24, and desirable stereoselective adsorption capacity for other racemic mixtures [49]

Enantiomeric adsorption d-(−)-Tartaric acid and l-(+)-Tartaric acid, l-valine, and d-Valine, as well as
(+)-a-Pinene and (−)-a-Pinene

Supramolecular templated materials prepared with guanosine monophosphate (NGM-1) and folic acid
have opposite enantiomeric selectivity for enantiomeric pairs [80]

Chromatographic separations Isomers, PAHs, linear alkanes, long-chain alkanes, Grob’stest mixture,
aromatic hydrocarbons, and chiral compounds As stationary phase for high-resolution gas chromatography separations [89]

Chromatographic separations Phenylalanine, tryptophan, glutamic, alanine, serine, aspartic acid, cysteine,
methionine, tyrosine, and histidine

As chiral stationary phase, with hydroxypropyl-β-cyclodextrin (HP-β-CD) as the chiral selector for
enantioseparation using MCE [86]

Chiral drug delivery Levofloxacin In vitro sustained drug release and antibacterial activity of levofloxacin [46]

Chiral drug delivery Metoprolol In vitro enantioselective controlled release [103]

Chiral drug delivery Ibuprofen Release differentiation, controlled release in vitro, favorable oral bioavailability, elimination half-life,
and anti-inflammatory effect in vivo. [104,105]

Achiral drug delivery Aspirin In vitro controlled release [106]

Achiral drug delivery Indomethacin Improved in vitro dissolution of poorly water-soluble drug [107]

Achiral drug delivery Curcumin Improved in vitro dissolution of poorly water-soluble drug [47]

Achiral drug delivery Nimodipine Improved in vitro dissolution; enhanced bioavailability, therapeutic effect, and brain distribution in vivo [108]

Achiral drug delivery Indometacin Improved in vitro dissolution; enhanced in vivo oral bioavailability and anti-inflammatory effect [50]

Achiral drug delivery Indometacin Different chiral recognition functions in the in-vitro chiral dissolution medium [51]

Achiral drug delivery Nimesulide Different chiral recognition functions in the in-vitro chiral dissolution medium; enhanced in vivo oral
bioavailability and anti-inflammatory effect [52]

Achiral drug delivery Nimesulide Improved in vitro dissolution; enhanced bioavailability and anti-inflammatory effect in vivo [53]

Asymmetric catalysis Diisopropylzinc, pyrimidine-5-carbaldehyde 1 A chiral inorganic trigger of asymmetric autocatalysis [111]



Molecules 2020, 25, 3899 16 of 21

4. Concluding Remarks and Perspectives

In conclusion, this review highlighted much of the exciting progress of CMS in the past decades,
including various strategies for synthesizing CMS materials, proposed mechanisms of CMS formation,
and applications in different fields. The attempts on the control of morphology, pore size, and enantiomer
excess have been summarized, suggesting that the reaction temperature, pH, stirring speed, and molar
ratio are the common factors. Due to its unique chiral features, CMS has broadened its application
in the fields of chiral separation, chiral adsorption, and drug delivery, asymmetric catalysis, etc. It
can not only be used for stereoselective resolution and delivery of chiral compounds but works in
the delivery of achiral drugs in chiral environments. However, in vivo biosafety and biocompatibility
have hardly been investigated and involved. By and large, practical applications of chiral NPs and
their assemblies are still in the initial stages. Further studies on CMS nanoparticles are needed to
investigate toxicity, distribution, degradation, and accumulation in vivo, especially for those that
are designed for drug delivery systems. Current studies are mainly focused on anti-inflammatory
drug delivery; however, more potential applications need to be explored, including l-dopamine for
Alzheimer‘s disease, cyclophosphamide for anti-tumor applications, ketamine used for anesthesia, etc.
Furthermore, CMS modified with targeting agents is another promising direction for further improving
therapeutical efficacy. It is believed that CMS materials could provide an important opportunity to
diagnosis and therapy of various diseases as well as chiral separation and other fields.
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