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Michiel Wels4, Astrid De Greeff5, Hilde E. Smith5, Jerry M. Wells1*

1 Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands, 2 Department of Medical Microbiology, Academic Medical Center,

Amsterdam, The Netherlands, 3 Oral Biotechnology Laboratory, University of Cagliari, Cagliari, Italy, 4 NIZO Food Research B.V., Ede, The Netherlands, 5 Central Veterinary

Institute, Animal Sciences Group, Wageningen University, Lelystad, The Netherlands

Abstract

Streptococcus suis is a major bacterial pathogen of young pigs causing worldwide economic problems for the pig industry. S.
suis is also an emerging pathogen of humans. Colonization of porcine oropharynx by S. suis is considered to be a high risk
factor for invasive disease. In the oropharyngeal cavity, where glucose is rapidly absorbed but dietary a-glucans persist,
there is a profound effect of carbohydrate availability on the expression of virulence genes. Nineteen predicted or
confirmed S. suis virulence genes that promote adhesion to and invasion of epithelial cells were expressed at higher levels
when S. suis was supplied with the a-glucan starch/pullulan compared to glucose as the single carbon source. Additionally
the production of suilysin, a toxin that damages epithelial cells, was increased more than ten-fold when glucose levels were
low and S. suis was growing on pullulan. Based on biochemical, bioinformatics and in vitro and in vivo gene expression
studies, we developed a biological model that postulates the effect of carbon catabolite repression on expression of
virulence genes in the mucosa, organs and blood. This research increases our understanding of S. suis virulence mechanisms
and has important implications for the design of future control strategies including the development of anti-infective
strategies by modulating animal feed composition.
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Introduction

Streptococcus suis is a major bacterial pathogen of young pigs and

a worldwide economic problem for the pig industry. Furthermore,

S. suis is emerging as a zoonotic pathogen associated with

meningitis and septicaemia in humans [1,2]. In pigs, invasive

disease is thought to be caused by translocation of S. suis across the

mucosal epithelium in the upper respiratory tract [3,4]. The

ecological conditions that promote adhesion to, and invasion of

the host mucosa by S. suis are unknown and probably depend on

the environmental conditions and the bacterial genotype including

presence of virulence genes. In vitro studies on adhesion and

invasion by S. suis have often been performed in medium

containing glucose as a carbon source which does not accurately

reflect the situation in vivo. In the oropharyngeal cavity including

the saliva, glucose may be present but concentrations usually

diminish rapidly (within 30 min) after ingestion [5,6] as glucose is

readily absorbed by the host and metabolized by commensal

bacteria. In contrast, starch a-glucans, large polymers of D-glucose

that are present in large amounts in animal feeds [7] can persist in

high concentrations in the oropharynx of humans and pigs [8–11].

A second type of carbohydrate that may promote proliferation of

pathogenic bacteria is animal glycogen released from damaged or

lysed cells. Suilysin, a hemolytic toxin encoded by the S. suis sly

gene, may release, through its cytotoxic effect on epithelial cells,

cellular glycogen [12,13] that may serve as an important substrate

for pathogen growth during the early stages of infection.

Currently, little is known about the expression and regulation of

S. suis virulence factors such as suilysin. Streptococcal pathogens

contain genes required for efficient utilization of a-glucans

including amylases and/or pullulanases which cleave a-1,4 and

a-1,6 glycosidic bonds in starch or glycogen [14–18]. Previously,

we have shown that a cell wall anchored amylopullulanase of S.

suis serotype 2 (apuA-SSU1849) was necessary to support bacterial

proliferation on the a-glucan starch/pullulan (an a-1,6; a-1,4

linked glucose polymer) as a single carbon source and to promote

adhesion of S. suis to porcine tracheal epithelial cells [19].

As in all Gram-positive bacteria, in S. suis the expression of

carbohydrate metabolic enzymes are under the control of the

global transcriptional regulator, catabolite control protein A

(CcpA) that mediates carbon catabolite control (CCC) in presence

of a preferred sugar, usually glucose. CcpA can repress or activate

transcription by binding to cis-acting catabolite response element

(cre) sites in the gene promoter regions [20,21].

Given the relative abundance of dietary complex carbohydrates

such as a-glucans and low level of glucose in the porcine upper

oropharyngeal niche occupied by S. suis, we compared the

genome-wide effects of growth on glucose or the a-glucan
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starch/pullulan on S. suis metabolism and virulence gene

expression. We first constructed a metabolic map for S. suis and

used it to analyze the key metabolic pathways altered by growth on

glucose or pullulan. In addition to genes that play roles in

(carbohydrate) metabolic pathways, 19 virulence genes were

differentially expressed, seven of which were strongly induced

(ratios.10) by growth in pullulan compared to glucose and nine

were shown to contain a consensus cre site in their promoter

sequences. The regulation of apuA, the virulence factor most

strongly induced in pullulan compared to glucose, was investigated

in detail using qPCR analysis of gene transcripts in bacteria grown

in different carbon sources, promoter mapping and binding studies

with CcpA and a newly identified transcriptional regulator, ApuR.

The biological consequences of carbohydrate metabolism and

virulence gene expression were also assessed in an in vitro porcine

tracheal cell model using qPCR, hemolytic assays and adhesion

and invasion assays. Based on these findings we propose a model

for the transcriptional regulation of production of virulence factors

during different stages of infection dependent on a CcpA-

mediated, carbon catabolite control-dependent mechanism. To

verify the predictions of this model, the in vivo expression of apuA

and sly was measured for S. suis serotype 2 recovered from the

blood and organs of pigs infected under controlled conditions.

Materials and Methods

Bacterial strains, plasmids and culture conditions
The virulent S. suis serotype 2 strain S10 [22] and S735-pCOM1-

V10 [23] were used in this study. The genome of S. suis S10 is more

than 99% identical to the genome of S. suis 2 strain P1/7, a

sequenced reference strain of which the genome had been annotated

previously (NCBI Genome and NCBI BioProject http://www.ncbi.

nlm.nih.gov/genome/?term = Streptococcus%20suis) [24]. S. suis

was grown in Todd-Hewitt broth (THB) (Difco) or on Columbia

agar plates with 6% sheep blood (Oxoid) at 37uC under 5% CO2 for

18 hr. A complex medium (CM) (Text S1) was prepared as

previously described [19,25]. The carbohydrates were added

separately and sterilized by autoclaving at 100uC for 10 min

(pullulan) or filtration with 0.45 mM pore size filter (glucose, lactose

and maltotriose). We previously demonstrated that S. suis only grows

to high density in CM when exogenous carbohydrates are added

[19]. Growth in complex medium was determined by measurement

of turbidity at OD600 using a SpectraMax M5 reader (Molecular

Devices LLC).

RNA extraction from in vitro grown S. suis and
quantitative PCR (qPCR)

For RNA extraction, S. suis S10 was grown to exponential (e)

and early stationary (s) phase as indicated in Figure S1. Ten ml of

culture was collected and centrifugated for each time point. The

pellet was immediately frozen in liquid nitrogen until further

handling. The frozen pellet was dissolved in 600 ml RA1 reagent

(Macherey-Nagel) plus b-mercaptoethanol and lysed using a

FastPrep-24 (MP. Biomedicals, Solon, OH) for 6.0 m/sec at

20 sec. Total RNA was purified using NucleoSpin RNA II

(Macherey-Nagel). The quality and the concentration of RNA

were assessed with an Experion System (Bio-Rad) and by analysis

of the A260/A280 ratio (NanoDrop 8000 UV-Vis Spectrophotom-

eter). For qPCR, cDNA was synthesized using SuperScript VILO

(Invitrogen). Primers were designed using Oligo Program version 6

(MedProbe, Oslo, Norway) (Table S1). Quantitative PCR was

performed using a LightCycler 4.0 V and the LightCycler

FastStart DNA Master SYBR Green I Kit (Roche). Constitutive

gene expression in complex media was determined as a ratio of

target gene vs reference gene proS (Text S1) [26]. The level of proS

expression was constant at all the time points analyzed (data not

shown). Two replicates of all samples and primer pairs were

included and the experiment was performed in triplicate. Non-

template controls were included for each gene in each run.

Microarray transcriptome analysis
An S. suis oligoarray (8615 K) containing in situ synthesized 60-

mers was produced by Agilent Technologies (Santa Clara, USA),

based on the genome sequence of S. suis P1/7 [24]. A total of 7651

unique 60-mers having a theoretical melting temperature of

approximately 81uC and representing 1960 ORFs were selected as

described [27]. Genes were represented by 4 (91%), 3 (4%), 2

(2%), or 1 probe (3%). Twenty-five putative genes were not

represented on the array because no unique probe satisfying the

selection criteria could be selected. RNA (1 mg) from S. suis

samples was labeled using the Cyanine 5 (Cy5) labeling reaction

(Amersham Biosciences, Buckinghamshire, UK). Co-hybridization

with labeled cDNA probes was performed on these oligonucleotide

arrays at 42uC for 16 h in Slidehyb#1 (Ambion, Austin, USA).

The data were normalized using Lowess normalization [28] as

available in MicroPrep [29] and corrected for inter-slide

differences on the basis of total signal intensity per slide using

Postprep [29]. Significance of differential gene expression was

based on FDR values lower than 0.05. All microarray data are

MIAME compliant and available in the NCBI GEO database

(http://www.ncbi.nlm.nih.gov/geo/) under accession number

GSE40658. Details of the custom-made 60-mer oligonucleotide

array design (Agilent Biotechnologies, Amstelveen, The Nether-

lands) are deposited in the ArrayExpress database (http://www.

ebi.ac.uk/arrayexpress/) under accession number A-MEXP-1671.

Bioinformatic tools: microarray analysis and cre motifs
search

Differential gene expression of S. suis bacteria grown in CM

supplemented with pullulan (Pul) or glucose (Glc) and harvested at

early exponential (e) or early stationary (s) phase was cross-

compared in different combinations (Pul_e vs Glc_s, Pul_s vs

Glc_s, Pul_e vs Pul_s and Glc_e vs Glc_s). Overlapping and

unique differentials were visualized using Venn diagrams at

http://bioinfogp.cnb.csic.es/tools/venny/index.html.

For all genes and proteins identified in the S. suis P1/7 genome,

Gene Ontology (GO, http://www.geneontology.org) and KEGG

pathway annotations were obtained using the BLAST2GO

software (www.blast2go.org) [30] including annotations based on

terms obtained from EBI using the InterPROScan feature [31]

that is part of BLAST2GO.

BLAST2GO was used to annotate all known S. suis genes and

proteins according to standard Gene Ontology (GO) (www.

geneontology.org) nomenclature. BLAST2GO uses the integrated

Gossip package [30] for statistical assessment of differences in GO

term abundance between two sets of sequences. The GO

enrichment analysis feature of BLAST2GO was then used to

identify functional GO terms that were statistically over- or

underrepresented in the set of genes differentially expressed in

pullulan vs glucose in exponential and early stationary phases of

growth (Fisher’s Exact Test p,0.05).

The MEME (http://meme.sdsc.edu/meme/meme.html) soft-

ware suite (version 4.1.0) was used for the identification of motifs

OM1 and OM2 [32]. As input, we used the promoter sequences of

the MdxE and MalE genes, with well-characterized cre sites, from

Bacillus and Listeria (TGWAARCGYTWNCW [W = A or T;

R = A or G; Y = C or T; N = any base]). A range of motif widths

(15 nt in length) and zero or one motif per sequence were specified
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in our queries and FIMO, part of MEME, was used to search for

this motif in the genome of S. suis P1/7. The algorithm in MAST,

also part of the MEME suite, calculates position scores for the

motif at each possible position within a sequence [33]; motif hits

with a position-specific goodness-of-fit P value below 1024 were

considered to identify putative CcpA binding sites. In silico searches

and comparisons of predicted cre sites within the S. suis P1/7

genome sequence and reconstruction of cre locations in the

predicted operons were conducted using the corresponding

databases provided by the MicrobesOnline database web server

(http://microbesonline.org) and RegPrecise database [34].

59-Rapid Amplification of cDNA Ends (59-RACE)
The 59-rapid amplification of cDNA ends (RACE) system

(Invitrogen) was used to determine the transcription start site of the

apuA gene. Briefly, the first strand cDNA was reverse transcribed

from RNA from 1 mg of total RNA S. suis grown in CM plus

pullulan using the specific primer ASP1 (Table S1). A homopol-

ymeric tail was added to the 39-end of the cDNA using terminal

deoxynucleotidyl transferase (TdT) and the deoxynucleotide

dCTP. The tailed cDNA was amplified in nested-PCR with

Abridged Anchor Primer (AAP) and a second apuA specific primer

ASP2 primer upstream ASP1. The resulting 59-RACE product of

,380 bp was sequenced and analysed by Vector NTI software

(Invitrogen).

Recombinant regulators production and infrared EMSA
The genes encoding the regulators ApuR (amino acids 2 to 312)

and CcpA (amino acids 2 to 333) were amplified by PCR from S.

suis 2 S10 genomic DNA using GoTaq (Promega) with primers

ApuR_F/R and CcpA_F/R respectively (Table S1). The recom-

binant ApuR (rApuR) and CcpA (rCcpA) proteins were cloned in

pTrcHis TOPO2 TA and purified by HPLC affinity chromatog-

raphy (HisTrap affinity column, Amersham Pharmacia Biotech) as

previously described (Text S1) [19]. Fractions containing purified

fusion proteins of the expected size (approx. 38 kDa for ApuR and

40 kDa for CcpA) were collected and dialyzed against buffer

(500 mM NaCl, 50 mM Tris-HCl, pH 7.4) and stored at 280uC
with 10% of glycerol. Protein concentrations were measured using

a BCA Protein Assay kit (Thermo Scientific). Further details can

be found in the Text S1.

Infrared electrophoretic mobility shift assays (EMSA) were

performed utilizing three pairs of fluorescent InfraRed-dye 800

(IRdye 800) labelled primer on the 59 ends (Biolegio, The

Netherlands). The IRdye-primers used to PCR-amplify three

DNA fragments of ca. 120 bp (Pr1-Pr3) contained overlapping

regions to cover the full length of the S. suis P apuA promoter

sequence (Table S1). The IRdye-PCR fragments were purified

with QIAquick PCR Purification Kit (Qiagen) and used for the

binding reaction at a concentration of around 50 nM. DNA

binding reactions were performed in 20 ml of binding buffer

containing 10 mM Tris-HCl pH 8.5, 50 mM NaCl, 10 mM

EDTA, 0.5% Tween-20, 10 mM DTT, and 1 mg of poly(dI-dC)-

labelled IRdye-PCR fragments at room temperature for 30 min.

For the specific and non-specific competition assays, D(+)-glucose

6-phosphate (30 mM) (Sigma) was added to the binding buffer in

the EMSA as CcpA cofactor [35]. Purified rApuR and rCcpA

proteins (from 0.5 to 4.0 mM) were incubated, in separate

experiments, with the fragment Pr2 and a non-specific competitor

fragment that was obtained by PCR amplification of the gene

SSU0879 (from 25 to 150 nM). Two 95 bp oligonucleotides

complementary to Pr2 fragment lacking the two predicted binding

sites (DOM1 and DOM2/cre) were synthesized (Eurogentec, The

Netherlands), PCR-amplified with labelled Pr2F/R primers and

incubated with the proteins. Free and bound DNAs were

separated on 5% Tris-Borate-EDTA (TBE) native gels for

30 min at 10 cm/v. The gels were visualized using a LI-COR

Odyssey Imager and scanned at 800 nm wavelengths.

Titration of hemolytic activity
The hemolytic activity was assayed as previously described [36].

Two different independent assays were carried out in triplicate.

Briefly, S. suis bacteria were grown in CM+Glc and CM+Pul at

three different growth stages: lag (OD600 0.1–0.2), exponential

(OD600 0.2–0.5) and stationary (OD600 0.5–0.7). The supernatant

was collected from 1 ml for each culture by centrifugation at

12000 g for 1 min. Serial twofold dilutions (150 ml) of test samples

were prepared in polystyrene deep-well titer plates (Beckman) with

10 mM Tris-buffered saline (PBS, pH 7.4). Subsequently, 150 ml

of a 2% washed horse erythrocyte suspension in 10 mM Tris-

buffered saline containing 0.5% BSA was added to each well. After

the wells were sealed, the plates were incubated on a Coulter

mixer for 2 h at 37uC. Unlysed erythrocytes were sedimented by

centrifugation (1500 g for 10 min), 150 ml portions of the

supernatant were transferred to a polystyrene flat-bottom micro-

titer plate and measured at 540 nm with a microELISA (enzyme-

linked immunosorbent assay) reader (SpectraMax M5, Molecular

Devices LLC). A 100% lysis reference sample was obtained by

lysing cells with 1% Triton-X and the background lysis was

subtracted before calculation of hemolytic activity.

Adherence and invasion assays using NPTr cell line
Culturing of Newborn pig tracheal cells (NPTr) [37] and

adhesion assays were performed as previously described [19]. For

the invasion assays, S. suis was added to the cell culture at an

multiplicity of infection (m.o.i.) of ,50 and incubated for 2 h at

37uC with 5% CO2 to allow cellular invasion by the bacteria. The

monolayers were then washed three times with PBS; 1 ml of cell

culture medium containing 100 ml/ml gentamycin and 5 mg/ml

penicillin G was added to each well, and the plates were incubated

for 2 h at 37uC, 5% CO2 to kill extracellular and surface-adherent

bacteria. The monolayers were washed three times with PBS, and

cells were disrupted by the addition of 800 ml of ice-cold Milli-Q

water and repeated up-and-down pipetting to release intracellular

bacteria. To enumerate the viable bacteria, serial dilutions of each

cell lysate were plated in triplicate on Columbia sheep blood agar

plates and incubated at 37uC for 24 h. The rate of invasion was

expressed as percentage of initial inoculum that was recovered per

well. Two independent assays were performed in triplicate.

Experimental infection of pigs
The animal experiment described in this paper was approved by

the ethical committee of the Central Veterinary Institute of

Wageningen UR, Lelystad, The Netherlands under proposal

number 2010113c in accordance with Dutch legislation (The

Experiments on Animals Act, 1997) and the general principles

governing the use of animals in experiments of the European

Communities (Directive 86/609/EEC). To reduce unnecessary

suffering of animals, humane end points were used: piglets were

euthanized as soon as S. suis-specific symptoms occurred.

Caesarean-derived, colostrum-deprived (CDCD) piglets were

infected i.v. with 16106 CFU of S735-pCOM1-orf2 [23]. The

strain used to experimentally infect pigs was different to that used

in our in vitro qPCR assays but was selected because it was known

to be effectively recovered from the blood and organs in

experimental pig infections. Genes encoding apuA and sly are

both present in the genome of this strain (not shown). Animals

were euthanized when specific S. suis symptoms (meningitis,
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arthritis, sepsis) were observed, or at the end of the experiment (6

days post infection). After animals were euthanized; organs and

specific sites of S. suis infection were examined macroscopically

and bacteriologically. Tissue samples were collected during post-

mortem observation and snap-frozen in liquid nitrogen.

Quantitative PCR using bacterial-enriched RNA isolated
from in vivo tissues and blood

Blood collected in PAXgene tubes was treated as recommended

by the manufacturer (PreAnalytix/Qiagen). Samples taken from

heart, brain and joints consisted of a mixed pellet of porcine cells

combined with bacteria. All pellets from in vivo samples were

thawed on ice, resuspended in 600 ml of Trizol (Invitrogen,

Carlsbad, CA, USA) and subjected to 40 seconds of 6.5 m s22 in

the Fastprep-24 (MP Biomedicals, Solon, OH, USA) to disrupt

bacteria. The mixture was extracted with 120 ml of chloroform,

mixed for 15 seconds, incubated for 3 min at RT and centrifuged

for 15 min at 20.000 x g. Supernatant was removed and extracted

with 1 volume of chloroform. RNA in the supernatant was

precipitated with 1 volume of isopropanol. After incubation for

30 min at RT or 16 h at 220uC, RNA was collected by

centrifugation, and washed with 70% ethanol. The pellet was

resuspended in water. Subsequently, RNA was purified as

described above. To remove eukaryotic RNA all samples were

treated using the MicrobEnrich kit (Ambion, Austin, Tx, USA).

Bacterial-enriched RNA was amplified using the Ovation PicoSl

WTA system v2 (Nugen, San Carlos, CA, USA). cDNA was

purified using MinElute spin columns (Qiagen, Hilden, Germany)

and diluted 25 times for qPCR analysis. Primers were designed

using PrimerExpress software (Applied Biosystems, Foster City,

CA, USA) (Table S1). Each reaction contained 12.5 pmol forward

primer, 12.5 pmol reverse primer and POWR SYBR Green PCR

Master Mix (Applied Biosystems). qPCR was performed using an

ABI7500 (Applied Biosystems). As the bacterial RNA was

amplified we used a more stringent GeNorm method [38] for

normalization of the real-time qPCR data. GeNorm utilizes

multiple internal control genes for normalization, in this case gyrA,

proS, and mutS that were most stably expressed among 7 tested

genes (data not shown). In each run a standard curve was

incorporated consisting of seven 10-fold dilutions of a vector

containing the cloned target of the PCR. In this way, both target

genes and the reference genes could be related to a standard line.

For each reaction, negative water controls were included. Analysis

was performed using the ABI7500 Software (Applied Biosystems).

Statistical analysis
The results obtained in the in vitro studies were analyzed using

GraphPad Prism version 5.0 software (San Diego California,

USA). All qPCR experiments and hemolytic activity assay were

reproduced at least two times in triplicates and, where indicated,

representative experiments are shown. Two-way ANOVA tests

were carried out using Bonferroni’s post hoc test. The adhesion

and invasion assays were performed at least two times using

triplicate samples. All numerical data presented here are expressed

as means 6 standard error of the mean (SEM). Statistical

significance was determined using a two-tailed unpaired Student’s

t test. Differences were considered significant at p,0.05. Statistical

significance was indicated as follows: * p,0.05; ** p,0.01; ***

p,0.001.

Results

The switch from glucose to a-glucan starch fermentation
has pleiotropic effects on gene expression

To investigate the global effects of a shift in carbohydrate

metabolism on S. suis gene expression we compared genome-wide

transcriptomic data from exponential (e) and stationary phase (s)

cultures of S. suis in complex media (CM) supplemented with 1%

of starch/pullulan (a-1,4; a-1,6 glucan) (Pul) or glucose (Glc) as

carbon sources (Figure S1 and Table S2).

The numbers of genes differentially expressed during growth in

pullulan versus glucose were 1028 (52% of annotated genes)

during exponential growth and 1015 (51% of annotated genes)

during early stationary growth (Figure 1A). In total 738 (37% of

annotated genes) genes were differentially regulated in pullulan

compared to glucose, irrespective of the growth phase. In starch/

pullulan, 209 genes were differentially regulated between the

exponential and early stationary phases of growth; in glucose, 432

genes were differentially regulated for the same comparison

(Figure 1A).

To link gene expression data to changes in bacterial metabolic

and physiological pathways, we obtained gene ontology (GO)

functional gene annotations of all differentially expressed S. suis

P1/7 genes using BLAST2GO (see Methods) (Figure 1B). Similar

analyses were also performed for a subset of differentials, namely

all upregulated genes within the GO category ‘‘carbohydrate

metabolism’’ (Figure S2). The highest number of genes differen-

tially expressed in both growth phases participated in ‘‘carbohy-

drate metabolism’’ (18%) and ‘‘carbohydrate transport’’ (11%).

Genes in the GO category ‘‘energy reserve metabolism’’ (2% for

both growth phases) and lipid metabolism that generates the

precursors of lipoteichoic acids and membrane phospholipids

(11% for both growth phases) were also enriched when bacteria

were grown in starch/pullulan vs glucose (Figure 1B). Other

enriched GO categories included amino acid metabolic pathways

for arginine and proline.

These analyses showed that culturing S. suis in presence of these

different carbon sources leads to changes of 35–50% of the S. suis

transcriptome, affecting not only carbohydrate metabolism but

also basal metabolic and stress survival pathways. To summarize

these broad changes in global transcriptomes, we generated a

visual representation of the main carbohydrate pathway genes for

six growth conditions comparisons according to their expression

ratios (see Methods) (Figure 2A).

Comparative transcriptome analysis of S. suis grown in starch/

pullulan vs glucose revealed that growth in pullulan induced

expression of the maltodextrins utilization gene cluster that

includes apuA and the corresponding phosphotransferase systems

(PTS) and ATP-binding cassette (ABC) transporters. The expres-

sion of the glycolysis pathway genes did not change significantly

during growth in pullulan compared to glucose, suggesting that

activity of this pathway was not altered during growth in both

carbon sources. Rather, it appeared that excess intracellular

glucose was converted in glycogen as energy reserves (glycogen

biosynthesis pathways) or had entered into hexose-pentose

carbohydrate pathways as an alternative to glycolysis (sugar

interconversion and Leloir pathways) (Figure 2A). The biochem-

ical links between the differentially expressed metabolic pathways

are shown in Figure 2B; for each pathway, an extensive overview

of the main genes involved and their functions can be found in the

SI Text S2.
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Links between carbohydrate metabolism and virulence
gene regulation

We analyzed the transcriptome data to see whether the

differential fermentation of starch/pullulan and glucose affected

expression of known or predicted S. suis virulence genes. Seven

genes possibly involved in the invasion of mucosal tissues or

avoidance of host defenses by streptococcal pathogens were highly

upregulated (expression ratio.10) in starch/pullulan compared to

glucose (Table 1, Figure S3, Text S2). As CcpA in Gram-positive

bacteria controls carbohydrate metabolism, one of the most

profoundly altered categories in our microarray experiment, we

investigated the potential role of CcpA in regulating virulence gene

expression. We first used the MEME [39] and MAST [33]

algorithms to mine the genome sequence of S. suis P1/7 for

catabolite-responsive element (cre) sites, short DNA regions that

can be bound by CcpA, using the consensus B. subtilis cre sequence

[40–42].

38 potential cre sites located upstream of the start codon of

predicted proteins (P) or in proximity of the gene transcription

start site (G) were predicted to control expression of 172 genes

through interaction with CcpA (Table S3). Of the 172 genes in the

predicted CcpA regulon, 145 (84%) were differentially regulated

during growth in starch/pullulan compared to glucose (Table S3).

In Table S3 we show 38 cre sites and their downstream genes or

operons and if these were differentially expressed in pullulan

compared to glucose (our study) or in an S. suis serotype 2 DccpA

mutant compared to wild-type [43].

As expected, cre sites were commonly associated with the

predicted promoters of carbohydrate PTS and ABC transporters

(17%) and enzymes for carbohydrate metabolism (25%). Addi-

tionally, cre sites were identified in the promoters of regulators

(10%) and 9 (8%) out of the 19 virulence genes (47%) that were

differentially expressed in pullulan compared to glucose, including

sly and apuA (Table S3). As apuA is essential for growth on pullulan

and was shown to play a role in colonization of mucosal epithelia

in vitro [19] and suilysin is a major virulence factor, we sought to

understand the regulation of the encoding genes in more detail

and explore the role of CcpA in transcriptional regulation during

the switch from glucose to starch fermentation.

Expression of apuA and sly is repressed by CCR
We assessed the relative expression of apuA and sly by qPCR

when S. suis was grown in complex media supplemented with

glucose, lactose, starch/pullulan or maltotriose, all of which

supported efficient growth (Figure 3 panels A). Compared to

growth in glucose or lactose, apuA and sly transcription was

induced by growth in pullulan (up to 5.2 and 1.3 fold after 4 hours

respectively; P,0.001) and maltotriose (up to 2.2 and 0.23 after

two 2.5 hours respectively; P,0.01) (Figure 3 panels B and C).

As apuA and sly contain a conserved cre in the promoter region

(Table S3), we predicted that their transcription might be

repressed during growth on glucose but not lactose. However,

the relative level of apuA transcription in lactose was comparable to

that of transcription in glucose suggesting possible regulation by a

second transcriptional regulator. To test this hypothesis we added

Figure 1. Comparison of genome-wide transcriptomic data for exponential (e) and early stationary phase (s) cultures of S. suis
grown in pullulan (Pul) or glucose (Glc). A. Venn diagram of S. suis genes differentially regulated during growth in pullulan (Pul) vs glucose (Glc)
in the exponential (e) or stationary (s) phase. In each sector the numbers of shared or unique differentially expressed genes is indicated. B. GO term
distribution of S. suis genes differentially regulated in pullulan vs glucose in early exponential and early stationary phase. GO Enrichment analysis was
performed using BLAST2GO (P = 0.05, two-tailed Fisher’s Exact test).
doi:10.1371/journal.pone.0089334.g001
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Table 1. Confirmed and proposed S. suis virulence factors differentially expressed in pullulan (Pul) compared to glucose (Glc).

Annotation S. suis P 1/7 Protein Function Virulence Pul/Glc1 Biblio

Galactosyl/rhamnosyl transferase - SSU0520 CpsE/F CPS biosynthesis Attenuated-pig [71]

Tyrosine-protein kinase Wze - SSU0517 Cps2C CPS biosynthesis Attenuated-pig [71]

N-acetylneuraminic acid synthase - SSU0535 NeuB Sialic acid synthesis Attenuated-pig U [72]

Peptidoglycan GlcNAc deacetylase - SSU1448 PgdA Peptidoglycan Attenuated-pig D [73]

D-alanine-poly ligase - SSU0554 DltA LTA D-alanylation Attenuated-pig [74]

Fibronectin-fibrinogen binding - SSU1311 FbpS Adhesion ECM Attenuated-pig [75]

Enolase - SSU1320 Eno Adhesion ECM no Mutant [76]

Glyceraldehyde-3-P-dehydrog - SSU0153 GAPDH Adhesion ECM no Mutant U [77]

Di-peptidyl peptidase IV - SSU0187 DppIV Adhesion ECM Attenuated-mouse U [78]

Amynoacyl histidine peptidase - SSU1215 PepD Subtilisin- protease No Mutant U.10 [79]

6-phosphogluconate-dehydrogen - SSU1541 6-PGD Adhesion epithelium No Mutant [80]

Amylopullulanase - SSU1849 ApuA Adhesion epithelium Not tested U.10 [19]

Glutamine synthetase - SSU0157 GlnA Adhesion epithelium Attenuated-mouse D [81]

Streptococcal adhesin P - SSU0253 SadP Adhesion epithelium no Mutant U [82]

Arginine deaminase - SSU0580 ArcB Resistance to acidity Not tested U.10 [83]

Anchored DNA nuclease - SSU1760 SsnA DNA degradation Not tested U [84]

Cell envelope proteinase - SSU0757 SspA Subtilisin- protease Attenuated-mouse U [85]

Metallo-serine protease - SSU1773 IgAP IgA1 protease Attenuated-pig U.10 [86]

Suilysin - SSU1231 Sly Haemolysin Unaffected-pig U.10 [36]

Hyaluronate lyase - SSU1050 Hyl hyaluronidase Not tested U.10 [87]

putative oligohyaluronate lyase - SSU1048 HepI/III hyaluronidase Not tested U.10 [88]

Sortase A - SSU0925 SrtA Protein sorting Attenuated-pig [89]

Serum opacity-like factor - SSU1474 OFS Serum opacification Attenuated-pig D [90]

S-ribosyl homocysteinase - SSU0376 LuxS Quorum sensing Attenuated zebrafish D [91]

Muramidase released protein - SSU0706 MRP Unknown Unaffected-pig U [22]

Extracellular protein factor - SSU0171 Ef Unknown Unaffected-pig U [92]

Pul/Glc1 upregulated (U) or downregulated (D) expression when S. suis was grown in pullulan (Pul) compared to glucose (Glc).
doi:10.1371/journal.pone.0089334.t001

Figure 2. Transcriptome analysis of S. suis metabolism in presence of pullulan. A. Heatmap showing the effect of starch/pullulan on the
transcription of genes involved in carbohydrate metabolism and capsule production. Expression (ratios) of genes participating in different pathways
(indicated at the right of the heatmap) are shown for 6 different comparisons (indicated at the top of the heatmap). At the top of the Figure 2A, a
color scale depicts the ratio of expression during growth in pullulan vs. glucose. Red indicates induction (upregulation) of the respective genes and
blue indicates repression (downregulation) of the respective genes for each comparison. For each gene, the S. suis P1/7 locus tag and the gene name
is depicted on the right. B. Schematic representation of S. suis metabolic pathways differentially regulated in pullulan vs glucose. a-glucans (i.e.
starch/pullulan) are degraded by extracellular amylopullulanase (apuA) and the end degradation products, maltose/maltotriose and maltodextrins,
are transported by PTS for maltose/maltotriose (malT) and maltodextrin ABC transport inside the bacteria (malX, malC and malD). Maltodextrins and
maltose are most lilkely converted to glucose-1-phosphate (Glc1P) or a-glucose by 4-a-glucanotransferase and maltodextrin phosphorylase (malQ1
and glgP1 respectively). Glc1P can be metabolized in different pathways: phosphoglucomutase (pgm) isomerize glc1P to glucose-6-phosphate (glc6P)
which may enter glycolysis (violet box) where it is consequently oxidated to pyruvate (pyr). Homolactic fermentation reduces pyruvate into lactate,
whereas heterofermentative growth leads to other products, such as formate, acetate and ethanol (pyruvate metabolism, yellow box). The excess of
glc1P that cannot enter in glycolysis may be used for synthesis of glycogen as an energy reserve (light blue box). The genome of S. suis is predicted to
encode the enzymes sucrose phosphorylase gtfA, a-fructofuranosidase (interconvertase) invrtsC, and raffinose galactohydrolase, rafgH for the
interconversion of raffinose- like sugars. These enzymes participate in the starch and galactose Leloir pathway. Part of Leloir pathway (e.g. galactose-
1-phosphate uridylyltransferase, galT, and galactokinase, galK) was induced more strongly in starch/pullulan. GalT interconverts galactose-1-
phosphate (gal1-P) and UDP-Glucose (UDP-glc) to UDP-galactose (UDP-gal) and glc1P. Alternatively, UDP-glc may be converted into glucuronic acid
(glcur) by UDP-D-glucuronate (UDP-glcur) to enter in an alternative (to glycolysis) pathway for pyruvate (pyr) production. Pathway predictions were
reconstructed based on genome information, literature and database surveys (KEGG, MetaCyc). The following gene annotation was downloaded from
NCBI: galM, aldose 1-epimerase; galK, galactokinase; galE, UDP-glucose 4-epimerase; galT, galactose 1-phosphate uridylyltransferase; pgm,
Phosphoglucomutase/phosphomannomutase; pfkA, 6-phosphofructokinase; fba, fructose bisphosphate aldolase; tpiA, triosephosphate isomerase;
gapA, glyceraldehyde-3-phosphate dehydrogenase; pgk, phosphoglycerate kinase; gpmA, phosphoglyceromutase; eno, phosphopyruvate hydratase;
pyk, pyruvate kinase; ldh, L-lactate dehydrogenase; pyroX, pyruvate oxidase; ackA, acetate kinase; pfl, pyruvate formate-lyase; adlE acetaldehyde-CoA
dehydrogenase; adhE alcohol dehydrogenase; glgB, glgA glycogen synthase; glgC glucose-1-phosphate adenylyltransferase; glgP glycogen
phosphorylase.
doi:10.1371/journal.pone.0089334.g002
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starch/pullulan or maltotriose to S. suis growing exponentially in

either lactose (Figure 4A) or glucose (Figure 4B) and quantified

apuA transcription at different time points (Figure 4 panels C and

D). In medium containing lactose, both maltotriose and pullulan

strongly induced expression of apuA after 30 min (4.5 fold and 2.2

fold respectively; P,0.001; Figure 4C). In medium containing

glucose the addition of maltotriose or starch/pullulan had a small

effect on the expression of apuA; only a slight increase (1.6 fold;

P,0.05) of apuA expression was observed 30 min after addition of

maltotriose (Figure 4D). These results show that when S. suis is

growing in glucose for 30 min, apuA transcription is hardly

induced by pullulan or maltotriose but when grown in lactose for

30 min, apuA expression is strongly induced by pullulan and

maltotriose.

CcpA and ApuR bind to conserved operator motifs in the
apuA promoter

We hypothesized that the induction of apuA expression by

maltotriose was due to ApuR, a putative transcriptional regulator

upstream of apuA that possesses its own promoter and a predicted

rho-independent downstream terminator (Figure 5A). Homology

searches indicated that ApuR was a LacI/GalR type regulator

containing an N-terminus DNA-binding and a C-terminus ligand-

binding domain that can be bound by a specific sugar.

Comparison of ApuR with protein sequences in the UniProt

database revealed similarities to several transcriptional regulators

of operons (Figure S4) which comprising maltodextrin utilization

gene clusters. In the top ranking were listed for highest similarities:

BL23 YvdE (Lactobacillus casei; 53% identity) [44], MdxR (syn.

YyvdE; B. subtilis 168; 49% identity) [45,46], the activator EGD-e

Lmo2128 (Listeria monocytogenes; 47% identity) [47] (Figure 5 E–F)

and the activator MdxR (Enterococcus faecium E1162; 49% identity)

[48].

As apuA is considered a relevant virulence factor and its

regulation by different carbohydrates could be of biologic

relevance, we decided to investigate the binding of CcpA and

ApuR to operator sites in the apuA promoter. To elucidate the

apuA promoter regulatory modules we determined the transcrip-

tion start site, conducted homology searches for binding motifs of

known regulators in silico, and performed in vitro promoter binding

assays with purified transcription factors (TFs). The transcriptional

start site of the apuA transcript was determined experimentally by

59-RACE to be 31 nt upstream of the start codon. The consensus

235 element (59-TTGCAA-39) for RpoD (sigma 70) and the 210

element (59-TATATA-39) required for interaction with the RNA

polymerase and transcription initiation were found near the

expected positions upstream of the transcription start site

(Figure 5B). Visual inspection of the apuA promoter region

revealed the presence of two potential operator motifs (OMs) that

were also listed in the RegPrecise database [34]. One mdxR-like

operator motif, designated here as OM1, was found 13 bp

upstream of the 235 element; a second operator motif predicted

cre site designated OM2/cre, located at position 230 nt, overlap-

ping the conserved 235 element; this overlap could interfere with

binding of the RNA polymerase (Figure 5 C–F).

To demonstrate binding of ApuR and CcpA to the predicted

operator motifs, we expressed and purified these proteins in E. coli

with a C-terminal His-tag (Figure S5 and B) and tested DNA

binding in electrophoretic mobility shift assays (EMSA) using three

overlapping fragments of the PapuA promoter region (Pr 1–3;

approx. 120 bp in length). A single rApuR-DNA complex was

observed with promoter fragments Pr2 and Pr3 suggesting the

binding motif for ApuR lies within the 64 bp overlapping region

(Figure S6 panels A and B). The binding of ApuR to Pr2 was

shown to be concentration dependent in the range from 0.5 to

4.0 mM of rApuR (Figure S6C). The specificity of rApuR binding

to Pr2 was shown in a competition EMSA using unlabeled

competitor DNA (i.e. fragment Pr2) or an unlabeled non-specific

competitor lacking the two predicted OM1 and OM2/cre operator

binding motifs. The non-specific competitor DNA fragment had

no effect on Pr2 complex formation whereas the specific

competitor (Pr2) substantially reduced rApuR binding (Figure S6

panels D and E). To investigate whether ApuR binds to OM1 or

OM2/cre, promoter fragments lacking these motifs were synthe-

sized and tested in the EMSA (i.e. DOM1 and DOM2/cre, Table

S3 and S4). In three independent experiments we observed a lower

Figure 3. Transcriptional regulation of apuA and sly grown in
the presence of different carbon sources. A. S. suis S10 growth
curve at 37uC in CM containing 1% (w/v) of different sugars as
indicated. The graph shows the means and standard deviations from
two independent experiments. B. and C. Relative expression of apuA
and sly in S. suis grown in CM containing 1% (w/v) different sugars was
determined by qPCR. The transcript levels of apuA were measured after
2.5 hours and 4 hours of growth relative to the reference gene proS,
which is constitutively expressed at similar levels during growth in
different sugars (data not shown). The height of the bars represent
mean values for the relative expression data 6 SEM from 2 independent
experiments (n = 3). Statistical significance was calculated using a two-
way ANOVA test followed by Bonferroni’s post hoc test (* p,0.05; **
p,0.01; *** p,0.001.).
doi:10.1371/journal.pone.0089334.g003
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amount of the rApuR-DNA complex with fragments lacking

DOM1 suggesting that ApuR binds most strongly to this motif. In

some experiments, complex formation was slightly reduced when

DOM2/cre was deleted, possibly due to low affinity binding of

ApuR to DOM2/cre at higher protein concentrations (Figure S6F).

Similarly, binding of CcpA to the PapuA OM2/cre that overlaps

with the predicted 235 promoter element was demonstrated by

EMSA using a fluorescent IRdye-Pr2 fragment containing the

putative cre site (Figure S6 panels G–J). An increasing amount of

an rCcpA-DNA complex was observed with an increasing

concentration of purified rCcpA (1.5 to 5 mM) (Figure S6G).

The complex could be outcompeted by addition of unlabeled Pr2

but not with non-specific competitor DNA indicating that CcpA

binds specifically to PapuA (Figure S6 panels H and I). Recombinant

CcpA also appears to bind to the DOM2/cre fragment although

less DNA/transcription factor complex is observed suggesting that

CcpA may also bind OM1 or other sequences in Pr2 with lower

affinity (Figure S6J).

Taken together, these results show that apuA expression may be

regulated via repression through CcpA-mediated carbon catabo-

lite control and via transcriptional activation through a dedicated

regulator encoded by the apuR gene.

Relief from CCR increases adhesion and invasion of S. suis
to porcine epithelial cells

As our microarray data showed increased transcription of apuA

and seven other genes predicted to play a role in S. suis adhesion

and invasion in starch/pullulan compared to glucose, we

hypothesized that culturing S. suis in pullulan as single carbon

source, thus in absence of glucose might increase its adhesion and

invasion capacity. Exponentially growing S. suis grown in CM

supplemented with 1% of glucose or pullulan were incubated with

NPTr cells for 2 h at m.o.i. of ,50 bacteria/cell. To maintain

similar conditions during the period of co-culture, the cell culture

medium was replaced with glucose-free DMEM supplemented

with either 1% glucose or pullulan during the 2 h incubation with

S. suis. In agreement with previous adhesion studies using the

NPTr cell line [19], we found that adherence of S. suis bacteria

grown in CM plus glucose was 19.461.0% of original inoculum

(averaged over 3 independent replicates). The adherence of S. suis

was significantly increased (24.961.7%; P,0.05; 3 replicates) after

growth in 1% pullulan (Figure 6A). In accordance with previous

studies using a human Hep-2 cell line [49], S. suis 2 S10 showed

low invasion capacity (0.05% of original inoculum) in glucose.

Invasiveness of S. suis was nearly 9-fold higher when grown in

Figure 4. Induction of apuA expression by putative inducers in the presence of glucose or lactose. A. Growth curves of S. suis S10 in CM
containing 1% w/v lactose or B. 1% w/v glucose before and after addition of 0.25% w/v putative inducers (arrow) i.e. maltotriose, pullulan or glucose.
The graphs show the means and standard deviations from two independent experiments. C. Relative expression of apuA genes following addition of
putative inducers to S. suis growing in CM plus lactose. D. Relative expression of apuA genes following addition of putative inducers. The relative
expression of apuA, was measured by qPCR 10, 30, 60 and 90 minutes after addition of the putative inducers, The height of the bars shows the mean
(n = 3) fold change in expression 6 SEM from two independent experiments. Statistical significance was calculated using a two-way ANOVA test
followed by Bonferroni’s post hoc test (* p,0.05; ** p,0.01; *** p,0.001.).
doi:10.1371/journal.pone.0089334.g004
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pullulan (0.40%60.01) (P,0.01) (Figure 6B), corresponding to

approximately 8.06102 cfu/ml when grown in glucose, to

7.26103 cfu/ml in pullulan. In conclusion, S. suis grown in

starch/pullulan showed a small but significant increase in

adherence to, and a strongly increased invasiveness of NPTr cells

compared to S. suis grown in glucose.

Carbon catabolite control of suilysin expression
The expression of sly was strongly induced in pullulan compared

to glucose, both in exponential and stationary phase (+18.1/+17.9

ratio in pullulan vs glucose). The presence of a cre site in the sly

promoter region suggested that the induction of sly during growth

in pullulan was due to relief from CcpA-mediated carbon

catabolite repression rather than a specific induction by starch/

pullulan. As suilysin has been proposed to compromise the

integrity of the host epithelium and facilitate entry into the body

we measured erythrocyte hemolytic activity (HA) of culture

supernatants of S. suis grown in glucose or pullulan. HA was

significantly higher in supernatants of S. suis grown in pullulan

compared to glucose over a wide range (ca. 0.5) of OD600 values

(P,0.001; Figure 7). In early stationary phase, HA for pullulan

and glucose cultures was approx. 91% and 18%, respectively

(Figure 7).

In vivo expression of the virulence factors apuA and sly
Based on the results from this study so far, we predicted that

expression of apuA and sly would be substantially higher in the

mucosal colonization stage of the infection when glucose is scarce

than in the bloodstream where glucose levels are sufficient to

support growth and induce CCR. S. suis invasive disease often

leads to infection of the joints, heart and brain. To test our

hypothesis S. suis was recovered from the blood, synovial joints,

heart and brains of infected piglets immediately after euthanasia

and RNA was extracted from the blood and organs. As

hypothesized we found transcription of sly and apuA to be

significantly higher in the synovial joints, heart and brain than

in the blood (Figure 8). These results show that our regulatory

Figure 5. Identification of conserved operator binding motifs for ApuR (OM1) and CcpA (OM2) in S. suis P1/7, B. subtilis 168 and L.
monocytogenes EDG-e. A. The 6 kb amylopullulanase gene apuA is located downstream of apuR which encodes a putative transcriptional regulator
of the LacI/GalR family. Located downstream of apuA are a cluster of genes predicted to be involved in uptake and fermentation of ascorbate (sgaT,
sgaB). For each gene, the direction of transcription is indicated by an arrow, the size of which is proportional to the length of the corresponding open
reading frame. Putative promoters are represented by arrows and transcription terminators by loops. The operator motifs OM1 and OM2/cre (shaded
sequences in B, C and D) were determined using the MEME software suite and their relative probability p-values are indicated. B. The apuA promoter
based on the experimentally determined transcription start site (Ts arrow) C. The B. subtilis mdxE (BSU34610) promoter D. The L. monocytogenes
lmo2125 promoter E. and F. Sequence alignment of the DNA binding domains of the ApuR and CcpA proteins of S. suis, L. monocytogenes and B.
subtilis. Conserved amino acid sequences are indicated in black.
doi:10.1371/journal.pone.0089334.g005
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model (Figure 9) was informative for some aspects of porcine

infection with S. suis.

Discussion

Asymptomatic carriage of S. suis is common in adult pigs but

young piglets that become colonized by S. suis may develop

invasive disease. Host susceptibility to S. suis infection may occur

due to inadequate host immune responses but may also be due to

environmental factors such as the availability of glucose or other

Figure 6. Comparison of adherence A. and invasion B. of S. suis after growth in CM+1% w/v pullulan (black bars) vs. CM+1% w/v
glucose (white bars). NPTr confluent monolayers were co-cultivated for 2 h with S. suis S10 bacteria grown in CM plus pullulan or glucose.
Adherence and invasion are shown as mean % values of the initial inoculum from two independent experiments in triplicate. Error bars indicate the
SD.
doi:10.1371/journal.pone.0089334.g006

Figure 7. Hemolysis assay of S. suis growing in two different
carbon sources. A. The hemolysis production was measured by
analyzing the supernatant of S. suis grown in CM plus 1% w/v of
glucose or pullulan in the lag, exponential and stationary phase (OD600

values 0 to 0.56). B. Deep-well titer plate showing hemolytic activity of
supernatants collected from S. suis grown in CM supplemented with
glucose or pullulan.
doi:10.1371/journal.pone.0089334.g007

Figure 8. Expression of apuA and sly in S. suis recovered from
blood and tissues of experimentally infected piglets. The relative
expression of apuA and sly in S. suis blood, joints, heart and brain
recovered from intravenously infected piglets calculated using the
GeNorm method [38] using three housekeeping genes for data
normalization. A. The relative expression of apuA (6107) are shown
for S. suis recovered from blood and different organs. B. Relative
expression of sly (6105) in blood and different organs.
doi:10.1371/journal.pone.0089334.g008
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carbohydrates. Here we investigated whether the availability of

different types of carbohydrates, notably starch and glucose, could

influence the switch from an asymptomatic to a pathogenic

association of S. suis with the host. To search for the mechanism

controlling such a switch, we initially performed an in vitro

transcriptomics study on S. suis grown in CM medium supple-

mented with pullulan or glucose; the latter mediates carbon

catabolite control in streptococci via catabolite control protein A

(CcpA). Pullulan, a starch, was chosen since we had previously

found that growth of S. suis in presence of this carbohydrate

induces expression of apuA, a gene known to be involved in

carbohydrate metabolism [19].

A switch from growth in glucose to starch/pullulan resulted in a

change of ca. 50% of its transcriptome, involving multiple GO

function categories (Figure 1). As anticipated many genes

annotated with GO term ‘‘carbohydrate metabolism’’ were

differentially expressed, including the a-glucan-starch-degrading

amylopullulanase apuA [19] and downstream pathway genes

required for maltodextrin metabolism (Figure 2).

In other streptococcal pathogens CcpA and CCC have been

shown to play a role in virulence gene expression as well as

colonization [50,51] and virulence in an animal model [51]. To

predict which S. suis genes might be regulated by CCC we

searched for conserved cre sites in the genome of S. suis P1/7 and

identified 172 genes, some of which were organized in operons

(Table S3). Of these 172 genes, 145 (84%) were differentially

regulated during growth in pullulan compared to glucose. The

difference in these two values may be due to incorrect cre site

predictions or to the fact that expression of certain genes or

operons are controlled by additional transcription factors, for

example suilysin may be also co-regulated by the two-component

system CovS/CovR (SSU1190-SSU1191) [52]. The 145 genes

that appeared to be controlled by CCC were also compared to a

published microarray data set generated by comparison of an S.

suis serotype 2 DccpA mutant with the corresponding wild-type

strain [43]. In total, 99 genes comprising 38 operons were

differentially regulated in both datasets (68% overlap; Table S3).

The CCC-regulon included genes encoding transcriptional

regulators, carbohydrate metabolic enzymes and, importantly,

putative or known virulence factors (8%) (Table S3). The most

highly up-regulated virulence gene in pullulan compared to

glucose was apuA encoding a cell-surface amylopullulanase

required for growth on starch or glycogen that also contributes

to adherence to porcine epithelial cells in vitro and thus may be

relevant to mucosal colonization [19]. Expression of apuA was

highly induced during growth in starch/pullulan or maltotriose,

the most abundant degradation product of pullulan, and repressed

during growth in glucose (Figure 3 and 4). An analysis of the

promoter region of apuA revealed the presence of two transcription

binding motifs (Figure 5) and EMSA studies showed that apuA

expression was co-regulated by CcpA and a second regulator,

ApuR (Figure S6). The similar location of the conserved OM in

the promoters regulated by ApuR and the known transcriptional

activator of maltodextrin utilization cluster Lmo2128 in L.

monocytogenes [47] and MdxR in E. faecium [48], with high sequence

similarity to ApuR, suggested that ApuR might also be a

transcriptional activator. Addition of maltotriose to S. suis

exponentially growing in medium containing lactose as a carbon

source, significantly induced expression of apuA and, to a lesser

extent, apuR suggesting that ApuR, like Lmo2128, might be

allosterically regulated by maltotriose (Figure 4). In contrast, CcpA

binding repressed apuA transcription, most likely through binding

to an OM2/cre site overlapping with the 235 promoter element,

since addition of maltotriose to S. suis bacteria precultured in

glucose as sole carbon source did not lead to significant induction

of apuA. This dual regulatory model postulates that apuA is

maximally expressed when glucose level is low, thus allowing relief

from CcpA-mediated catabolite repression, and when substrates

that can be degraded by apuA are present.

In addition to apuA, eighteen other predicted or known

virulence genes were differentially regulated in pullulan vs glucose,

seven of which were highly upregulated in pullulan compared to

glucose (Table 1, Figure S3). One of these genes was sly encoding

suilysin, a pore-forming toxin which was secreted in 5-fold higher

amounts in pullulan compared to glucose (Figure 7); its increased

expression was confirmed in qPCR assays (Figure 3). Suilysin plays

an important role in damaging host epithelial [12,13,53],

endothelial [54,55] and immune cells [56], suggesting that suilysin

could play roles in vivo in damaging and penetration of different

cell and tissue types, promoting tissue invasion and inhibition or

killing of leukocytes [3,57]. Of note, virulent S. suis strains that do

not produce Sly may still be invasive in pigs, possibly best

Figure 9. Links between carbohydrate metabolism and virulence in Streptococcus suis. At the mucosal surfaces a high ratio of a-glucans to
glucose upregulates expression of several sugar transport systems and metabolic pathways associated with starch metabolism. Additionally, several
virulence factors involved in adherence to host cells, degradation of connective tissue (spreading factors), and avoidance of phagocytic killing,
including ApuA and suilysin are upregulated when glucose is diminished. Suilysin may facilitate dispersion of bacteria in mucosal tissues due to loss
of barrier integrity. Once S. suis reaches the bloodstream metabolism is adapted for optimal growth on glucose and the expression of virulence
factors is reduced by CcpA mediated-repression. In infected organs glucose levels are lower than in the blood and are further reduced by
inflammation and utilization by S. suis leading to upregulation of ApuA, suilysin and other virulence factors. In the organs and tissues, glycogen
released from damaged cells is degraded by ApuA to generate maltodextrins which sustain growth of S. suis.
doi:10.1371/journal.pone.0089334.g009
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exemplified by Allen et al (2001) [58] who reported that an isogenic

S. suis sly mutant, lacking of the hemolytic characteristics, was

nearly as invasive as the wild-type parental strain in a pig infection

studies after bacteria intravenous injection. The authors of the

study by Allen et al (2001) [58] proposed that Sly is relevant for

translocation across epithelia and during the infection stages prior

to dispersion via the blood, and proposed that production of Sly

may correlate with increased severity of clinical symptoms and the

capacity to reach higher colonization of organs. This notion is

supported by the study of King et al (2001) [59] who reported that

sly was present in a significantly higher number of isolates from

pigs with meningitis, septicemia, and arthritis than isolates from

pigs with pneumonia. Conversely, sly is also significantly overrep-

resented in asymptomatic carriage strains of pigs [59], showing

that presence of sly does not exclusively correlate with invasive

isolates. In addition to suilysin, it is likely that other virulence

factors are relevant for the invasion of connective tissue, such as

the hyaluronidase and heparinase II/III-like proteins. Note that

the function of these putative virulence proteins still has to be

demonstrated. In contrast to our results, sly expression was not

increased in a recent study which compared gene expression of a

wild-type strain with a DccpA mutant grown to stationary phase

[43]. The reason for these different findings may be related to the

use of THB growth medium [43], a rich medium containing

glucose, instead of the supplemented CM medium that we used, or

different growth stages or different physiological states of the

bacteria in the different media. Lastly, it is also possible that

expression of sly is controlled by a CcpA-independent carbon

catabolite repression mechanism although a cre site is present in

the sly promoter region.

We propose that at mucosal surfaces the high ratios of starch to

glucose promotes production of extracellular ApuA to support

growth of S. suis in the oropharyngeal cavity. Additionally relief

from CCR leads to higher expression of other virulence genes

involved in mucosal infection (Figure 9). Indeed, in an in vitro

experiment employing tracheal epithelial cells and S. suis bacteria

grown with starch/pullulan or glucose as sole carbon source, a

nearly 10-fold increase of epithelial cell invasion was observed

when bacteria were grown with pullulan. We observed that in

presence of starch, S. suis induced expression of the metabolic

pathway enzymes required for transport and metabolism of

maltodextrins and the glycogen biosynthesis enzymes which

generate bacterial glycogen energy reserves. Several studies have

linked bacterial glycogen metabolism to environmental survival,

symbiotic performance, and colonization and virulence [60–67].

Glycogen reserves may be important for survival and fitness of S.

suis when carbon sources are scarce. During colonization, relief

from CCR would increase production of suilysin and may

facilitate dispersion of S. suis into the deeper tissues due to loss

of barrier integrity [4,53,58]. We hypothesized that once S. suis

would reach the bloodstream, higher glucose concentrations (from

4.4 to 6.6 mM) would repress expression of apuA and sly by CCR

(Figure 9). Indeed, gene expression analysis of bacteria isolated

from the blood or organs of acutely infected pigs showed

significantly lower expression of apuA and sly in blood than in

the organs (Figure 8) supporting occurrence of CCR. In contrast,

S. suis isolated from infected joints, heart or brain tissue expressed

significantly higher levels of sly and apuA than bacteria isolated

from blood. These results are probably due to the lower levels of

glucose in the tissues (0.25–0.55 mM in normal synovial fluid and

joint cavities) than in the blood (from 4.4 to 6.6 mM) [68,69] and

thus, relief from CCR when bacteria were located in the organs. In

inflamed tissues, glucose levels may have been reduced further due

to the consumption of glucose by neutrophils and macrophages. It

is tempting to speculate that induction of suilysin expression in the

tissues will release host glycogen from damaged cells that would be

degraded by ApuA and metabolized to further support growth of

S. suis (Figure 9). Additionally S. suis may be able to metabolize

host glucans such as hyaluronan which is present in high

concentrations (3–4 mg/ml) in synovial fluid [70].

Taken together, our results clearly demonstrate that the

availability of glucose and other carbohydrates such as starch serves

as an environmental cue to regulate the expression of apuA and other

virulence genes. We propose a schematic model of how carbohy-

drate content of different tissues could modulate S. suis metabolism

at the different stages of infection (Figure 9). Our novel findings

demonstrate a regulatory mechanism dependent on relief from

CcpA repression that links carbohydrate metabolism and virulence

at least in vitro and that might play roles in vivo, at different stages of S.

suis infection. Awareness of the role of carbohydrate content of the S.

suis environment may lead to new strategies for combating this

important disease, for instance via modulation of carbohydrate

content and composition of animal feeds, or the inhibition of S. suis

enzymes required for metabolism of starch.

Supporting Information

Figure S1 S. suis S10 growth curve at 37uC in CM containing

pullulan or glucose at 1% w/v.

(TIF)

Figure S2 GO term distribution of S. suis genes with the

annotation ‘‘carbohydrate metabolism’’ that were differentially

upregulated in starch/pullulan vs glucose. A. early exponential (e)

and B. early stationary phase (s) Enrichment analysis performed

using BLAST2GO (P = 0.05, two-tailed Fisher’s Exact test).

(TIF)

Figure S3 Putative and characterized virulence gene expression

ratios in pullulan vs. glucose. The genes are grouped according to

their predicted or described function in S. suis pathogenesis and

expression ratios are shown for exponential (white bar) and early

stationary (black bar) growth phases. Envelope: cps2E*-SS0519

putative galactosyl transferase; wchF*-SSU0520 putative rhamno-

syl transferase; cps2C-SSU0517 tyrosine-protein kinase; cpss_lpl-

SSU1123 putative glycosyltransferase; cpss_lpl2-SSU1124 putative

rhamnosyl transferase pgdA-SSU1448 peptidoglycan GlcNAc

deacetylase, dltA-SSU0596 D-alanine-poly(phosphoribitol) ligase

subunit1; Envelope/Adhesion neuB-SSU0535 putative N-acetyl-

neuraminic acid synthase; neuC-SSU0536 putative UDP-N

acetylglucosamine 2-epimerase; neuA-SSU0538 N-acylneurami-

nate cytidylyltransferase; Adhesion: apuA*-SSU1849 amylopullu-

lanase; sadP-SSU0253 putative surface-anchored protein receptor;

gnd-SSU1541 6-phosphogluconate dehydrogenase; Adhesion/In-

vasion: srtA-SSU0925 sortase; fbpS-SSU1311 fibronectin-fibrino-

gen binding protein; gapdH-SSU0153 glyceraldehyde-3-phosphate

dehydrogenase; eno-SSU1320 enolase; pepD-SSU1215 putative

surface-anchored dipeptidase; dpp IV-SSU0187 Xaa-Pro dipepti-

dyl-peptidase; Invasion: sly* SSU1231 suilysin (haemolysin); hepII/

III*-SSU1048 heparinase II/III-like protein; hyl*-SSU1050 hyal-

uronidase precursor; ssnA*-SSU1760 surface-anchored DNA

nuclease; arcB*-SSU0580 arginine deaminase; igaP-SSU1773

putative surface-anchored serine protease; sspA-SSU0757 cell

envelope proteinase; ofs-SSU1474 serum opacity factor; luxS-

SSU0376 S-ribosyl homocysteinase; Marker: mrp-SSU0706 mu-

ramidase-released protein precursor; ef-SSU0171 putative surface-

anchored protein. * Indicates the presence of a predicted cre in the

virulence gene promoter region.

(TIF)
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Figure S4 Gene homologues in Gram-positive bacteria that

share $45% of protein identity with the S. suis apuR gene (black

arrows). The annotations of the genes downstream of apuR are also

indicated and colored to show functional relatedness. Gene names

are indicated above the arrows.

(TIF)

Figure S5 SDS polyacrylamide electrophoresis of purified

transcriptional regulators. A. Coomassie stained SDS-PAGE gel

(12%), showing purified fraction His-ApuR at the expected size of

38 kDa and B. Western Blot of the same gel with a monoclonal

His-tag antibody protein. C. Coomassie stained SDS-PAGE gel

(12%) of purified His-CcpA at expected size of 40 kDa.

(TIF)

Figure S6 EMSA with purified ApuA and CcpA. A. Schematic

representation of the apuA promoter (PapuA) and fluorescently

labeled PCR amplified DNA fragments (Pr1, Pr2 and Pr3) used for

EMSAs. B. to F. DNA amplicons and DNA/rApuR protein

complexes visualized in native 5% acrylamide gels using the

Odyssey Imager. In these EMSA assays the concentration of each

DNA amplicon was around 6 ng (,50 nM) B. EMSA of 100 nM

rApuR binding to Pr1, Pr2 and Pr3. C. Increasing DNA/rApuR

complex formation in presence of 4 ng Pr2 DNA amplicon and an

increasing amount of rApuR (,0,5–4 mM as indicated) D.

Competitive EMSA using increasing concentrations of non-

fluorescent non-specific competitor DNA (lacking OM1 binding

motifs). E. Competitive EMSA using increasing concentrations of

non-fluorescent Pr2 as a specific competitor. The amounts of

competitor DNA added are indicated (25–150 nM) F. Identifica-

tion of specific ApuR binding sites in PapuA. PR2: native promoter

region fragment 2. DOM1 and DOM2/cre are synthetic DNA

fragments of PapuA that lack the predicted binding sites. + rApuR

recombinant present - rApuR recombinant absent. G. to J. DNA

amplicons and DNA/rCcpA protein complexes visualized in

native 5% acrylamide gels using the Odyssey Imager. G. DNA/

rCcpA complexes in the presence of increasing amounts of rCcpA

as indicated. H. Competitive EMSA using increasing concentra-

tions of non-fluorescent specific competitor I. Competitive EMSA

using increasing concentrations of non-fluorescent non-specific

competitor DNA (lacking OM2/cre binding motifs) J. DNA/

rCcpA complex formation with fluorescent Pr2 and two synthetic

promoter Pr2 fragments lacking either OM2/cre or OM1.

(TIF)

Table S1 Oligonucleotide primers used in this study.

(DOCX)

Table S2 Microarray data (xl file): S. suis genes differentially

regulated during growth in pullulan (Pul) vs glucose (Glc) in the

exponential (e) or stationary (s) phase.

(XLSX)

Table S3 cre-site prediction in the genome of S. suis P1/7.

(DOCX)

Table S4 Motif OM1-OM2/cre like motifs identified in S. suis 2

P1/7 and other Gram positive bacteria.

(DOCX)

Text S1 Material and methods.

(DOCX)

Text S2 Results (Supporting text on differentially expressed

genes, pathways and their predicted or known functions).

(DOCX)
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