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Abstract: The aim of the present study was to evaluate structural and biochemical aspects related to
the interaction of resistant (RRIM 937, IAC 502 and 507) and susceptible (RRIM 600) rubber tree clones
with C. tamarillo. For such analysis, ultrathin sections of the leaf limb were embedded in historesin
and differently stained to verify structural alterations and presence of starch grains, arginine, lipids,
tannins and lignins. The total proteins and activity of the enzymes peroxidase and (PAL) were
quantified. Stomatal density was also analyzed under a scanning electron microscope. Data indicated
alterations in the cell content of resistant clones inoculated with the pathogen, as well as greater lignin
and lipid accumulation in these samples. For tannins, there was no difference between inoculated
and non-inoculated clones. Arginine was found at greater quantities in IAC 502 and 507. Starch
grains were not detected in any of the analyzed samples. Protein level and stomatal density were
lower in resistant clones. Peroxidase activity was more expressive in resistant clones. PAL activity,
there was no significant difference between clones. The lignin and lipids, total protein, peroxidase
activity and stomatal density may be related to the resistance of rubber tree clones to anthracnose.

Keywords: Colletotrichum; Hevea brasiliensis; lignins; lipids; proteins; stomata

1. Introduction

The use of resistant materials is considered ideal to control diseases since they can be
applied to large areas and have low environmental impact. Plant resistance to pathogens can
be classified as qualitative and quantitative [1,2]. There is evidence that resistance of rubber
trees to anthracnose, caused by fungi belonging to the genus Colletotrichum, is qualitative
since different resistance degrees have been reported among the tested clones. A recent
study developed by Antonio et al. [3], in the region of Votuporanga City, São Paulo State,
Brazil, identified different disease severity levels among 22 clones tested in the field, and
the most resistant clones were IAC507 and IAC505, followed by IAC502, RRIM937, PB235
and PB311, which presented moderate symptoms. In that study, the clone RRIM600 showed
the highest susceptibility to anthracnose, both in the field and in the laboratory.

Similar results were obtained by Qianchun [4] for other genotypes in China, both in
the field and in the nursery, using 34 clones from 1984 to 1989. Based on the development
of infection by C. gloeosporioides in different rubber tree clones, that author reported longer
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latent period and shorter sporogenesis resulting in lower disease severity for resistant
clones, in contrast to shorter incubation period, earlier sporogenesis and greater disease
severity for susceptible clones [4]. Magalhães et al. [5], noticed those same aspects for
C. tamarillo-rubber tree pathosystem of resistant (IAC 502, IAC 507 and RRIM 937) and
susceptible (RRIM 600) plants.

The mechanisms involved in the plant resistance to pathogens can be divided into
pre-formed mechanisms, which are present in the plant before its contact with a potential
pathogen, and post-formed mechanisms, which are activated in response to the presence of
a pathogen. They are subdivided into structural and biochemical mechanisms. Structural
mechanisms consist in barriers imposed by the plant anatomy, preventing the pathogen
from entering or colonizing tissues. Stomata (number, morphology and opening period)
and cuticle (composition and thickness), and cytoplasmic aggregations and cell lignification
are examples of pre and post-formed structural mechanisms, respectively [6]. Biochemical
defense mechanisms consist in substances that are toxic or provide adverse conditions for
the pathogen development inside the host. This category includes production of peroxidase
and phenylalanine ammonia lyase (PAL). Such enzymes can impair the establishment of
the disease since they interfere with the entrance of the pathogen [6]. Rubber trees have
been reported to present accumulation of some substances like peroxidase, scopoletin and
phenolic compounds when attacked by Phytophthora palmivora [7].

Studies related to cytological observations and enzyme production related to the devel-
opment of a microorganism and the plant cell response can provide significant information
for physiological and molecular investigations regarding compatibility or incompatibility in
plant-host interactions [6]. The events that determine host resistance or susceptibility often
occur in a limited population of cells or in cells close to the host pathogen interface in the area
known as the infection site. Thus, cytological approaches are still of great importance in the
analysis of biological phenomena and in the understanding of plant-host interaction [8].

Thus, the present study aimed to evaluate structural (stomatal density) and biochemi-
cal (total proteins, lignins, tannins, starch grain, arginine, lipids and enzymes) resistance
mechanisms that may be involved in the interaction of rubber trees with C. tamarillo,
complementing the understanding of this pathosystem.

2. Material and Methods
2.1. Inoculation and Preparation of Leaflets from Rubber Trees for Histological Analysis

The leaflets employed in the experiments were collected from the middle part of clones
RRIM 600 (susceptible to anthracnose) and IAC 507, IAC 502 and RRIM 937 (resistant to
anthracnose). The plants were six years old, on average, and were grown in a clonal garden
of São Paulo’s Agency for Agribusiness Technology (APTA), Center of Rubber Tree and
Agroforestry Systems, Agronomic Institute of Campinas (IAC), Votuporanga, São Paulo
State, Brazil.

The study was developed with a C. tamarillo isolate from rubber tree, stored at the
Mycology Collection of Forest Pathology of São Paulo State University (Unesp), College
of Agricultural and Technological Sciences, Dracena, São Paulo State, Brazil, which was
molecularly identified through sequencing of part of its DNA (MW031267). To obtain the
inoculum for the experiments, the fungus was cultured in oat medium, at 25 ± 1 ◦C and
continuous photoperiod, for seven days. The colonies were washed in sterile distilled
water and the obtained suspension was filtered in sterile gauze, quantified in a Neubauer
chamber, and adjusted to 105 conidia/mL.

Leaflets from rubber tree clones RRIM 600, RRIM 937, IAC 502 and IAC 507 were
disinfected superficially with NaClO at 2% and washed in sterile water; then, they were
inoculated with 30µL aliquots containing conidial suspension (105 conidia/mL) of the
isolate. The inoculated area was delimited with plastic adhesives. Leaflets treated only
with a 30 µL aliquot of sterile water, without the presence of the fungus, were also used for
comparison with the inoculated samples.



Plants 2021, 10, 985 3 of 12

Following inoculation, the leaflets were kept in a humid chamber, at 30 ± 1 ◦C, in
the dark, under high saturation and humidity, for 24 h. Subsequently, 5mm-diameter
samples were obtained from the inoculated areas and fixed in “Karnovsky” solution
(2.5% glutaraldehyde, 2.0% paraformaldehyde, 0.05 M phosphate buffer, pH 7.2). After 24 h,
the samples were removed from the fixative and processed according to the methodology
described by Firmino et al. [9].

The sections were stained with toluidine blue, which is classified as a metachromatic
dye for showing a different coloration according to its reaction to the substrate. Mucilage
and pectin-rich walls will turn purple, cellulosic walls will become blue, and lignified walls
and non-structural phenolic compounds may turn green or greenish-blue [10,11]. To visu-
alize starch grains, arginine, total lipids and tannins, the histological sections were stained
with Lugol, α-Naphthol, Sudan III and vanillin-hydrochloric acid, respectively [10,11]. For
visualization of lignin, which is known to have natural fluorescence, unstained sections were
analyzed under an ultraviolet light optical microscope, using 490nm excitation filter [12,13].

Slides containing the processed samples were analyzed under a Jena Lumar microscope,
Zeiss, located at School of Agriculture, São Paulo State University (Unesp), Brazil, São Paulo
State, Botucatu. An Opton video-camera system, model TA-0124XS, coupled to an optical
microscope, was used to capture the images, which were compared among clones. The
evaluation of this experiment was of the qualitative type, observing and comparing the
presence and understanding of the compounds in the different treatments.

2.2. Quantification of Total Proteins in Rubber Tree Clones

To quantify protein levels, protein extract was obtained from the leaves of all 4 studied
clones. Five leaves were randomly collected from the middle sprouting part of three plants
of each clone, totaling 15 leaves for each studied clone. The collected leaves did not show
symptoms of the disease.

From each collected leaf, 0.5g fresh sample was weighed, ground in liquid nitrogen and
mixed with 2 mL sodium acetate buffer (0.1 M and pH 5.0) containing 1.0 mM EDTA and 0.3 g
polyvinylpyrrolidone (PVP). Then, these sample were kept at −20 ◦C in a freezer and, after
12 h, centrifuged at 12000 rpm, for 30 min, at 4 ◦C; the supernatant was transferred to new
1.5 mL tubes, and the samples were stored at −80 ◦C. Each weighed fresh sample generated
two 1.5 mL tubes of supernatant, both of which were analyzed as replicates for the readings of
each evaluated sample. To quantify total protein level, the Bradford method was adopted [14].

2.3. Activity of the Enzymes Peroxidase and PAL in Different Rubber Tree Clones

For these analyses, the clones had leaves (with symptoms and without symptoms)
collected from their apical part, which shows predominance of the disease and is exposed
to the pathogen under natural field conditions, since anthracnose is already known to
naturally occur in the studied clonal garden. Five leaves were collected from each of three
trees in the clonal garden.

The activity of peroxidase was analyzed according to the methodology described by
Hammerschimidt et al. [15], while the activity of PAL was determined through colorimetric
quantification of trans-cinnamic acid released from phenylalanine substrate, based on the
methodology described by Umesha [16]. All enzymatic assays were performed in duplicate
for each treatment.

2.4. Quantification of Stomata under Scanning Electron Microscope

To complement the study, the quantity of stomata in the clones was obtained under a
scanning electron microscope. First, leaf fragments (around 5mm diameter) were collected
from each clone and fixed in “Karnovsky” (2.5% glutaraldehyde, 2.0% paraformaldehyde,
0.05 M phosphate buffer, pH 7.2) for a minimal 24 h period. Then, they were processed,
according to the methodology described by Firmino et al. [9], for analysis under a LEO435-
VP scanning electron microscope, located at the Center for the Electron Microscope of Luiz
de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, São
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Paulo State, Brazil. The obtained images were used to determine the number of stomata
on the abaxial leaf surface. The evaluation included 15 leaves, which were collected from
different plants of one same clone (five leaves per plant). From each leaf, 10 images were
captured for counting the stomata.

2.5. Data Analysis

The histological evaluation of this experiment was of the qualitative type, observing
and comparing the presence of the compounds in the different treatments.

The total proteins, activity of the peroxidase and PAL enzymes and number of stomata
were statistically analyzed by comparing the averages of the values received according to
the Tukey test, at 5% probability, using the SISVAR software, developed by UFLA - Federal
University of Lavras, Paraná, Brazil. [17].

3. Results and Discussion
3.1. Histological Analysis of Leaflets from Rubber Trees

Changes were detected in the epidermis and palisade parenchyma of clones inoculated
with C. tamarillo, which may be justified by mucilage or pectin accumulation (Figure 1).
Such granular content may correspond to a structural response of the plant after the
pathogen attack and can be related to cytoplasmic aggregation, since these aggregates
have cell structures like rough endoplasmic reticulum and Golgi apparatus associated
with normal biosynthesis processes and possibly secrete materials that can be used in the
formation of halos and papillae [18]. However, more specific histochemical tests are needed
to visualize such reactions.

Both susceptible and resistant plants have large quantities of lipids in their epidermis,
but even greater quantities were observed in inoculated plants, especially in the spongy
parenchyma (Figure 1). Lipids and their metabolites can interference the plant-pathogen
interactions, including in the resistance mechanisms of the plant and in the pathogenesis
stage. Some microorganisms can detect the presence of lipids in a host, mainly those
present in the plant surface wax [6,19,20]. They can produce toxins that have the plant lipid
metabolism as target. In contrast, plants evolved to recognize microbial lipopolysaccharides
(LPSs), sphingolipids and lipid-biding proteins as elicitors of defense response. Recent
studies have demonstrated that membrane lipids interact resistance proteins that recognize
pathogen-derived effectors, developing specific resistance [19,20]. The plant cell membranes
also serve as reservoirs for the release of biologically active, such as jasmonic acid, which
is involved in signaling and modulation of plant defense responses [19]. During a stress
response, lipids of the fatty acid type tend to be peroxidized by lipoxygenase or reactive
oxygen species, originating metabolites involved in the host defense [20].

Starch grains were not found in any of the analyzed samples. As starch is synthesized
in the leaves during the day, from carbon fixed by photosynthesis, and mobilized during
the night to assist in continuous respiration and saccharose exportation, possible reasons
for not observing it were the short evaluation of the infection, the adopted inoculation
method (detached leaves), or the time of leaf collection. In addition, it must be considered
that this substance is accumulated in storage organs, including seeds, fruits, tubers and
storage roots [21].

Arginine was found at greater quantities near the epidermis close to the stomata, and
clones IAC 502 and IAC 507 seemed to accumulate more of this group of protein amino
acids, whether they were inoculated or not (Figure 2). Together with serin, arginine forms a
complex that influences the constitutive and alternative processes of plant defense against
biotic and abiotic agents [22]. This characteristic corroborates the present results since those
two clones were more resistant than RRIM 937, intermediately resistant, and RRIM 600,
susceptible to anthracnose [3]. Although several steps of its biosynthesis remain poorly
characterized in plants, arginine is known to be a precursor of nitric oxide. In contrast,
conversion of arginine into polyamines is well documented, and several plant species may
also have ornithine as a precursor of polyamines. Both nitric oxide and polyamines play
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essential roles in the regulation of plant development processes, as well as in the responses
to biotic and abiotic stress. Therefore, arginine catabolism may serve not only to mobilize
nitrogen sources but also to adjust the plant development and defense mechanisms against
stress, including attacks of microorganisms [23].
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Figure 1. Histological sections stained with toluidine blue and Sudan IV, for lignin visualization,
from clones IAC 502 (A–D), IAC 507 (E–H), RRIM 937 (I–L) and RRIM 600 (M–P). Inoculated (left)
and non-inoculated clones (right). EPI Ada—Epidermis Adaxial; EPI Aba—Epidemis Abaxial;
PP—Palisade Parenchyma; SP—Spongy Parenchyma; VB—Vascular bundle.
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Figure 2. Histological sections stained with α-Naphthol, for arginine visualization (yellow), and
vanillin-hydrochloric acid, for tannin visualization (pink), from clones IAC 502 (A–D), IAC 507
(E–H), RRIM 937 (I–L) and RRIM 600 (M–P). Inoculated (left) and non-inoculated clones (right).
EPI Ada—Epidermis Adaxial; EPI Aba—Epidemis Abaxial; PP—Palisade Parenchyma; SP—Spongy
Parenchyma; VB—Vascular bundle.

Tannins constitute a group of phenolic polymers with defense properties against
microorganisms [24]. In the analyzed samples, they were found at greater quantities in con-
ductive vessels and at low quantities in the epidermis, slightly differing between inoculated
and non-inoculated plants (Figure 2). According to Scalbert [25], the toxicity of tannin to
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fungi, bacteria and yeasts can be explained by different mechanisms, such as inhibition of
extracellular microbial enzymes, suppression of substrates necessary for microbial growth
or direct action on the microbial metabolism through oxidative phosphorylation inhibition.
However, several microorganisms are known to be capable of surpassing the tannin-based
defenses of plants. They can process such substances through polymer synthesis, oxidation,
tannin biodegradation or synthesis of siderophores.

The presence of lignin was more significant in the inoculated plants than in the
non-inoculated ones (Figure 3), which indicates that it can be one of the main defense mech-
anisms of rubber tree against anthracnose. Cell wall thickening and lignin accu-mulation
in the epidermis and vessels were observed. Autofluorescence occurs for plant-pathogen
combinations showing a hypersensitivity response originated from the incompatibility
between the pathogen and the plant, i.e., certain plant resistance [12]. First, the cells may
use decompartmentation to activate the rapid oxidation of their phenolic content and the
consequent lignification and suberization of cells, causing their death, in order to interfere
with the infection processes or injuries at the immediate site of cell penetration; secondly, if
such defense fails and the stress persists, those same processes pro-mote prolonged accu-
mulation of indole acetic acid and ethylene, which cause an additional metabolic cascade
in peripheral cells, including secondary metabolism and growth responses to produce
peridermic defense in depth [26].
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Figure 3. Histological sections under UV light, for lignin visualization (blue fluorescence), from clones
IAC 502 (A,B), IAC 507 (C,D), RRIM 937 (E,F) and RRIM 600 (G,H). pl: spongy parenchyma pp: palisade
parenchyma; Ep ada: abaxial epidermis. Bar=200µm. Inoculated (left) and non-inoculated clones (right).
EPI Ada—Epidermis Adaxial; EPI Aba—Epidemis Abaxial; PP—Palisade Parenchyma; SP—Spongy
Parenchyma; VB—Vascular bundle.
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3.2. Quantification of Total Proteins in Rubber Tree Clones

The total protein level was greater in clone RRIM 600 than in the remaining resistant
clones (Figure 4), which may be associated with the plant resistance/susceptibility reaction
since some enzymes produced by the pathogen, such as proteases, are part of the signaling
necessary for the infectious process [1,6]. Redman and Rodriguez [27] developed a mutant
of C. coccodes that did not produce protease, showing the importance of this enzyme for the
fungus in the infectious process, since the mutants could not cause disease in tomato plants.
Thus, a higher protein level in susceptible plants may imply better substrate recognition
by the pathogen for the establishment of parasitic relationships. However, it must be
highlighted that the protein level may vary according to several factors like the age of the
leaf and the nutritional conditions of the plant.
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probability. Coefficient of variation: 32.05.

The activity of peroxidase was more expressive in resistant clones, especially in samples
that showed symptoms of anthracnose (Figure 5). Such results corroborate the data obtained
in the analyses for presence of lignin. Peroxidase catalyzes the oxidation and the eventual
polymerization of hydroxycinnamic alcohol groups in the presence of hydrogen peroxide,
forming lignin; it also participates in the oxidation of phenolic compounds, which accumulate
as a response to infection [6,28]. Although PAL is related to different phenolic compounds
of plant defense, which are present in the formation of esters, flavonoids and lignins [6], its
activity had no significant difference between treatments (Figure 6).
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3.3. Quantification of Stomata under Scanning Electron Microscope

Stomatal density was lower in clones IAC 502, IAC 507 and RRIM 937, similarly to
protein level (Figures 7 and 8). The stomatal density of resistant clones was within the
parameters cited by different authors for other rubber tree clones (364 stomata·mm−2);
nevertheless, the mean number of stomata per mm2 in our studies was higher for clone
RRIM 600 [29,30]. This is probably due to the different counting techniques adopted and
to the morphological and environmental factors that can influence stoma formation. A
high number of stomata may favor the direct penetration of the fungus into the plant, but
the opening period and the location of these stomata must be considered to assure their
true role in plant resistance to pathogens.
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variation: 15.80.

Depressions in the guard cells may favor the adherence of Colletrotrichum spores to
the host and, as shown in Figure 7, were more pronounced in RRIM 600 than in resistant
clones. Pereira et al. [31], described that penetration of C. gloeosporioides in coffee plants
was mostly direct and rarely through the stomata, but fungal conidia frequently adhere to
the depression at epidermal cells and guard cells.
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The obtained results help understand the mechanisms involved in the resistance of
rubber tree clones to anthracnose, paving the way for further studies that can contribute to
selecting materials resistant to this disease.

4. Conclusions

This study found that the accumulation of lignin and lipids was observed more signifi-
cantly in clones inoculated with C. tamarillo. In the case of tannins, they were detected more
frequently in conducting vessels and in a smaller amount in the epidermis, differing slightly
between inoculated and non-inoculated plants. Arginine was observed most strongly in
clones IAC 502 and IAC 507. No starch grains were found in the analyzed samples. The
activity of the peroxidase enzyme was higher in resistant clones, mainly in samples with
symptoms of anthracnose. The opposite was verified for the protein level and stomatal
density, being lower in these clones. The activity of the PAL enzyme did not differ between
the samples analyzed.
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