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Vesicular trafficking is a key determinant of the statin response in acute
myeloid leukemia
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m Cholesterol homeostasis has been proposed as one mechanism contributing to

« Inhibition of RAB chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part
protein function of clinical trials in AML has shown encouraging results. Chemical screening of primary
mediates the human AML specimens by our group led to the identification of lipophilic statins as
anti-acute myeloid potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to
leukemia activity of identify modulators of the statin response uncovered the role of protein
statins. geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular

trafficking, in mediating the effects of statins on AML cell viability. We further show that

« Statin sensitivity is ] o ) ] - ) )
statins can inhibit vesicle-mediated transport in primary human specimens, and that

associated with

enhanced vesicle-
mediated traffic. trafficking. Overall, this study sheds light into the mechanism of action of statins in AML

and identifies a novel vulnerability for cytogenetically diverse AML.

statins sensitive samples show expression signatures reminiscent of enhanced vesicular

Introduction

Despite many advances in acute myeloid leukemia (AML) therapy in recent years, this disease is still
associated with poor prognosis. Early preclinical studies suggested that adaptation of cholesterol homeo-
stasis represents 1 of the mechanisms contributing to chemoresistance in AML."? Statins are competi-
tive inhibitors of HMGCR, the rate-limiting enzyme in the mevalonate pathway. This pathway is involved in
cholesterol biosynthesis and produces a variety of other bioactive compounds, most notably isoprenoids,
required for intracellular signaling and vesicle-mediated trafficking,® as well as coenzyme Q, which acts
as an electron carrier in mitochondrial respiration.*

The effect of statins on AML cell survival has been predominantly studied using AML cell lines that do
not completely recapitulate the disease and that poorly reflect the genetic heterogeneity of AML. Studies
exploring the impact of statins on primary AML cells show a heterogeneity of responses®® and a possible
association between poor prognosis and reduced statin sensitivity.®> To improve AML treatment out-
comes, addition of pravastatin to standard induction chemotherapy has been explored, and results of a
phase 1 study are encouraging.” A phase 2 study of idarubicin and cytarabine in combination with
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Figure 1. Inhibition of RAB protein function mediates the anti-AML activity of statins. (A) Heatmap illustrating sensitivity of 20 primary human AML specimens to
2.5 puM of indicated statins. (B) Viability of primary human AML cells after 6-day incubation in the presence of 2.5 wM of atorvastatin or pravastatin. Horizontal lines represent

median inhibition achieved by pravastatin (14%) and atorvastatin (74%). (C) Expression levels of genes implicated in transmembrane transport of pravastatin in primary

human AML specimens from the Leucegene cohort. Dotted line, 1 TPM. (D) Schematic representation of the mevalonate pathway. Red bars indicate targets of statins and
TH-Z145 compound. (E) Knockdown efficiency achieved by short hairpin RNAs (shRNAs) targeting HMGCR, FDFT1, and GGPS1 (top) and corresponding fold change
(FC) in atorvastatin 50% inhibitory concentration (ICso; bottom) in OCI-AML5 cells. Average of 3 shRNAs achieving similar knockdown levels is shown with standard error of
the mean. (F) Heatmaps showing excess bliss scores for treatment of OCI-AML3 and OCI-AMLS5 cells with atorvastatin, cytarabine, and TH-Z145 at indicated

concentrations. Numbers in white refer to the sum of all scores >0 (indicative of synergy) for each surface. Representative of 2 independent experiments. Results were
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pravastatin reported an increased complete response rate for
relapsed AML® and improved outcomes for patients with unfavor-
able prognosis.®

Using our recently developed in vitro culture system that preserves
leukemia stem cell activity,'® we report the statin response of a col-
lection of >200 primary human AML specimens. We uncovered
vesicular trafficking as a key determinant of statin sensitivity in AML
and as a novel vulnerability for this disease.

Methods

Primary human AML specimens and cell
viability assays

This study was approved by the Research Ethics Boards of the Uni-
versity of Montréal and Maisonneuve-Rosemont Hospital. All sam-
ples were collected with informed consent and were annotated and
cryopreserved at the Quebec Leukemia Cell Bank. Viability assays
were performed as described."

Whole-genome CRISPR/Cas9 screening

Screening was performed as described.'>'®

Endocytosis/pinocytosis assay

Specimens were treated with atorvastatin (1 wM) with or without
geranylgeranyl pyrophosphate (2 pM) for 24 hours. Cells were
exposed to dextran—fluorescein isothiocyanate or dextran—Pacific
blue at 100 pg/mL for 30 minutes. Data were acquired using
FACSCanto and analyzed using Diva software.

Results and discussion

Lipophilic statins are potent inhibitors of
cytogenetically diverse AML

We previously interrogated a collection of 20 cytogenetically diverse
primary human AML specimens (supplemental Table 1 screen 1)
with a library of 5013 compounds'' and hits included statins (Fig-
ure 1A). Screening of an extended cohort of specimens (n = 78;
supplemental Table 1 screen 2; supplemental Table 2) highlighted
the dramatically reduced ability of pravastatin to inhibit AML cell via-
bility compared with atorvastatin (Figure 1B). Statins differ in their
import mechanism; whereas lipophilic statins such as atorvastatin
mostly cross cell membranes by passive diffusion, hydrophilic statins
like pravastatin mainly enter cells via carrier-mediated mechanisms.'*
Interestingly, organic anion transporter proteins, responsible for prav-
astatin cellular uptake, are poorly transcribed in primary human AML
specimens (Figure 1C), likely explaining the low pravastatin efficacy
in AML cells in vitro.

Screening of a cohort of 205 primary human AML specimens (sup-
plemental Table 1 screen 3; supplemental Table 3) revealed median
statin  50% inhibitory concentrations in the nanomolar range

(supplemental Figure 1A) and high correlation between responses
to the different lipophilic statins across specimens (supplemental
Figure 1B). Statin sensitivity was associated with lower marrow
blast counts (P = .015), but not with patient age, sex, or white
blood cell counts (data not shown). Core binding factor [inv(16)
and t(8;21)] AML and M4Eo AML by French-American-British clas-
sification also showed enhanced statin sensitivity (supplemental Fig-
ure 1C-D). Normal mobilized peripheral blood— or cord
blood—derived CD34* and more primitve CD34"CD45RA™ cells,
on the other hand, were characterized by reduced statin sensitivity
compared with AML samples (supplemental Figure 1E). Overall,
these results demonstrate that lipophilic statins are potent anti-AML
agents.

Inhibition of RAB protein function mediates the
anti-AML activity of statins

Inhibition of protein geranylgeranylation has been suggested to
mediate inhibition of AML cell viability by statins.'®'® In support of
this, short hairpin RNA-mediated knockdown of HMGCR and
GGPS1 (Figure 1D) in OCI-AMLS5 cells indeed led to a an increase
in statin sensitivity (Figure 1E), likely by rendering cells more depen-
dent on the mevalonate pathway, as reported by others,'” whereas
knockdown of the FDFT1 gene did not affect AML cell sensitivity to
statins (Figure 1E). Synergy between treatment with atorvastatin
and GGPS1 inhibitor TH-Z145'® was also observed for inhibition of
AML cell viability (Figure 1F; supplemental Figure 2).

To further dissect the statin response, we performed whole-genome
CRISPR/Cas9 genetic screening in the NALM6 acute lymphoblastic
leukemia cell line already optimized for CRISPR/Cas9 screening by
our group'® and observed an overrepresentation of gene sets
related to vesicle-mediated transport among genes showing syn-
thetic lethal interactions with statin treatment (supplemental Figure
3), with RAB family genes (RAB1A, RAB1B, and RAB6A) and
RAB activator TBC1D20 found to be among the most significant
synthetic lethal interactions (Figure 1G; supplemental Table 4).
Short hairpin RNA-mediated knockdown of RAB genes also sensi-
tized AML cells to statins (supplemental Figure 4), suggesting that
identified interactions are relevant to AML. Interestingly, RAB pro-
teins are central coordinators of vesicular trafficking,'® requiring ger-
anylgeranylation for membrane association and intrinsic activity, and
knockouts of GGPS1 and of the 2 subunits of the RAB geranylger-
anyltransferase (RABGGTA and RABGGTB) were found among
most significant synthetic lethal interactions (Figure 1G). HMGCR
knockout also showed a synthetic lethal interaction with statins (sup-
plemental Table 4). Knockout of genes involved in cholesterol
homeostasis (LDLR and LDLRAP1) as well as of the FDFT1 gene,
on the other hand, rescued the effects of statins (Figure 1G). This
could be explained by the inactivation of negative feedback loops
normally induced by high cholesterol levels,?® leading to upregula-
tion of the mevalonate pathway. Altogether, these results, along with
the reported ability of statins to inhibit geranylgeranylation and mem-
brane targeting of RAB proteins,?’ suggest that inhibition of RAB

Figure 1. (continued) analyzed using the R (v3.6.1) SynergyFinder (v2.0.12) package. (G) Results of CRISPR/Cas9 whole-genome screening performed in NALM6 cells

treated with 150 nM of cerivastatin. Robust analytics and normalization for knockout screens (RANKS) scores are presented (average of 10 sgRNAs per gene), and statisti-

cal assessment was performed by RANKS with false discovery rate (FDR) correction. Genes with FDR values <0.001 were assigned a FDR value of 0.001. **P < .0001.

PP, pyrophosphate; TPM, transcripts per million.
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Figure 2. Vesicular trafficking is a key determinant of statin sensitivity in AML. (A) Impact of atorvastatin treatment on endocytosis as assessed by uptake of

dextran—fluorescein isothiocyanate (FITC) or dextran—Pacific blue (PB) determined by flow cytometry in primary human AML specimens and CD34" cord blood (CB) cells.

Results for statin-sensitive specimen 09H113 are representative of 12 primary human AML specimens (supplemental Figure 5). Results for CD34* CB cells are representa-

tive of 2 independent experiments performed with CD34 " cells isolated from 2 different CB units. Specimen 14H017 was the only statin-resistant specimen among samples

tested as part of this study. (B) Enrichment scores of gene sets related to vesicular transport in top 25% statin-sensitive vs -resistant primary human AML specimens of the

Leucegene cohort (n = 204). Gene set enrichment analysis (GSEA) was performed with GSEA 4.1.0 software from the Broad Institute using a list of differentially expressed

genes between sensitive and resistant specimens ordered based on fold change of expression. (C) Enrichment profiles of top 4 enriched gene sets related to vesicular

transport in statin-sensitive compared with statin-resistant specimens. FDR, false discovery rate; GGPP, geranylgeranyl pyrophosphate; ICso, 50% inhibitory concentration;

NES, normalized enrichment score; NK, natural killer.

protein function contributes to the effects of statins on AML cell
viability.

Vesicular trafficking is a key determinant of the
statin response in AML

We next assessed the impact of statin treatment on vesicular traf-
ficking in AML cells. Atorvastatin was indeed able to inhibit endocy-
tosis/pinocytosis in statin-sensitive primary human AML specimens

512 KROSL et al

(Figure 2A; supplemental Figure 5), but not in statin-resistant AML
or CD34™ cord blood cells (Figure 2A). Addition of geranylgeranyl
pyrophosphate (Figure 1D) rescued the effect of atorvastatin on
endocytosis/pinocytosis (Figure 2A), suggesting that statins inhibit
vesicular transport by interfering with protein geranylgeranylation.
Vesicle-mediated transport has been shown to be essential for cell
viability,? suggesting that inhibition of vesicular trafficking by statins
can account for their effects on cell viability. We next performed dif-
ferential transcriptome analysis of statin-sensitive and -resistant
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specimens (Figure 2B), and among gene sets enriched in statin-
sensitive specimens compared with statin-resistant ones were
found several related to vesicular trafficking (Figure 2B-C). These
results suggest that statin-sensitive leukemias show enhanced
vesicle-mediated trafficking, likely rendering them more vulnerable to
inhibition of this process by statins and providing a possible expla-
nation for the observed impact of vesicular trafficking regulator
downregulation on statin sensitivity in AML.

Genomic, chemical, and molecular approaches thus identified
vesicle-mediated trafficking as a determinant of the statin response
in AML and as a novel vulnerability in this disease. Targeting this
process therefore represents a promising therapeutic avenue in
AML, and these results suggest that clinical development of statins,
so far mostly limited to pravastatin, and more particularly of potent
lipophilic statins, might demonstrate benefits for AML treatment.
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