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Abstract

The microbial flora associated with Hyalomma anatolicum ticks was investigated using cul-

ture-dependent (CD) and independent (next generation sequencing, NGS) methods. The

bacterial profiles of different organs, development stages, sexes, and of host cattle skins

were analyzed using the CD method. The egg and female gut microbiota were investigated

using NGS. Fourteen distinct bacterial strains were identified using the CD method, of which

Bacillus subtilis predominated in eggs, larval guts and in adult female and male guts, sug-

gesting probable transovarial transmission. Bacillus velezensis and B. subtilis were identi-

fied in cattle skin and tick samples, suggesting that skin is the origin of tick bacteria. H.

anatolicum males harbour lower bacterial diversity and composition than females. The NGS

analysis revealed five different bacterial phyla across all samples, Proteobacteria contribut-

ing to >95% of the bacteria. In all, 56611sequences were generated representing 6,023

OTUs per female gut and 421 OTUs per egg. Francisellaceae family and Francisella make

up the vast majority of the OTUs. Our findings are consistent with interference between

Francisella and Rickettsia. The CD method identified bacteria, such B. subtilis that are can-

didates for vector control intervention approaches such paratransgenesis whereas NGS

revealed high Francisella spp. prevalence, indicating that integrated methods are more

accurate to characterize microbial community and diversity.

Author summary

Crimean-Congo hemorrhagic fever (CCHF) is a viral disease transmitted by hard ticks

(Ixodidae: Ixodida) that has a 10–40% fatality. While more than 3 billion people are at risk

acquiring the disease, on the order of 10,000–15,000 people are infected and over 500 peo-

ple die every year from the disease. The main vector and reservoir of the CCHF virus are

ticks of the genusHyalomma. As the microbiota influences vector competence, its manip-

ulation may be used for vector control. In this study, we characterize cultivable and non-

cultivable bacteria fromH. anatolicum ticks. Field collected samples were processed for

aerobic culture and 16s rRNA Next Generation Sequencing (NGS). The cultivable bacte-

rium Bacillus subtilis was found in all samples analysed, including H. anatolicummales,
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females, larval guts and host skin. NGS revealed Francisella spp as the most common non-

cultivable bacteria inH. anatolicum ticks. Bacterial OTUs varied between eggs and female

guts, indicating that community structure varies by tick developmental stage. Our results

indicate that B. subtilis is be a potential paratransgenesis candidate for vector control

intervention. Integrated methods (bacteria culture, NGS) are recommended for more

accurate characterization of microbial community and diversity.

Introduction

Tick-borne diseases (TBDs) are imposing a growing burden for human and animal health

worldwide. Ticks are obligate blood-feeders and can transmit to humans and animals a wide

variety of pathogenic agents such as arboviruses, bacteria, and parasites. Hard ticks (Ixodidae)

typically have three life stages (larva, nymph, adult) and feed on distinct host species at each

developmental stage, making them important sources of zoonotic diseases [1].

Hyalomma anatolicum (Acari: Ixodidae) is the most important tick involved in transmis-

sion of the Crimean-Congo hemorrhagic fever (CCHF) virus in Iran [2–4]. In addition of

CCHF,H. anatolicum is also a vector of a wide variety of agents such as Thogoto virus, Wad

Medani virus (WMV), Theileria sp., Ehrlichia sp., Rickettsia sp., Babesia ovis [5–13], causing

transitory lameness [14] and Coxiella burnetii [15].

Symbiotic and commensal microbes can confer numerous unfavourable, neutral, or benefi-

cial effects to their arthropod hosts, and can play several roles in fitness, development, nutri-

tional adaptation, oviposition, egg hatching, larval survival, reproduction, defence against

environmental stress, and immunity [16–24]. Non-pathogenic microbes may also play a role

in transmission of tick-borne pathogens (TBP), with many possible consequences for both ani-

mal and human health [25].

The hard tick midgut is colonized by symbiotic, environmentally acquired, and maternally

transmitted bacteria. Characterization ofH. anatolicummicrobiota requires the isolation of

the natural bacteria via culture. The cultivable bacteria may be used for vector control inter-

ventions such as paratransgenic and RNAi approaches [26,27] that may be explored to render

ticks refractory to pathogen infection. On the other hand, non-cultivable bacteria are impor-

tant components of the tick microbiome. They include endosymbionts beneficial for tick sur-

vival such as Coxiella spp., [28–30], Rickettsia spp., [31–34], Francisella spp., [33,35] and

“CandidatusMidichloria mitochondrii” [36], and pathogenic bacteria such as Anaplasma, Bor-
relia, Ehrlichia, Francisella and Rickettsia [37–40]. The introduction of next-generation

sequencing (NGS) technologies has permitted the rapid and economic characterization of

these microbial communities [37] in contrast to the previously used Sanger sequencing.

Recently the number of studies using NGS to investigate the microbial diversity and composi-

tion of ticks has expanded [24,37]. There are nine hyper variable regions (V1-V9) of the bacte-

rial 16S ribosomal RNA gene (16S) that can be used to identify bacterial taxa, the V1-V3,

V3-V5, V4-V5 regions being the most commonly used. The 454 (Roche) pyrosequencing, Ion

Torrent (Thermo Fisher) sequencing by semiconductor ion detection and Illumina MiSeq

platforms using fluorescent dye detection have been the most commonly tick microbiome

sequencing methods [37,41,42].

Recently, several reports of microbial composition associated with different development

stages, sex, and organs, especially the digestive tract of ticks have been published [37]. How-

ever, none addressed the bacterial composition ofHyalomma ticks, the main vector of CCHF

virus. Two studies assayed H. asiaicum RNA virus infection [43,44]. The aim of this study is to
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report characterization of the microbiome ofH. anatolicum ticks and their host’s skins using

culture-dependent and NGS approaches to identify potential bacterial candidate/s for use with

paratransgenesis or RNAi approaches.

Methods

Ethics statement

This study followed the guidelines of the institutional ethical committee (Tehran University of

Medical Sciences, TUMS). The protocols were approved by TUMS ethical committee under

registry IR.TUMS.SPH.REC.1395.926.

Tick collection and identification

This study was carried out in two closely Crimean-Congo Hemorrhagic Fever (CCHF)-

endemic districts (Sarbaz and Chabahar) located in south-east corner (Sistan and Baluchestan
Province) of Iran (Fig 1). Sistan and Baluchestan is one of the largest provinces of Iran

(181,785 km2) that borders Pakistan and Afghanistan and has subtropical climate.Hyalomma
ticks were collected from cattle from this region and kept alive in separate sterile 50 ml Falcon

tubes containing a piece of filter paper until their dissection. They were transferred to the labo-

ratory of insect molecular biology, School of Public Health, Tehran University of Medical Sci-

ences (SPH-TUMS). Ticks were identified morphologically to the species level using

taxonomic keys [45,46]. About 20% (n = 70) female ticks were selected randomly for NGS

analysis. Subsets of engorged females (n = 120) were allowed to lay eggs, and 170 eggs were

used for either CD or NGS bacterial analysis (Table 1).

Specimen processing and isolation of midgut

A total 630H. anatolicum ticks, including adults (n = 503) and larvae (n = 127), were identified

and used for bacterial isolation (Table 1). Ticks were individually surface sterilized as described

by Portillo et al [47]. Briefly, tick was immersed for 5 min in 70% ethanol and then rinsed with

autoclaved double distilled water. Each specimen was then fixed in sterilized paraffin by their

legs and UV sterilized under sterile conditions in a Class II biosafety cabinet. Lateral cuts were

made with a sterile scalpel and dorsal integument was removed. To understand bacterial diver-

sity, guts and Malpighian tubules (MT) were teased away from other organs using ultra-fine

Fig 1. Map of Iran showing the locations in which tick samples were collected (https://commons.wikimedia.org/

wiki/File:Map_of_Iran.png).

https://doi.org/10.1371/journal.pntd.0009480.g001
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sterile forceps. Between dissections, forceps and scalpel blades were sterilized with bleach

(10%) and flame. To reduce laboratory-derived contamination; we used workstations, sterile

gloves, pipette tips with filters, and PCR grade RNAse-free water and the experiments per-

formed under laminar flow hoods. Guts and MTs were transferred separately to 100 μL sterile

phosphate-buffered saline (PBS) (pH 7.2), and homogenized. Swabbing of the cattle’s ear (the

preferred site for tick attachment) was performed after washing with distilled autoclaved water

to remove sediment, dirt, and transient bacteria. Swabbing consisted of five strokes along each

ear. Swabs were placed directly in Falcon tubes containing brain heart infusion (BHI) broth

medium. Guts and MTs were pooled separately according to the sex and development stages,

up to 5 individuals per pool. A total of 560 guts or MTs from field-collected H. anatolicum
ticks were used for culture-dependent identification and 70 female guts representative of dif-

ferent locations and hosts were analysed by NGS.

A subset of the engorged live female ticks was maintained in the insectarium until oviposi-

tion. Engorged females were kept in glass vials at about 70–80% relative humidity and 27–28˚C

under a photoperiod of 14:10 hours (light: dark) until oviposition. Pools of up to five egg

batches were initially washed with distilled water followed by three 70% ethanol washes and

then rinsed with distilled water, air-dried and homogenized with glass pestles in 1ml of sterile

PBS. The egg homogenates were plated for bacteria. Seventy eggs were also processed for NGS

identification. For NGS analysis, due to shortage of funds, we processed only pool female gut

and egg samples (Table 1). The final water used for rinsing the cuticles and egg batches were

used as negative controls and plated in parallel. To assess the environmental contamination, the

cuticles, as an environmental control, was removed from the tick carcass and were subjected to

DNA extraction by phenol chloroform method and PCR amplification of 16s rRNA gene.

Where the negative control was positive the specimen was eliminated from further analysis. Fre-

quent changes of gloves were used to avoid RNAse-DNAse contamination. Surface sterilization

of workstation by bleach (10%) followed by alcohol (70%) was performed prior and after each

experiment. Also we have used autoclaved instruments before and after handling each sample,

avoid talking, sneezing, and coughing, and touching the area where DNA may exist.

Isolation of bacteria

The culture-dependent method. A 1 ml of each homogenized pool sample was added to

Falcon tubes containing 5 ml of brain heart infusion (BHI) broth and incubated overnight at

37˚C and 100 rpm. To obtain single colonies, 100 μl of the overnight cultures were spread onto

LB agar plates and incubated at 37˚C for 18–24 h. DNA was extracted from individual colonies

using either a boiling method (STET buffer) and/or routine phenol/chloroform. Phenol/chlo-

roform DNA extraction method was used for the isolates with hard cell walls that had not

yielded proper DNA by the boiling method [48].

Table 1. Details of the H. anatolicum specimens collected for microbiome analysis.

Location Latitude & longitude Development stage & Organ (n) Method & No of specimens tested (n)

Sarbaz 26˚37’35.5”N

61˚15’42.9”E

Egg batch (85) CD (50) NGS (35)

Larva gut (127) CD (127)

Male gut / MT (59/59) CD (59/59)

Female gut / MT (164/164) CD (129/129) NGS (35)

Chabahar 26˚14’27.5”N

61˚24’10.0”E

Egg batch (35) CD (50) NGS (35)

Male gut / MT (87/87) CD (87/87)

Female gut/MT (193/193) CD (158/158) NGS (35)

https://doi.org/10.1371/journal.pntd.0009480.t001
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The 16S rRNA gene was amplified using forward primer 16suF 50-GAGTTTGATCCTGG

CTCAG-30 and reverse primer 16suR 50-GTTACCTTGTTACGACTT-30 as reported by Weis-

burg [49] yielding a 1,500 bp fragment. The PCR amplification was performed using Maxime

PCR PreMix Kit (i-Taq) in 20 μl reaction mixtures containing 1 μl of 10 μM both forward and

reverse primers and 1–2 μl (~0.1 μg) of extracted genomic DNA. Three no-template controls

including PCR grade RNAse-free water, the water used for washing specimens following etha-

nol sterilization, and the sterilized cuticles were used to detect any bacterial and/or DNA con-

tamination in the culture media and amplification reagents.

The PCR reactions were performed under the following conditions: initial denaturation at

94˚C for 1 min, followed by 35 cycles of 95˚C for 30S, annealing at 57.5˚C for 40 s, 72˚C for 30

s and a final extension at 72˚C for 8 min. The PCR product were fractionated on a 1% agarose

gel and visualized using an UV transilluminator. PCR Purification Kit (Qiagen, Germany) was

used for the purification of PCR products before sequencing.

All successfully amplified 16S rRNA amplicons were directionally sequenced using the

same amplification primers obtained from Bioneer Company (S. Korea). The sequences were

analysed using five databases: EzTaxon-e [http://eztaxon-e.ezbiocloud.net], NCBI (16S rRNA

sequences) [http://blast.ncbi.nlm.nih.gov/Blast.cgi], NCBI (Nucleotide collection) [http://blast.

ncbi.nlm.nih.gov/Blast.cgi], leBIBI [http://umr5558-sud-str1.univ-lyon1.fr/lebibi/lebibi.cgi],

and Blast2Tree [http://bioinfo.unice.fr/blast]. Sequence homology analysis was based on the

number and quality of nucleotides in a given sequence and setting defaults of the databases

such as cultivable and or non-cultivable, type and non-type specimens. In case of discrepancies

among different databases, species identifications were based on either the most common

nomenclature among the results of the four databases or on the basis of the highest percentage

similarity. Sequences have been submitted to GenBank under Accession Numbers MN399911,

MN399915-MN399917, MN399925-MN399926, MN399929-MN399930, MN399941,

MN399950-MN399951 and MT355659-MT355661.

The culture-independent method. DNA was extracted from homogenized gut or egg

pools using DNA extraction kit (QiAamp DNA micro kit) following the manufacturer’s rec-

ommended protocol. DNA was stored at -20˚C until used for sequencing.

The 16S rRNA gene hyper variable V3 region PCR amplified using fusion degenerate prim-

ers 341F (5’-CCTACGGGAGGCAGCAG -3’) and 518R (5’- ATTACCGCGGCTGCTGG -3’)

and was sequenced on an Illumina Miseq platform. The amplified fragment was approximately

342 bp and raw data were screened and assembled by QIIME. The UCLUST method was used

to cluster the sequences into Operational Taxonomic Units (OTUs) at an identity threshold of

97%. Each library pool was sequenced on a Junior+ System Genome Sequencer.

Data analysis

Cytoscape Software (http://www.cytoscape.org) was used to visualize bacterial richness and

egg and female gut shared bacteria [50]. GraphPad Prism software v.5.00 for Windows

(GraphPad, San Diego, USA) was used for graphical representation.

Results

Bacteria composition using a culture-dependent approach

Using a culture-dependent method, a total of 97 bacterial strains were identified from different

developmental stages, organs and sexes of the field-collectedH. anatolicum and from the skin

of their host (S1 Table). Bacteria were plated on BHI agar and identified based on 16S rRNA

sequencing. Eleven bacterial strains were recovered from theH. anatolicum guts and three

strains from cattle’s skin (Table 2). Except for one Acintobacteria, all strains belong to the
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Firmicutes phylum. All cultivable bacteria were Gram positive (G+). A majority (10 out of 14,

71.4%) of the G+ strains fromH. anatolicum guts and animal skins belong to the Bacillus
genus. G+ Paraclustridium, Enterococcus, andMicrococcus were also recovered. InH.anatoli-
cum guts, the species found were Bacillus subtilis, B. licheniformis, B. velezensis, B. oceanisedi-
mini,Micrococcus aoeverae, Enterococcus lactis, and Paraclustridium benzoelyticum. Only two

strains of P. benzoelyticum and B. licheniformis were recovered from eggs, the later one also

was recovered from female guts.Micrococcus aoeverae was shared between the guts and MTs

of ticks. Of the six bacterial species identified in adults, only B. subtilis was shared between the

two sexes (Table 2). B. subtilis has also been found in larval guts and in host skin (Table 2). In

addition to B. subtilis the microbiome of cattle’s skin included B. velezensis which is also found

in tick guts.

The NGS method was used to characterize the microbiome of field collectedH. anatolicum
female guts and eggs. A 346 bp fragment of the hypervariable V3 region of the 16S rRNA gene

was PCR amplified from the genomic DNA pools (female gut and egg) using specific universal

primers and sequenced using the Illumina-MiSeq platform. A total of 56,611 sequences were

generated that were classified into 6,023 operational taxonomic units (OTUs) per female gut

and 421 OTUs per egg. The following phyla were identified: Proteobacteria, Actinobacteria,

Firmicutes, Deinococcus-Thermus and Fusobacteria. The relative abundance of different

female and egg bacterial phyla is summarized in Fig 2. The phylum Proteobacteria makes up

nearly all the RPA (relative present abundance) and contributed to 94.9%, and 96.1% of the

bacterial sequences in eggs and female guts, respectively. These bacteria belonged to 32 families

and 39 genera. A total of 24 and 25 genera were found in female guts and egg samples, respec-

tively (Table 3). Next generation sequencing revealed that Francisellamakes up the vast major-

ity of the RPA, making up 96.8 and 92.1% of the female gut and egg bacterial community,

respectively. The following nine (out of 40) bacterial genera Kocuria, Propionibacterium, Cory-
nebacterium, Staphylococcus, Ochrobactrum, Acinetobacter, Rhizobium, Pseudomonas and

Francisella, were shared between the egg and female gut samples (Table 3, Fig 3).

Discussion

Results of NGS analysis revealed the presence of endosymbionts such as Francisella spp. and

Candidatus, as well as pathogenic, environmental, and skin-associated bacteria in the gut ofH.

Table 2. Bacterial profile of H. anatolicum ticks and their host skin (ear) revealed by culture dependent method.

No Bacteria Species Development Stage Sex Organ or origin Location Gen Bank ID number

1 Enterococcus lactis Adult Male Gut Chabahar MN399911

2 Bacillus subtilis Adult Female Gut Sarbaz MN399915

3 Bacillus subtilis Adult Male Gut Sarbaz MN399916

4 Bacillus velezensis Adult Male Gut Sarbaz MN399925

5 Bacillus oceanisedimini Adult Female Gut Sarbaz MN399926

6 Bacillus licheniformis Adult Female Gut Chabahar MN399929

7 Micrococcus aoeverae Adult Female Gut Chabahar MN399950

8 Micrococcus aoeverae Adult Female MT Chabahar MN399951

9 Bacillus subtilis Larvae NA Gut Sarbaz MN399917

10 Bacillus licheniformis Egg NA Egg Chabahar MN399930

11 Paraclustridium benzoelyticum Egg NA Egg Sarbaz MN399941

12 Bacillus subtilis NA NA Cattle skin Chabahar MT355661

13 Bacillus subtilis NA NA Cattle skin Sarbaz MT355660

14 Bacillus velezensis NA NA Cattle skin Sarbaz MT355659

https://doi.org/10.1371/journal.pntd.0009480.t002
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Fig 2. Relative abundance of H. anatolicum gut and egg bacterial phyla revealed by 16S rRNA gene sequencing on

the Illumina MiSeq platform.

https://doi.org/10.1371/journal.pntd.0009480.g002

Table 3. Taxonomic, characters, and the number of operational taxonomic units (OTUs) in H. anatolicum eggs and female guts revealed by NGS.

Phylum Family Genus Gram + / - Characters No. of OTUs in

eggs

No. of OTUs in female

guts

Actinobacteria Actinomycetaceae Actinotignum + Pathogen 5 0

Flaviflexus + Pathogen 6 0

Trueperella + Pathogen (In cattle) 0 140

Promicromonosporaceae Cellulosimicrobium + Pathogen 0 10

Propionibacterium + Non-pathogen

(opportunistically)

23 9

Corynebacteriaceae Corynebacterium + Non-pathogen

(opportunistically)

67 82

Geodermatophilaceae Blastococcus + Enviromental 9 0

Dermabacteraceae Brachybacterium + Enviromental 17 0

Micrococcaceae Kocuria + Non-pathogen 15 18

Firmicutes Bacillaceae Bacillus + Pathogen & Non-pathogen 3 0

Staphylococcaceae Salinicoccus + Non-pathogen 17 0

Staphylococcus + Pathogen 49 84

Streptococcus + Non-pathogen 58 0

Peptoniphilaceae Finegoldia + Pathogen (Opportunistically) 0 58

Parvimonas + Pathogen 0 130

Peptoniphilus + Non-pathogen 0 15

Peptostreptococcaceae Peptostreptococcus + Non-pathogen 0 63

Ruminococcaceae Ruminococcus + Pathogen 8 0

Veillonellaceae Veillonella - Non-pathogen 10 0

Heliobacteriaceae Helcococcus + Pathogen 0 195

Clostridiales Anaerococcus + Pathogen 0 5

Carnobacteriaceae Granulicatella + Pathogen 0 9

Lactobacillaceae Lactobacillus + Non-pathogen 35 0

(Continued)
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Table 3. (Continued)

Phylum Family Genus Gram + / - Characters No. of OTUs in

eggs

No. of OTUs in female

guts

Proteobacteria Brucellaceae Ochrobactrum - Non-pathogen 49 61

Hyphomicrobiaceae Devosia - Enviromental 0 10

Rhizobiaceae Rhizobium - Enviromental 14 5

Rhodobacteraceae Paracoccus - Enviromental 56 0

Sphingomonadaceae Sphingomonas - Pathogen (Nosocomial

infections)

3 0

Alcaligenaceae Achromobacter - Enviromental 0 14

Comamonadaceae Tepidimonas - Non-pathogen 16 0

Desulfurellaceae Desulfurella - Non-pathogen 0 7

Enterobacteriaceae Escherichia - Pathogen 2 0

Yersiniaceae Haemophilus - Non-pathogen 15 0

Pasteurella - Pathogen 0 178

Moraxellaceae Acinetobacter - Pathogen (Nosocomial

infections)

25 27

Pseudomonadaceae Pseudomonas - Pathogen (Opportunistically) 80 40

Francisellaceae Francisella - Pathogen 7552 42451

Xanthomonadaceae Stenotrophomonas - Pathogen (Opportunistically) 62 0

Deinococcus-

Thermus

Thermoaceae Meiothermus + Pathogen (In bird) 0 13

Fusobacteria Fusobacteriaceae Fusobacterium - Pathogen 0 213

https://doi.org/10.1371/journal.pntd.0009480.t003

Fig 3. Network analysis showing the shared and non-shared H. anatolicum female gut and egg bacteria genera revealed by NGS.

https://doi.org/10.1371/journal.pntd.0009480.g003
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anatolicum. Francisella spp., important tick-borne pathogens (TBPs) of humans and animals,

were the dominant bacteria (more than 92% of OTU reads) associated with H. anatolicum guts

and eggs. Francisella and Francisella-like endosymbiotic bacteria (FLEs) are transovarially

transmitted and potentially obligate endosymbionts. These bacteria have also been identified

in Ornithodoros moubata ovaries and Malphigian tubules [51] and in several hard ticks

[16,33,35,52,53]. Interestingly, NGS analysis revealed that none of theH. analoticum ticks har-

boured other known TBPs such as Ehrlichia, Anaplasma, Babesia, and spotted fever group

Rickettsia (SFGR). It is known that Rickettsia and Francisella were negatively correlated in the

ticks [54] and that Francisella outcompetes other bacterial genera [33]. However, it is notice-

able that previous studies have shown the presence of Ehrlichia, Anaplasma, and Babesia in the

ticks of our study region [55–57], therefore further studies are needed to confirm the hypothe-

sis that FLEs interfere with the ability ofHyalomma ticks to be infected with Ehrlichia, Ana-
plasma, Babesia and SFGR.

In this study different microbial communities were found between theH. anatolicum gut

and MT and the guts and/or MT with eggs studied. This is in agreement with previous studies

indicating microbial variation among anatomical regions within the tick such as the reproduc-

tive tract, midgut, and the salivary glands [28,34,57–60]. NGS analysis revealed considerable

differences in the frequency of bacteria in female guts and eggs (6,023 versus 421 OTUs). How-

ever, the diversity between the bacterial community of the guts and eggs was not significant

(24 versus 25 with 9 shared genera). Culture dependent method revealed a great variation in

frequency and diversity of bacteria among gut, egg, and Malpighian tubule (8 versus 2 versus

1).Micrococcus aoeveraewas the only Malpighian tubule bacterium also found in guts, suggest-

ing it is exceptional in its capacity to migrate from midgut to Malpighian tubules, and colonize

in this organ. In addition, some bacteria were shared between eggs and guts, indicating possi-

ble transovarial transmission from females to eggs and presumably to the next generation.

It seems that the location have effect on the results of tick bacterial community where no

tick associated with B. subtilis in Chabahar district, despite this bacterium being found in the

skin of cattle in the region. Further field studies are required to verify these preliminary find-

ings. On the other hand, although all of the controls which were used in this study were not

environmentally contaminated, the use of 70% ethanol for 5 min, as the only method used in

this study, may not be effective enough especially for B. subtilis spores.

Bacillus licheniformis, found inH. anatolicum eggs, produces microbial polysaccharides

with multiple bioactivity including antibiofilm activity against Gram-negative (Pseudomonas
aeruginosa and Proteus vulgaris) bacteria, Candida albicans, and mosquito larvae [61]. This

may partially explain presence of only gram positive bacteria in the culture media of our study.

Microbial polysaccharide insect toxicity may play a role in protection of tick eggs against insect

predators. These observations deserve further consideration for entomological applications of

this bacterium species.

Among environmental and host-related factors that may influence diversity and composi-

tion of theH. anatolicummicrobiome, we have assessed the effect of sex, organs, and develop-

mental stages. The CD method showed thatH. anatolicummale guts harbour lower

microbiome diversity and composition than that of females (2 versus 6). Only B. subtilis was

shared between the two sexes. It has been reported that females have higher [30,62] or lower

[34,54,63] relative bacterial abundance than of males, while other researchers indicated that

males and females adults differed only in their community structure, for example, males con-

taining more Rickettsia and females containing more Coxiella [64]. These data suggest that tick

microbial community is dynamic.

Our NGS analysis identified pathogenic bacteria associated withH. anatolicum ticks. How-

ever, these ticks may harbour additional yet-undiscovered human or animal pathogens and
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pathogenicity of such bacteria remains to be determined. The fact thatH. anatolicum is among

the most frequent ticks that come in contact with humans and cattle in Iran [4,65] emphasizes

the need to characterize allH. anatolicum-associated microbes to determine the full spectrum

of agents that can be transmitted by this tick.

There is current interest in the use of microorganisms as biological control agents of vector

borne diseases [66]. Strategies could be developed to manipulate the certain components of

the tick microbiome to decrease the vectorial capacity of ticks by hindering pathogen acquisi-

tion, development, and horizontal and vertical transmission. Similar microbial management

strategies could be developed for ticks which promote the growth of endosymbiotic bacteria to

reduce the acquisition of pathogens. Here, we have isolated a strain of the non-pathogenic

Bacillus species (B. subtilis) fromH. anatolicum, which was previously introduced as a promis-

ing candidate for paratransgenic approach [67,68]. We have identified B. subtilis inH. anatoli-
cum eggs, female midguts, males, larvae, as well as cattle’s skin. Moreover, it was shown that

H. asiaticum ticks can acquire bacteria from host skin while blood feeding [27]. B. subtilis has

been isolated from different arthropods including ticks [69,70], and has potential to be used

for control of TBDs. In addition to being non-pathogenic, it is easily cultured and genetically

manipulated [67]. The use of symbiotic bacteria expressing dsRNA in a paratransgenic

approach is a new method for the control of vector-borne disease [71,72] and has already been

used for reducing tick pathogens [73–76]. For using B. subtilis for paratransgenic approaches,

it will be important to examine its capacity to efficiently colonize the gut, reproductive organs,

or salivary glands ofHyalomma spp., and to express enough effector molecules or dsRNA to

inhibit the target gene.

Conclusions

The culture-dependent approach revealed a bacterial community diversity comprising gram

positive bacteria belonging to mostly Firmicutes phyla, among which B. subtilis was the domi-

nant bacterium. Bacillus licheniformis was isolated from eggs and female guts suggesting possi-

ble transovarial transmission as well as protective role against insect predators. However, other

tick tissues, especially ovaries, should be analysed to support this premise. Presence of B. subti-
lis in the guts of females, males, and larvae ofH. anatolicum ticks as well as their host’s skin

suggests that this bacterial species is a potential candidate for paratransgenic and RNAi

approaches for prevention of TBPs transmission. High frequency of Francisella and lack of

Rickettsia genus is in agreement with that microbe-microbe interactions phenomena and their

influence on microbiome composition and interfere with TBP transmission. Finally integra-

tion of culture-dependent and culture–independent method provides better understanding

and more extensive and accurate results in terms of the microbial community of vector

microbiome.
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