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Abstract

Vegetation mapping is of considerable significance to both geoscience and mountain ecol-

ogy, and the improved resolution of remote sensing images makes it possible to map vege-

tation at a finer scale. While the automatic classification of vegetation has gradually become

a research hotspot, real-time and rapid collection of samples has become a bottleneck. How

to achieve fine-scale classification and automatic sample selection at the same time needs

further study. Stratified sampling based on appropriate prior knowledge is an effective sam-

pling method for geospatial objects. Therefore, based on the idea of stratified sampling, this

paper used the following three steps to realize the automatic selection of representative

samples and classification of fine-scale mountain vegetation: 1) using Mountain Altitudinal

Belt (MAB) distribution information to stratify the study area into multiple vegetation belts; 2)

selecting and correcting samples through iterative clustering at each belt automatically; 3)

using RF (Random Forest) classifier with strong robustness to achieve automatic classifica-

tion. The average sample accuracy of nine vegetation formations was 0.933, and the total

accuracy of the classification result was 92.2%, with the kappa coefficient of 0.910. The

results showed that this method could automatically select high-quality samples and obtain

a high-accuracy vegetation map. Compared with the traditional vegetation mapping method,

this method greatly improved the efficiency, which is of great significance for the fine-scale

mountain vegetation mapping in large-scale areas.

Introduction

As an essential component of mountain ecosystems, vegetation is the basis of mountain eco-

logical services and an indicator that responds to environmental change [1]. Therefore, vegeta-

tion mapping is of considerable significance to both geoscience and mountain ecology [2,3].

In recent years, with the development of aerospace technology, remote sensing has become a

conventional means of vegetation mapping. With the improvement of image resolution, it is

possible to map vegetation at a finer scale. Meanwhile, the automatic classification of
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vegetation has gradually become a research hotspot [4–7]. Traditional automatic classification

of fine-scale vegetation was mainly based on feature selection and improvement of the classi-

fier, and the samples used in the process were mostly selected manually [8–10]. Its automation

was only an improvement over the degree of visual interpretation, and the real-time and rapid

collection of samples has become a bottleneck of automatic classification [11–14].

With the increasing requirement of efficiency, some automatic sampling methods were

proposed. A method of using prior maps is widely used. For example, Jin et al. [15] developed

an approach named Alaska Land Cover Update 2011-Vegetation (AKUP11-VEG) to update

land cover in vegetation disturbed and successional areas from 2001 to 2011, and used the ini-

tial land cover map of 2011 as the training dataset for decision tree classification; Mellor et al.
[16] derived training data from 766 2×2 km digital aerial photograph interpreted (API) land

cover maps for RF (Random Forest) classifier. However, due to label errors or classification

errors in the prior maps, samples selected on this basis are often affected by error propagation

[17]. To solve this problem, researchers have proposed some methods to filter samples that

may contain errors. One way is filtering by using spatial information. Thus, Jiang et al. [18]

discarded the samples in the joint region of different land cover with spatial buffer analysis to

prevent the influence of land cover changes. Zhang et al. [11] extracted samples from the land

cover product with classification confidence >50%, and only retained the pixel locations with

the same land cover class in the surrounding eight pixels. The other way is filtering by using

attribute information. Thus, Waldner et al. [19] extracted samples from the baseline land

cover map and iteratively trimmed samples to identify statistical outliers. Matton et al. [20]

proposed an automated method for annual cropland mapping and cleaned samples by iterative

trimming with a threshold α of 0.01. Although the method using prior maps greatly improves

the automation level of sample selection, the following problems persist: 1) errors due to

changes that have occurred since the production date of prior maps, 2) errors due to different

spatial resolution between the datasets or geo-locations [21], and 3) the classification systems

of prior maps may restrict the fitness of new research. All these problems restrict the accuracy

of the selected samples. More importantly, the prior maps used by this method are interpreta-

tion results at an earlier state in the same study area, which means that this method is more

suitable for map updating such as change detection than for un-interpreted areas. Other meth-

ods mostly select samples by obtaining prior knowledge of sample population and setting

threshold. However, the samples obtained by these methods usually correspond to vegetation/

non-vegetation or coniferous forest/broad-leaved forest, which is not accurate enough for

fine-scale vegetation classification [22–24]. Therefore, how to realize the automatic sample

selection, which is a key problem of automatic classification of fine-scale vegetation, remains

to be further studied.

The research showed that the selection of samples had a significant effect on the classifica-

tion results [25]. Therefore, it is necessary to ensure sample accuracy while selecting samples

in an automatic way [21,26,27]. For geospatial objects with spatial autocorrelation, classical

sampling methods such as random sampling and systematic sampling assume that samples are

entirely independent of each other, which leads to an underestimate of sampling error. Com-

pared with the classical sampling methods, stratified sampling has the following advantages

[28]: 1) the distribution of samples is more dispersed and uniform, which reduces the possibil-

ity of sample information overlapping, thus reducing the information loss; 2) the sample vari-

ance is equal to the interlayer variance instead of the population variance, which reduces the

uncertainty of samples. It has been proved that stratified sampling with appropriate prior

knowledge can bring better sample accuracy [26,29–32].

For vegetation classification, the close dependence of plant growth on hydrothermal condi-

tions is an important prior knowledge. Mountain vegetation presents regular zonal
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arrangements characteristics with the increase of altitude, which is called the mountain altitu-

dinal belt (MAB) [33,34]. The division of MAB is based on a response model that treats types

of vegetation as a product of topography and climate. Therefore, MAB represents a relatively

stable geographical regional differentiation phenomenon and reflects the spatial-temporal rela-

tionship between vegetation distribution and environmental factors [35,36]. Based on MAB,

the study area can be divided into several vegetation belts, and the corresponding type of vege-

tation of each vegetation belt is the main species growing in this area. Compared with selecting

samples in the whole study area, selecting samples in each belt can effectively reduce the inter-

ference of other types of vegetation, and the samples selected by this method are more repre-

sentative. Moreover, MAB distribution information is generally summarized by researchers in

the process of mountain surveys, and it can also be obtained from most mountain investiga-

tion reports or vegetation survey data, so it is a convenient and reliable prior knowledge for

mountain vegetation classification [37–39].

The objective of this paper is to realize automatic sample selection and fine-scale mountain

vegetation classification. The “fine-scale vegetation” implies that the minimum classification

unit in this study is vegetation formation, rather than vegetation type group or vegetation type.

In the classification system of vegetation, vegetation type group is the highest classification

unit, which is mainly divided according to the morphological characteristics of the construc-

tive species communities but also contains certain ecological content. Vegetation type and

sub-type are higher classification units between vegetation type group and vegetation forma-

tion. The vegetation type is composed of the constructive species with the same or similar life

type and the plant communities with consistent ecological relationship and hydrothermal con-

ditions. Vegetation sub-type is an auxiliary unit of vegetation type. It reflects the difference in

climate subzone or the differences in vegetation lamellar structure caused by the differences of

certain landform and matrix conditions. Vegetation formation has the same or similar con-

structive species or co-constructed species, and it is the basic mapping unit of vegetation maps

[40].

The research area is Taibai Mountain in the north-south transition zone (Qinling Moun-

tains) of China, which has vegetation with obvious altitudinal distribution and sufficient sur-

vey data. Compilation of fine-scale vegetation maps in the transitional zone is essential for an

in-depth study of the spatial-temporal variation rules of vegetation. It has great significance in

revealing geo-ecological patterns [40]. However, the difficulty of vegetation classification is

increased by the absence of distinct boundaries between vegetation formations. Therefore,

mapping the vegetation distribution with multi-resolution, multi-source, and multi-phase

images will be more accurate. The images used for mapping in this study were mainly ZY-3

(Resources satellite three) satellite images with a resolution of 2m, GF-1 (Gaofen-1) satellite

images with a resolution of 16 m and GF-2 (Gaofen-2) satellite images with a resolution of 0.8

m.

Since the unit of MAB is hectometer, there may be problems of insufficient precision and

inaccurate definition of the junction of vegetation belts. Addressing these problems, in each

belt, we clustered and selected the optimal samples rather than taking all objects as the samples,

to eliminate the possibility of mixing other vegetation formation samples in the current vegeta-

tion formation samples.

For a remote sensing mapping task, samples are the prerequisite for faster and more accu-

rate classification, but the ultimate goal is to obtain a map with high accuracy. Therefore, we

compared two commonly used classifiers to obtain a more accurate vegetation map. One is RF

classifier, which is widely used because of its strong robustness to outliers and its faster calcula-

tion speed [41], and the other is KNN (K-NearestNeighbor) classifier with a simple algorithm

and high accuracy [42,43]. The main process of mapping in this study included the following

PLOS ONE Automatic classification of fine-scale mountain vegetation

PLOS ONE | https://doi.org/10.1371/journal.pone.0238165 August 25, 2020 3 / 25

https://doi.org/10.1371/journal.pone.0238165


steps: 1) multi-scale image segmentation in eCognition; 2) using MAB distribution informa-

tion as prior knowledge to construct terrain constraint factors which play a constraint role on

research objects by using appropriate terrain factors; 3) using terrain constraint factors to

divide the study area into 8 vegetation belts and selecting samples by iterative clustering within

each vegetation belt based on the idea of stratified sampling; 4) using a more accurate classifier

(RF or KNN) to realize fine-scale vegetation classification. Based on the results, we discussed

the vegetation growth distribution law reflected in the classification results and analyzed the

accuracy of the samples from three perspectives (north\south slopes, west\middle\east regions

and overall accuracy of the entire Taibai Mountain) to guide future work.

Materials and methods

Study area

Taibai Mountain (33˚40’- 34˚10’N and 107˚19’- 107˚58’E) is the highest mountain in Eastern

China and located in Shaanxi Province with an altitude of 3771.2 m. It is also the main peak of

the Qinling Mountains, a climate boundary between the warm temperate and the subtropical

zones in Eastern China. The total area of Taibai Mountain is approximately 2,113.24 km2. Fig

1 shows the location of Taibai Mountain in the Qinling Mountains and China.

Under the influence of mountain height difference and atmospheric circulation, the cli-

mates of the north and south slopes of Taibai Mountain are different, with typical subalpine

climate characteristics. From the perspective of altitudinal climate differences, a warm temper-

ate zone, a temperate zone, a cold temperate zone, a cold zone, and an alpine cold zone are suc-

cessively distributed from the foot to the top of the mountain [44]. Correspondingly,

environmental and biological factors such as landform, soil, and vegetation also present altitu-

dinal patterns [45]. The vegetation formations on the north and south slopes of Taibai Moun-

tain are the same, but the altitudinal distribution ranges of the same vegetation formations are

significantly different [46]. From the foot to the top of Taibai Mountain, a deciduous oak forest

belt, a birch forest belt, a coniferous forest belt, and an alpine shrub meadow belt are succes-

sively distributed, and sub-belts are formed in each belt due to the variation and interaction of

biological and non-biological factors [47].

Study data

MAB distribution information of Taibai Mountain. The MAB distribution information,

which was collated by Fang & Gao [48] and Li [49], was investigated and verified in a field

Fig 1. Extent of the study area. (a) The location of Qinling Mountains in China. The basemap was downloaded from

http://bzdt.ch.mnr.gov.cn/index.html, and its figure number is GS(2019)1675. (b) Taibai Mountain, Landsat 8 image

with a resolution of 15m, false color image (near-infrared (NIR), Red, Green), February 2017). The image is for

illustrative purposes only.

https://doi.org/10.1371/journal.pone.0238165.g001
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survey of Taibai Mountain in June 2018. We can obtain the distribution ranges of vegetation

formations and their spatial adjacency from the MAB distribution information. The vegetation

formations on the north and south slopes were roughly the same, but the altitude distribution

ranges of the vegetation formations were significantly different, as shown in Fig 2. On the

north slope, the following vegetation formations are distributed from the foot to the top of Tai-

bai Mountain: Basal zone (0–800 m), Quercus variabilis forest (800–1000 m), Quercus aliena
var. acuteserrata forest (1000–1900 m), Quercus liaotungensis forest (1900–2300 m), mixed for-

ests of Betula albosinensis with Pinus armandii (2300–2700 m), Betula albosinensis var. septen-
trionalis forest (2700–2800 m), Abies fargesii forest (2800–3000 m), Larix chinensis forest

(3000–3400 m), and subalpine shrub and meadow (3400–3777 m). On the south slope, the fol-

lowing vegetation formations are distributed from the foot to the top of Taibai Mountain:

Basal zone (0–750 m), Quercus variabilis forest (750–1300 m), Quercus aliena var. acuteserrata
forest (1300–2000 m), mixed forests of Betula albosinensis with Pinus armandii (2000–2300

m), mixed forests of Betula albosinensis with Betula albosinensis var. septentrionalis (2300–

2650 m), Abies fargesii forest (2650–3000 m), Larix chinensis forest (3000–3400 m), and subal-

pine shrub and meadow (3400–3777 m). In addition, the Quercus liaotungensis only grows in

the north slope.

The MAB distribution information was primarily used as prior knowledge to stratify the

study area and assist the automatic sample selection.

Remote sensing data. The remote sensing data used in this study were ZY-3 satellite

images with a resolution of 2 m, GF-1 satellite images with a resolution of 16 m and GF-2 satel-

lite images with a resolution of 0.8 m, as shown in Table 1. All these images were purchased

Fig 2. MAB distribution information of north and south slopes of the Taibai Mountain. The MAB distribution information was referenced to Fang &

Gao [48] and Li [49].

https://doi.org/10.1371/journal.pone.0238165.g002
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from “Image Sky”, which is a company under “Geo-Science and Technology Service Network,

CAS”. The multi-temporal GF-1 images with a resolution of 16 m were used for determining

the approximate distribution range of different vegetation formations, GF-2 images with a res-

olution of 0.8 m were used for further verifying the accuracy of samples and classification, and

ZY-3 images with a resolution of 2 m were used for segmentation and classification in this

study. Since the images were preprocessed by radiometric correction and image fusion (the

fusion of panchromatic (PAN) image and multispectral image) in ENVI (The Environment

for Visualizing Images) v5.2 software, we clipped the images according to the vector boundary

of the study area after a geometric correction. Besides, the 1:10,000 DSM (Digital Surface

Model) data (resolution 10 m) generated from the ZY-3 images were used for building the ter-

rain constraint factors.

Validation data. The validation data used in this study included field sampling point data

and a 1:50,000 visual interpretation vegetation map of Taibai Mountain compiled by Yao et al.
[40]. The 1:50,000 visual interpretation results were primarily used to verify the accuracy of

the vegetation classification results, and the field sampling point data were used to verify the

accuracy of the selected samples. Field sampling point data were gathered from the field survey

of Taibai Mountain from June 8th-15th, 2018, with a total of 86 points, and included the geo-

graphical location, vegetation type group, vegetation type/subtype, vegetation formation, and

other attribute information.

Methods

A workflow of mapping process is shown in Fig 3.

Multi-scale image segmentation

This study used the multi-scale segmentation algorithm in eCognition v8.9 software (Definiens

Imaging, Germany), which is a widely used segmentation method based on regional growth

and merging. The procedure for the multi-scale image segmentation starts with each pixel

forming one image object or region. At each step, a pair of image objects are merged into one

larger object. The merging decision is based on local homogeneity criteria, describing the simi-

larity of adjacent image objects [50,51].

The segmentation process used auxiliary information including DSM data and texture fea-

ture for the following reasons: 1) using DSM data in segmentation can effectively refine the

image where it was affected by mountain shadows; 2) using texture features in segmentation

can effectively merge homogeneous objects to prevent an excessive number of objects [52].

Mean-variance was chosen as the judging standard for segmentation scale. The principle is

that the purer the objects in the image layer, the higher the spectral difference between the

objects and neighbors, which means the higher the mean-variance [53]. By drawing a broken

line graph of the mean-variance and segmentation scale from 100 to 500 (see S1 Fig for a bro-

ken line graph), the peak value in the graph was the corresponding segmentation scale. The

segmentation process was divided into two layers. The segmentation scale of Layer 1 was 360

and was used to extract non-vegetation areas, such as buildings and roads. The segmentation

Table 1. Remote sensing satellite image data information.

Satellite Bands Spatial Resolution (m) Radiation resolution (bit) Observation Date

GF-2 PAN+RGB+NIR 0.8 10 September 2017

ZY-3 PAN+RGB+NIR 2 10 January 2017

GF-1 PAN+RGB+NIR 16 10 January 2017/ September 2017

https://doi.org/10.1371/journal.pone.0238165.t001
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scale of Layer 2 was 140 and was used to select samples and extract specific vegetation group

information (see S2 Fig for the segmentation results with the scale of 360 and 140). Addition-

ally, six bands were utilized in the segmentation in this study. Due to the high reflective charac-

teristics of vegetation in the NIR band, it was found that ideal segmentation results can be

obtained when the weight of NIR band was larger than that of other bands, and there was no

obvious change between the segmentation results of other bands with different weights (see S3

Fig for segmentation results under different band weight combinations). Therefore, the weight

of NIR was set at 2, and the weight of other bands was set at 1. Moreover, the shape factor and

compactness factor were selected after repeated experiments, as displayed in Table 2. Finally,

objects with the spectrum, texture, terrain, and other information were obtained for subse-

quent classification after image segmentation.

Fig 3. The main steps of this study. Flowchart showing the major steps involved in the vegetation mapping process.

https://doi.org/10.1371/journal.pone.0238165.g003

Table 2. Parameters for image segmentation.

Layers Extracted information Segmentation

scale

Shape

factor

Compactness

factor

Layer1 Non-vegetation area, including buildings, roads, etc. 360 0.2 0.6

Layer2 Quercus variabilis forest, Quercus aliena var. acuteserrata forest, Quercus liaotungensis forest, Pinus
armandii forest, Birch forest, Abies fargesii forest, Larix chinensis forest, Subalpine shrub and meadow,

Mixed conifer and broadleaved forest, Cultivated plants

140 0.2 0.6

https://doi.org/10.1371/journal.pone.0238165.t002
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Automatic sample selection based on MAB distribution information

Based on the idea of stratified sampling, we used MAB as prior knowledge to construct terrain

constraint factors for stratification, and selected samples automatically by iterative clustering

in each vegetation belt. The specific methods were as follows.

(1) Constructing terrain constraint factors based on MAB distribution information.

In order to apply the prior knowledge provided by the MAB distribution information to select

samples, terrain constraint factors were constructed by the following steps: 1) according to the

1:10,000 DSM data, the main ridgeline was extracted to divide the study area into the north

and the south slopes; 2) the altitude distribution ranges of the vegetation formations were

extracted according to the MAB; and 3) the terrain constraint factors were generated by super-

imposing factors, such as the altitude ranges of vegetation formations and DSM. The terrain

constraint factors are shown in Fig 4.

By superimposing the terrain constraint factors and multi-scale segmentation layer on the

image, the study area was divided into several vegetation belts for automatic sampling. The

Fig 4. Terrain constraint factors with MAB distribution information on Taibai Mountain. The 1:10000 DSM data used to build the terrain constraint factor

were generated from ZY-3 images.

https://doi.org/10.1371/journal.pone.0238165.g004
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layering process is shown in Fig 5. Based on the idea of stratified sampling, the following sam-

ple selection was carried out.

(2) Automatic sample selection. The process of sampling is shown in Fig 6. Since the alti-

tude ranges of vegetation on the north and south slopes were different, samples of the same

vegetation formations were selected on the north and south slopes respectively.

The study area was divided into several vegetation belts by using the terrain constraint fac-

tors with MAB distribution information. Each belt was used to screen objects generated after

the segmentation of scale 140 (Fig 6A). Taking the Pinus armandii belt at an altitude of 2000–

2300 m on the south slope as an example, the belt was used to retain the objects falling within

it as candidate objects of Pinus armandii (Fig 6B). These candidate objects contained charac-

teristic information, including the area, ratio of length/width, mean (all bands), brightness,

normalized difference vegetation index (NDVI) [54], difference vegetation index (DVI) [55],

ratio vegetation index (RVI) [56], maximum difference measurement (Max. Diff), DSM,

GLCM (Grey-Level Co-occurrence Matrix) contrast, and GLCM entropy. To prevent frag-

ment polygons generated in the segmentation process from being selected into the sample

database, the above candidate objects were filtered through the two indexes of area and length

\width.

The initial samples of Pinus armandii were obtained by clustering the filtered candidate

objects. In terms of selecting clustering methods, sample accuracy of the six commonly used

machine learning clustering algorithms (SpectralClustering, Gaussian Mixture, Agglomerati-

veClustering, DBSCAN, Meanshift, KMeans) [57] was compared to obtain high-accuracy sam-

ples. The area containing all vegetation formations in Taibai Mountain was selected as the

experimental area, the algorithm with the highest accuracy was selected for clustering. More-

over, in the clustering process: 1) the clustering number was three times the total number of

possible vegetation formations near the altitude where the belt was located; 2) the

Fig 5. The process of generating vegetation belt layers with terrain constraint factors. The image was Landsat 8 image with a resolution of 15m, false color

image (NIR, Red, Green), February 2017. The image is for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0238165.g005
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characteristics of the objects used in clustering were the mean, brightness, NDVI, DVI, RVI,

and Max. Diff.

In the clustering results (Fig 6C), the top 3–5 categories of the number of objects were

selected and compared with the image. The objects in the most suitable category were taken as

samples of the current vegetation formation (Pinus armandii), as shown in Fig 7. And then,

the samples were purified to eliminate outliers (Fig 6D). According to the Pauta Criterion

[58,59], spectral values of the effective samples are primarily distributed around the mean val-

ues of the same class in the same region, and the occurrence of data outside the interval [μi-3σ,

μi+3σ] is a small probability event. When the samples are within the interval, they are effective

samples; otherwise, they are invalid samples. Based on the above principle, the objects were

purified by Eq (1):

kxi � mik � 3si; i ¼ 1; 2; 3; . . . ; n ð1Þ

Where xi is the brightness of the ith object, μi is the mean value of the class of the ith object,

σi is the standard deviation.

Fig 6. The process of automatic samples selection of a specific class. (a) Objects generated after the image multi-scale segmentation. (b) The Pinus armandii belt was

superimposed on the segmentation results (c) Clustering of objects that fall within the belt (d) Initial samples (the most suitable category) selected from all the categories

generated after clustering. (e) Verification and correction of initial samples.

https://doi.org/10.1371/journal.pone.0238165.g006
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The purified objects were used as undetermined samples of the vegetation formation (Pinus
armandii). After collecting samples for all vegetation formations, the undetermined sample

databases for north slope and south slope were established.

Due to the errors caused by clustering, it is necessary to verify and correct the undeter-

mined samples (Figs 6E & 8). Therefore, we designed an iterative clustering method to correct

the samples automatically. After obtaining the initial samples, we clustered the samples again

and set the cluster number as 2. A more accurate category from the clustering results was

selected as the samples for the first correction, and then clustered for the second time correc-

tion, and so on, until 1) the accuracy degree of the two categories in the results was roughly the

same; 2) the number of samples was close to 120 (see S5 File for the code of sample selection

Fig 7. The top three categories for the number of objects in the clustering results of Pinus armandii belt. The image was Landsat 8 image with a resolution of

15m, false color image (NIR, Red, Green), February 2017. The image is for illustrative purposes only. The categories showed in Column (a), (b) and (c) were the top

three categories for the number of objects in the clustering result, and the categories in Column (a) were most suitable categories in the clustering results of Pinus
armandii belt.

https://doi.org/10.1371/journal.pone.0238165.g007

Fig 8. The correction process of Pinus armandii samples by iterative clustering. The image was Landsat 8 image with a resolution of 15 m, false color image (NIR,

Red, Green), February 2017. (a) The first clustering result; (b) the second clustering result; (c) the last clustering result. The samples in the blue circles were the error

samples. The image is for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0238165.g008
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process). The reasons for setting the number of samples of each vegetation formation as 120

were as follows: 1) references [60–63] show that the demand for the number of samples in

object-oriented classification is less than that in pixel-based classification, which is 10–30

times of the number of image bands; 2) theoretically, the larger the number of samples, the

higher the accuracy of classification. Since the number of bands of the images used in this

paper is 4, we set the number of samples as 120 based on the above reasons.

Object-oriented classification of vegetation

The classification process was also carried out according to the two layers of segmentation.

Vegetation and non-vegetation were identified by the method of fuzzy classification [64] in

Layer 1 in eCognition. The membership function constructed according to the same character-

istics of buildings, roads, and other non-vegetation areas (low NDVI, high brightness values,

distributed in low altitude areas) could completely extract non-vegetable objects. For example,

when the NDVI�100 value of an object was less than -2, the membership value of this object

for non-vegetation was 1; that is, this object must be non-vegetation. When the value was

greater than 1, the membership value for non-vegetation was 0; when the value was in the (-2,

1) interval, the membership value was calculated according to the minor type membership

function (as the value of X-axis gets closer to the right boundary, the membership value gets

smaller; the shape is similar to but different from the Z-Shaped membership function) in the

eCognition software. In addition, since the time phase of the image was in winter, the variation

range of the NDVI value was small and relatively concentrated. After repeated comparisons,

the interval (-2, 1) was selected. To prevent shadows or alpine snow from being misclassified

as non-vegetation objects, not only NDVI but also brightness and DSM should be considered

when classifying.

In Layer 2, the “class-related-features” function in eCognition was used to transfer classifi-

cation information between layers firstly, so that all objects in Layer 2 could inherit the vegeta-

tion and non-vegetation attributes of Layer 1. Then, RF classifier and KNN classifier were used

to classify objects whose attributes were vegetation. In the classification process using RF, fea-

tures were first sorted in order of importance (with the default RF parameters) using the “fea-

ture_importance” function (an output variable of RF algorithm) [65], and the top eight

features were utilized in the classification (accounting for 95.2%, see S4 Fig for the ranking of

the features), including the mean of the band (NIR, Red), vegetation index (NDVI, DVI, RVI),

Max. Diff, texture feature (contrast), and brightness. Then the classifier parameters were

adjusted by calculating F1-score [66]. The F1-score is a measure of accuracy, and it is the har-

monic mean of the precision and recall, where an F1 score reaches its best value at 1. The final

parameter combination adopted was {Max_depth = 19, Max_feature = 8, N_estimators = 20,

Min_samples_leaf = 2}, which was the parameter combination corresponding to the maxi-

mum value of calculated F1-score. In the classification process using KNN, the same features

were used as above, and the adopted parameter combination after calculating F1-score was

{n_neighbors = 9, weights = ‘uniform’, algorithm = ‘auto’, p = 2, metric = ‘minkowski’}. Dur-

ing the classification process, 120 samples of each vegetation formation were randomly

selected from the corrected sample database.

Accuracy verification of samples and classification results

To comprehensively explain the quality of the selected samples, sample accuracy was analyzed

from three perspectives: north\south slopes of Taibai Mountain, west\middle\east regions of

Taibai Mountain, and overall accuracy of the entire Taibai Mountain. The accuracy of the
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selected samples was calculated by the ratio correct number/total number of samples and veri-

fied by combining with the field sampling data.

The accuracy of the classification results was verified by comparing the classification results

of 1000 points (randomly generated in the research area) with the visual interpretation results

(points where the classification results did not match the visual interpretation results would be

marked as error points), and calculating overall accuracy, user accuracy, producer accuracy,

and kappa coefficient [67]. Overall accuracy is the probability that an individual will be cor-

rectly classified by a test, and it is computed by dividing the total number of correctly classified

objects by the total number of reference objects. Producer accuracy computed by dividing the

number of correctly classified objects in each category by the number of reference objects

known to be of that category; this value represents how well reference objects of the vegetation

formation are classified. User accuracy is computed by dividing the number of correctly classi-

fied objects in each category by the total number of objects classified in that category; this

value represents the probability that an object classified into a given category actually repre-

sents that category on the ground. The Kappa coefficient is used to measure the agreement

between two sets of categorizations of a dataset while correcting for chance agreements

between the categories; it can range from -1 to 1, and the closer it gets to 1, the better the result

of the classification.

Results

Accuracy of different clustering methods for sampling

Table 3 shows the comparison of sample accuracy obtained by the first clustering of each clus-

tering algorithm. From the perspective of mean value, maximum value (the underlined value

in Table 3) and minimum value to analyze the performance: among the mean value of sample

accuracy obtained by each algorithm, the value of KMeans was largest; and the maximum val-

ues of sample accuracy appeared most frequently in KMeans; furthermore, the minimum

value of sample accuracy did not appear in KMeans. It can be seen from the above analysis

that KMeans had the best performance, so the KMeans algorithm was used to select samples.

Accuracy of the sample database

Fig 9A shows the comparison of the sample accuracy before and after the iterative correction

of the entire Taibai Mountain. As can be seen from the figure, the sample accuracy of each

Table 3. Comparison of the sample accuracies of the six clustering algorithm.

Accuracy Spectral Clustering Gaussian Mixture Agglomerative Clustering DBSCAN MeanShift KMeans

Quercus variabilis 0.81 0.85 0.79 0.83 0.77 0.82

Quercus aliena var.acuteserrata 0.86 0.93 0.89 0.84 0.76 0.86

Quercus liaotungensis 0.76 0.84 0.72 0.78 0.74 0.84

Pinus armandii 0.76 0.81 0.81 0.70 0.78 0.94

Birch forest 0.90 0.79 0.86 0.74 0.50 0.79

Mixed forest 0.79 0.87 0.71 0.77 0.73 0.84

Abies fargesii 0.86 0.89 0.88 0.67 0.79 0.96

Larix chinensis 0.83 0.78 0.82 0.68 0.81 0.88

Subalpine shrub and meadow 0.89 0.83 0.81 0.61 0.76 0.89

Mean 0.83 0.84 0.81 0.74 0.74 0.87

(Underlined values are the maximum accuracies of samples obtained by the six clustering methods per vegetation class)

https://doi.org/10.1371/journal.pone.0238165.t003
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vegetation formation was significantly improved after correction, indicating that the iterative

clustering method can effectively correct samples. Among the sample accuracy before and

after correction of each vegetation formation, the accuracy of the birch forest, Larix chinensis,
and subalpine shrub and meadow increased the most. Except for coniferous broad-leaved

mixed forests, the accuracy of corrected samples of all vegetation formations was above 0.900.

The average accuracy of corrected samples was 0.933, which was significantly higher than that

of uncorrected samples (0.886). The corrected sample accuracy of the coniferous forest (0.963)

was higher than that of the broad-leaved forest (0.916).

Fig 9B shows the corrected sample accuracy of the north and south slope of Taibai Moun-

tain. The average sample accuracy of the north slope was 0.931, and that of the south slope was

0.937. The accuracy of Quercus aliena var.acuteserrata varied greatly between the north and

south slope, and the value of the north slope (0.954) was higher than that of the south slope

(0.895). The accuracy of subalpine shrub and meadow was also significantly different, the

value of the south slope (1.000) was higher than that of the north slope (0.953). Among all the

sample accuracies, the minimum value was for the coniferous and broad-leaved mixed forest

on the north slope (0.844), and the maximum value was for the meadow shrub on the south

slope (1.000). In addition, there was no sample data for the Quercus liaotungensis forest on the

south slope because it only grows on the north slope of Taibai Mountain.

Fig 9C shows the corrected sample accuracy of the west\middle\east regions of Taibai

Mountain. The rule for the three regions was roughly similar, which was the accuracy of

broad-leaved forests was lower than that of coniferous forests. However, there were also some

differences. In the west region, the accuracy of Pinus armandii (0.989) was higher than the

average accuracy of the other two regions (0.964), but the accuracy of shrub meadow (0.974)

was lower than the average accuracy of the other two regions (1.000). In the east region, the

accuracies of Quercus aliena var.acuteserrata (0.958) and Quercus liaotungensis (0.939) were

higher than the average accuracies (0.909, 0.898) in the other two regions, but the accuracies of

birch forest (0.863) and mixed forest (0.832) were lower than the average accuracies (0.925,

0.873) in the other two regions. In the middle region, the accuracies of Quercus variabilis
(0.907) and Abies fargesii (0.940) were lower than the average accuracies (0.935, 0.979) in the

other two regions. Among all the sample accuracies, the minimum value was for the coniferous

and broad-leaved mixed forest in the east region (0.832), and the maximum value was for the

shrub meadow in the east and middle region (1.000). Overall, the sample accuracy of the

broad-leaved forest was lower than that of the coniferous forest, but there were significant dif-

ferences in different distribution regions.

Classification results of corrected samples

From the confusion matrix shown in Tables 4 and 5, it can be seen that the overall classifica-

tion accuracy of RF was 92.2% and the kappa coefficient was 0.910. The overall classification

accuracy of KNN was 87.4%, and the kappa coefficient was 0.855. The above means that the

classification result of RF classifier was better than that of KNN classifier. The classification

result of RF is shown in Fig 10A, the distribution of error points is shown in Fig 10B. There

were 79 error points in 1000 randomly generated points. According to the distribution of

error points, it can be seen that: 1) the number of error points on the north slope was higher

than that on the south slope, 2) the number of error points in the eastern region was higher

Fig 9. Sample accuracies in different perspectives of Taibai Mountain. (a) the comparison of sample accuracy

before and after correction of the entire Taibai Mountain; (b) the sample accuracy on the north\south slope of Taibai

Mountain; (c) the sample accuracy in the west \middle\east region of Taibai Mountain.

https://doi.org/10.1371/journal.pone.0238165.g009
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than that in the western and middle regions, and 3) the numbers of error points were higher in

the mixed forest and broad-leaved forest. As shown in Table 4, the user accuracy of the conif-

erous forest was higher than that of the broad-leaved forest. This rule was consistent with our

analysis of sample accuracy, which also indicated that the classification accuracy depended on

the sample accuracy to a large extent.

Moreover, according to the MAB distribution information and the classification results

presented in this paper, the distribution characteristics of vegetation were approximate as fol-

lows: 1) the Quercus liaotungensis forest only grew on the north slope of Taibai Mountain, and

the number gradually increased from west to east. 2) The number of birch forests gradually

decreased from west to east, and birch forests were always mixed with the Pinus armandii for-

est and Abies fargesii forest. In addition, due to more dead branches and weak growth inside

the Betula albosinensis var. septentrionalis forest, it may eventually be replaced by the Abies far-
gesii forest. Therefore, this paper did not further subdivide Betula albosinensis and Betula albo-
sinensis var. septentrionalis, but unified them as birch forest. 3) The basal belt of the north

slope was broader than that of the south slope, so the area of cultivated plants on the north

slope was more extensive than that on the south slope. And 4) the eastern part of Taibai Moun-

tain was gentler than the western and middle regions and had relatively few vegetation forma-

tions. The area of subalpine shrub meadow and Abies fargesii forest in the eastern region was

much smaller than that in the western and middle regions. By consulting the relevant litera-

ture, the above distribution rules were consistent with the results of previous studies [68–75].

Table 4. Confusion matrix of the classification results of the RF classifier.

Class Quercus
variabilis

Quercus
aliena var.

acuteserrata

Quercus
liaotungensis

Pinus
armandii

Birch

forest

Mixed

forest

Abies
fargesii

Larix
chinensis

Subalpine

shrub and

meadow

Cultivated

plants

Non-

vegetation

Total User

accuracy

Quercus
variabilis

197 11 1 0 4 7 0 0 0 0 0 220 89.5%

Quercus
aliena var.

acuteserrata

4 165 3 0 2 4 0 0 0 1 0 179 92.2%

Quercus
liaotungensis

0 7 87 1 1 4 0 0 0 0 0 100 87.0%

Pinus
armandii

0 0 0 64 0 2 0 0 0 0 0 66 97.0%

Birch forest 0 2 0 0 86 7 1 0 0 0 0 96 89.6%

Mixed forest 0 1 0 3 2 109 2 0 0 1 0 118 92.4%

Abies fargesii 0 0 0 0 0 4 120 0 0 0 0 124 96.8%

Larix
chinensis

0 0 0 0 0 1 0 46 2 0 0 49 93.9%

Subalpine

shrub and

meadow

0 0 0 0 0 0 0 0 18 0 0 18 100.0%

Cultivated

plants

0 0 0 0 0 0 0 0 0 26 0 26 100.0%

Non-

vegetation

0 0 0 0 0 0 0 0 0 0 4 4 100.0%

Total 201 186 91 68 95 138 123 46 20 28 4 1000

Producer

accuracy

98.0% 88.7% 95.6% 94.1% 90.5% 79.0% 97.6% 100.0% 90.0% 92.9% 100%

Total accuracy: 92.2%; coefficient of kappa: 0.910.

https://doi.org/10.1371/journal.pone.0238165.t004
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Discussion

In the process of vegetation mapping, many studies have realized automatic improvement

from manual visual interpretation to computer image classification. However, this process still

involves human-computer interaction, especially the selection of samples. As algorithms such

as deep learning are proposed, many models are moving from manual intervention to full-step

automation, but still cannot meet the requirements of fine-scale for vegetation mapping. For

example, Shorter et al. [23] proposed a method using a novel color quantization technique

coupled with color invariant scheme to identify vegetation. By analyzing the spectral character-

istics of vegetation and using the difference between NDVI and background values to set

thresholds, Yao et al. [24] proposed the Hyperplanes for Plant Extraction Methodology to

achieve automatic extraction of vegetation. The minimum unit of the above research classifica-

tion system is usually vegetation type group or vegetation type, which is of relatively weak

value compared with more detailed studies [76–78]. Previous studies have shown the contra-

diction between fineness and automation in the classification process. Although the method

using prior maps can alleviate this problem to a large extent, it is not applicable to un-inter-

preted regions, and there is also the problem of error propagation. Actually, compared with

other land features, mountain vegetation is more challenging to extract from remote sensing

images, especially when classification systems are specific to vegetation formations, for the fol-

lowing reasons: 1) the boundaries of different vegetation formations are not generalized and

sometimes fuzzy; 2) A given vegetation formation may have different phenology due to

Table 5. Confusion matrix of the classification results of the KNN classifier.

Class Quercus
variabilis

Quercus
aliena var.

acuteserrata

Quercus
liaotungensis

Pinus
armandii

Birch

forest

Mixed

forest

Abies
fargesii

Larix
chinensis

Subalpine

shrub and

meadow

Cultivated

plants

Non-

vegetation

Total User

accuracy

Quercus
variabilis

166 23 5 1 0 0 0 0 0 2 0 197 84.3%

Quercus
aliena var.

acuteserrata

11 146 2 0 1 6 0 0 0 1 0 167 87.4%

Quercus
liaotungensis

1 16 89 3 4 6 0 0 0 0 0 119 74.8%

Pinus
armandii

0 4 1 116 2 0 1 0 0 0 0 124 93.5%

Birch forest 0 0 3 1 98 4 8 2 0 0 0 116 84.5%

Mixed forest 0 6 1 1 0 84 0 1 0 0 0 93 90.3%

Abies fargesii 0 0 0 0 3 1 81 0 0 0 0 85 95.3%

Larix
chinensis

0 0 0 0 0 0 1 55 3 0 0 59 93.2%

Subalpine

shrub and

meadow

0 0 0 0 0 0 0 1 9 0 0 10 90.0%

Cultivated

plants

0 0 0 0 0 0 0 0 0 27 0 27 100%

Non-

vegetation

0 0 0 0 0 0 0 0 0 0 3 3 100%

Total 178 195 101 122 108 101 91 59 12 30 3 1000

Producer

accuracy

93.3% 74.9% 88.1% 95.1% 90.7% 83.2% 89.0% 93.2% 75% 90.0% 100%

Total accuracy: 87.4%; coefficient of kappa: 0.855

https://doi.org/10.1371/journal.pone.0238165.t005
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vegetation seasonal or composite classes; 3) shadow effect from nearby trees or mountains

[4,79–81]. Therefore, under the above background, this paper sought a method that can not

only reduce manual intervention but also guarantee the classification accuracy.

In the process of automating the classification, there are many constraints, including the

collection of prior knowledge and data, the selection of samples, the selection of classifiers and

the adjustment of parameters, etc. This study mainly focused on solving the problem of auto-

matic selection of samples. The main innovation is that compared with traditional manual

sample selection, an automatic sample selection method was proposed in the context of fine-

scale vegetation mapping. Therefore, the "high automation" in the manuscript mainly refers to

the sample selection process, and human intervention still existed in the segmentation and

Fig 10. Classification results of the corrected samples using RF classifier. (a) Vegetation classification results, (b)

distribution of error points (white stars).

https://doi.org/10.1371/journal.pone.0238165.g010
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classification process. For the segmentation process, although there are plug-ins for automatic

parameter adjustment in eCognition, the accuracy is usually guaranteed in flat areas [82,83].

In order to ensure accuracy, we manually set the segmentation parameters and band weight.

For the classification process, the classification of Layer 1 was completed by the fuzzy member-

ship function in eCognition. The manual operation is to select the function type (such as trian-

gular, trapezoidal, Gaussian, generalized bell, etc.) and set the endpoint values. The

classification of Layer 2 was completed by using RF classifier. As mentioned in the method sec-

tion, features used were selected by feature sorting, and the optimal parameter combination

was selected by calculating F1-score. The process of using the RF classifier was almost

automatic.

While realizing the automatic classification of vegetation, it is also very important to ensure

the overall high accuracy. From the analysis of the sample accuracy, it can be seen that the iter-

ative clustering can effectively correct the sample, but there was still noise in the result. As can

be seen from Fig 9, the sample accuracies of different vegetation formations varied with differ-

ent perspectives, which may be caused by the following reasons:

1) The interiors of land cover areas and larger patches are generally more ecologically stable.

In the eastern part of Taibai Mountain, the distribution ranges of broad-leaved forests were

larger than those in the middle and western regions, so the sample accuracy was relatively

high.

2) In the eastern region, the altitude difference is smaller than that in the middle and west-

ern regions, and areas above 2300m account for only 4% of the total area; so the distribution

ranges of pure birch forest and coniferous forest are relatively small, which means that most

coniferous forests and birch forests in the eastern high-altitude region are formed as mixed

forests. So the accuracy of birch forest and mixed forest was lower than the average accuracy in

the west and middle regions.

Inappropriate samples are identified as the main source of errors in many classification pro-

cesses [84]. However, completely accurate samples are not easy to obtain because they require

a lot of labor or time, so it is necessary to reduce the impact of incorrect samples effectively

[85,86]. Previous studies have shown that when using RF and SVM (Support Vector Machine)

classifier to classify samples with noise less than 25%-30%, sample noise has little impact on

the classification results [87,88]. The results from Tables 4 and 5 showed that the RF classifier

was more robust to outliers than the KNN classifier. The RF classifier was selected to realize

vegetation classification from the perspective of classification performance. Although RF clas-

sifier could effectively reduce the impact of sample noise on classification, there were still some

misclassification cases, as shown in Table 4, which were mainly concentrated in the mixed for-

est and broad-leaved forest. The reasons may be as follows:

1) There are two kinds of objects formed after image segmentation: pure objects composed

of pure pixels and non-pure objects composed of mixed pixels, among them, non-pure objects

are more likely to be misclassified; the objects of mixed forests were composed of a mixture of

pixels whose properties were coniferous and broad-leaved forests, so they were more easily

misclassified.

2) Ecologically, the junctions of different land cover classes are fragile areas. The coniferous

and broad-leaved mixed forest was located at the junction of the coniferous forest belt and the

broad-leaved forest belt, and the definition was relatively fuzzy.

3) Because the time phase of the image selected for classification was winter, the image fea-

tures of various vegetation formations in the broad-leaved forest were similar, and misclassifi-

cation was likely to occur near the boundaries of the altitudinal belts.

(4) Compared with broad-leaved forests, coniferous forests had brighter colors and more

obvious textures in the images, so misclassification occurred less in coniferous forests, which
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means the classification accuracy of coniferous forest was higher than that of broad-leaved

forest.

Previously, we studied whether assisting MAB distribution information in manual sample

selection can improve classification accuracy [52]. The result showed that the overall classifica-

tion accuracy of the samples selected manually assisted with MAB distribution information

was 92.9%, which was 10% higher than that of the samples selected without MAB. It can be

seen that stratified sampling assisted by MAB distribution information can effectively improve

the accuracy. In combination with the previous studies [52], the method in this paper has grad-

ually improved the efficiency of sample selection, from manual sample selection to manual

sample selection based on MAB distribution information to highly automated sample selection

based on MAB distribution information. More importantly, the method in this paper not only

improved the efficiency but also guaranteed the classification accuracy. Compared with the

visual interpretation or manual sample selection, this method did not require a lot of interpre-

tation experience or time. We can complete a series of sample selection and classification with

high automation assisted by MAB distribution information, which are easy to obtain. In other

words, this method has certain versatility for mountain areas with obvious vertical distribution

rules of vegetation.

However, there are still some problems affecting the accuracy, such as the following two

points: 1) the sample accuracy of mixed forests (especially in the eastern region) was the main

reason for lowering the average sample accuracy; 2) the terrain constraint factors that played a

key role in the sample selection only considered the altitude factor in this study, which may be

able to further improve the sample accuracy by adding other terrain factors such as slope and

slope direction. How to solve these problems will be the focus of our next research.

Conclusions

The main purpose of this research is to alleviate the contradiction between automation and fit-

ness in remote sensing vegetation mapping. Based on high-resolution remote sensing images,

we used MAB distribution information as prior knowledge to construct terrain constraint fac-

tors for stratification and achieved sample selection with high automation based on the idea of

stratified sampling. For the noise generated in the process of sampling, an iterative clustering

method was designed to correct the noise automatically. The average sample accuracy after the

correction was 0.933, which was significantly improved compared with the average sample

accuracy before the correction of 0.886. The overall accuracy of classification with the RF clas-

sifier was 92.2%, and the kappa coefficient was 0.910. The main finding is that the method

used in this paper can automatically select samples and realize fine-scale vegetation classifica-

tion with high accuracy, and has universal applicability for mountain areas with obvious verti-

cal distribution rules of vegetation. In conclusion, this method can be applied to fine-scale

vegetation mapping in large areas with high accuracy and efficiency.

Supporting information

S1 Fig. A broken line graph of the mean-variance and segmentation scale.

(TIF)

S2 Fig. The segmentation results when the segmentation scale is 360 (a) and 140 (b). The

image was Landsat 8 image with a resolution of 15m, false color image (NIR, Red, Green), Feb-

ruary 2017. The image is for illustrative purposes only.

(TIF)
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S3 Fig. Segmentation results under different band weight combinations (NIR, Red, Green,

Blue, DSM, texture). The image was Landsat 8 image with a resolution of 15m, false color

image (NIR, Red, Green), February 2017. The image is for illustrative purposes only.

(TIF)

S4 Fig. The ranking of feature importance using RF classifier.

(TIF)

S1 File. The Python3 code for the automatic sample selection process.

(TXT)
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