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a b s t r a c t

Learning to select appropriate actions based on their values is fundamental to adaptive behavior. This
form of learning is supported by fronto-striatal systems. The dorsal-lateral prefrontal cortex (dlPFC)
and the dorsal striatum (dSTR), which are strongly interconnected, are key nodes in this circuitry.
Substantial experimental evidence, including neurophysiological recordings, have shown that neurons
in these structures represent key aspects of learning. The computational mechanisms that shape the
neurophysiological responses, however, are not clear. To examine this, we developed a recurrent neural
network (RNN) model of the dlPFC-dSTR circuit and trained it on an oculomotor sequence learning
task. We compared the activity generated by the model to activity recorded from monkey dlPFC and
dSTR in the same task. This network consisted of a striatal component which encoded action values,
and a prefrontal component which selected appropriate actions. After training, this system was able
to autonomously represent and update action values and select actions, thus being able to closely
approximate the representational structure in corticostriatal recordings. We found that learning to
select the correct actions drove action-sequence representations further apart in activity space, both
in the model and in the neural data. The model revealed that learning proceeds by increasing the
distance between sequence-specific representations. This makes it more likely that the model will
select the appropriate action sequence as learning develops. Our model thus supports the hypothesis
that learning in networks drives the neural representations of actions further apart, increasing the
probability that the network generates correct actions as learning proceeds. Altogether, this study
advances our understanding of how neural circuit dynamics are involved in neural computation,
revealing how dynamics in the corticostriatal system support task learning.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Human and nonhuman primates are capable of complex adap-
ive behavior. Adaptive behavior requires predicting the values
f choices, executing actions on the basis of those predictions,
nd updating predictions following the rewarding or punishing
utcomes of choices. Reinforcement learning (RL) is a formal,
lgorithmic framework useful for characterizing these behavioral
rocesses. Experimental work suggests that RL maps onto fronto-
triatal systems, dopaminergic interactions with those systems,
nd other structures including the amygdala and thalamus (Aver-
eck & Costa, 2017). Little is known, however, about how the RL
ormalism and the associated behaviors map onto mechanisms at
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the neural population level across these systems. How do neural
population codes evolve with learning across these systems, and
what are the underlying network mechanisms that give rise to
these population codes?

Experimental work and modeling has implicated fronto-
striatal systems in aspects of RL (Botvinick, 2012; Botvinick &
Weinstein, 2014; Langdon et al., 2018; Lee et al., 2012; Niv, 2009,
2019; Wang et al., 2018). Several studies have suggested that the
striatum codes action values (Amemori et al., 2011; Averbeck &
Costa, 2017; Daw et al., 2011; Doya, 1910; Frank, 2005; Frank
et al., 2004; Histed et al., 2009; Houk, 1995; Li & Daw, 2011;
Nakahara et al., 2001; O’Doherty et al., 2004; Pasupathy & Miller,
2005; Samejima et al., 2005; Sarvestani et al., 2011; Seo et al.,
2012; Suri & Schultz, 1998). These studies have further sug-
gested that the phasic activity of dopamine, which codes reward
prediction errors, drives updates of the striatal action value rep-
resentations following reward feedback. Several areas in the PFC
have also been implicated in action selection and decision making
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Aitchison & Lengyel, 2017; Alexander & Brown, 2018; Averbeck
t al., 2006; Balaguer et al., 2016; Botvinick, 2012; Botvinick &
einstein, 2014; Cheong et al., 2006; Collins & Koechlin, 2012;
omenech & Koechlin, 2015; Friston, 2005; Histed et al., 2009;
oechlin & Summerfield, 2007; Lim & Goldman, 2013; Radulescu
t al., 2019; Rich & Wallis, 2016; Sakai, 2008; Stokes et al., 2013;
sujimoto et al., 2008; Verschure et al., 2014; Wallis et al., 2019;
ood & Grafman, 2003). These studies further suggest that PFC
lans future actions and predicts future outcomes. While both
triatum and PFC have been found to represent action value and
hoice signals, value signals were found to be stronger in dSTR
han lPFC, while action related signals were stronger in lPFC
Averbeck et al., 2006; Pasupathy & Miller, 2005; Samejima et al.,
005; Seo et al., 2012).
Previous work in the motor system and in prefrontal cor-

ex has shown that insight into the computational mechanisms
hat underlie complex tasks can be gained by treating neural
opulations as a dynamical system and studying how their trajec-
ories evolve with time (Barak et al., 2013; Botvinick et al., 2019;
uonomano & Maass, 2009; Carnevale et al., 2015; Chaisang-
ongkon et al., 2017; Gallego et al., 2017, 2018; Hennequin et al.,
014; Mante et al., 2013; Musall et al., 2019; Rabinovich et al.,
008; Rajan et al., 2016; Remington et al., 2018; Richards et al.,
019; Shenoy et al., 2013; Sussillo & Abbott, 2009; Sussillo &
arak, 2013; Sussillo et al., 2015; Sutskever, 2013; Wang et al.,
018, 2017; Yang et al., 2018). In prefrontal cortex this work
as helped shed light on how task execution is driven by dy-
amics around fixed and slow points in neural population space
Chaisangmongkon et al., 2017; Mante et al., 2013). These studies
ave examined representations and computational mechanisms
n decision making tasks, where the values of choices have al-
eady been learned previously. In the present study, we have
sed a similar approach to study how representations develop as
nimals learn to make choices that deliver rewards.
In accordance with these findings, we built a joint recurrent

etwork model of the corticostriatal system in which the striatal
etwork represents RL-derived action values and the prefrontal
ortex, via recurrent basal ganglia loops, selects appropriate ac-
ions based on this signal. We trained this system on a com-
lex decision making task. We also obtained neural recordings
rom these two regions in two macaques trained on the same
ask.

We hypothesized that learning would drive specific structure
n state space dynamics. We further hypothesized that a system
esigned to learn RL-derived action values and select appropriate
ctions based on them would be computationally similar to the
ronto-striatal system in the brain. If so, the representational
tructure during learning in the network should be similar to that
ound in neural recordings. Moreover, the differing roles assigned
o the striatal and prefrontal networks should suffice to induce a
ifference in representational structure across the two regions in
way that matches the asymmetries in action value and choice
epresentation observed previously (Seo et al., 2012).

Investigating the change in representational structure with
earning, we found that dynamic movement-sequence represen-
ations moved apart from each other in latent space with learning,
n both the model and the neural data. We found that this process
as driven by the evolution of potential surfaces in the net-
orks such that movement-sequence specific gradient minima
oved farther apart in activity space. This increase in distance,
r in other words, the increase in the height of the gradient hill
etween sequence representations, makes it less likely that the
rong action is selected as learning proceeds.
376
2. Methods and materials

2.1. Neural data

The neural data employed here has been previously published
in Seo et al. (2012), though not with the analysis that has been
carried out here.

2.1.1. Subjects
Two adult male rhesus monkeys (Macaca mulatta) weighing

5.5–10 kg were used for recordings. All procedures and animal
care were conducted in accordance with the Institute of Labora-
tory Animal Resources Guide for the Care and Use of Laboratory
Animals. Experimental procedures for the first animal were in
accordance with the United Kingdom Animals (Scientific Pro-
cedures) Act of 1986. Procedures for the second animal were
in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by
the Animal Care and Use Committee of the National Institute of
Mental Health (NIMH).

2.1.2. Task and stimuli
The two animals performed an oculomotor sequential

decision-making task (Fig. 1A). A particular trial began when the
animals acquired fixation on a green circle (Fixate). If the animal
maintained fixation for 500 ms, the green target was replaced by
a dynamic pixelating stimulus with a varied proportion of red and
blue pixels and the target stimuli were presented (Stim On). The
fixation circle stimulus was generated by randomly choosing the
color of each pixel in the stimulus (n = 518 pixels) to be blue (or
red) with a probability q. The color of a subset (10%) of the pixels
was updated on each video refresh (60 Hz). Whenever a pixel was
updated its color was always selected with the same probability
q. The set of pixels that was updated was selected randomly
on each refresh. In the original experiment we focused on dif-
ferences between choices driven by reinforcement learning and
choices driven by immediately available information, in alternat-
ing blocks of trials. In the present manuscript we only considered
the learning blocks. The pixelating stimulus was relevant for
the blocks in which choices were driven by immediately avail-
able information. Therefore, we will not consider this stimulus
further.

The animal’s task was to saccade to the correct target (Fig. 1A).
The animal could make their decision at any time after the target
stimuli appeared. After the animal made a saccade to the periph-
eral target, it had to maintain fixation for 300 ms to signal its
decision (first Move + Hold). If the saccade was to the correct
target, the target then turned green and the animal had to main-
tain fixation for an additional 250 ms (Fixate). After this fixation
period, the green target was again replaced by a fixation stimulus
and two new peripheral targets were presented (Stim On). In
the case that the animal made a saccade to the wrong target,
the target was extinguished and the animal was forced back to
repeat the previous decision step. This was repeated until the
animal made the correct choice. For every trial the animal’s task
was to correctly execute a sequence of three correct decisions for
which the animal received either a juice reward (0.1 ml) or a food
pellet reward (TestDiet 5TUL 45 mg). After that, a 2000 ms inter-
trial interval began. The animals always received a reward if they
reached the end of the sequence of three correct decisions, even
if errors were made along the way. If the animal made a mistake,
it only had to repeat the previous decision, it was not forced back
to the beginning of the sequence. The full task included both fixed

and random conditions, as explained in detail in Seo et al. (2012).
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Fig. 1. Task and Model Overview. (A) Sequence of events in the task. (B) Coronal section showing approximate location of recording chamber. (C) The eight possible
ovement-sequences used in the task. (D) Trial structure. Trials were arranged into blocks of 8 repeats of the correct movement-sequence plus a variable number of
rror trials (i.e. sequence S1 followed by sequence S5). (E) Corticostriatal model, consisting of a prefrontal network and a striatal network of recurrently connected
nits. The prefrontal network selects actions based on inputs from the striatal network. The striatal network outputs action values based on inputs specifying actions
erformed and rewards received.
n the present study, however, only data from the fixed condition
as used.
There were eight possible sequences in this task as every

rial was composed of three binary decisions (Fig. 1C). The eight
equences were composed of ten different possible individual
ovements. Every movement occurred in at least two sequences.
e also used several levels of color bias, q as defined above. On
ost recording days in the fixed sets we used q ∈ (0.50, 0.55,

0.60, 0.65). The color bias was selected randomly for each move-
ment and was not held constant within a trial. Choices on the
50% color bias condition were rewarded randomly. The sequences
were highly overlearned. One animal had 103 total days of train-
ing, and the other 92 days before chambers were implanted. The
first 5–10 days of this training were devoted to basic fixation and
saccade training.

In the fixed condition employed here, the correct spatial se-
quence of eye movements remained fixed for blocks of eight
correct trials (Fig. 1D). After eight trials were executed without
any mistakes, the sequence switched pseudorandomly to a new
one. Thus, the animal could draw on its memory to execute a
particular sequence, except following a sequence switch.
377
2.1.3. Neural data analysis
The neural data analyzed comprised 365 units from dSTR and

479 units from lPFC (Fig. 1B, and as explained in more detail
in Seo et al., 2012). Data from individual movements was not
analyzed if animal failed to maintain fixation or did not saccade
to one of the choice targets. We fitted an ANOVA model with a
200 ms sliding window applied in 25 ms steps aligned to move-
ment onset, as done previously (Seo et al., 2012), and identified
units that did not show a significant effect for the sequence factor
at any point across the entire recording session. These units were
excluded from the analysis, as were units that showed average
firing rates below 1 Hz. For subsequent analysis, data was pooled
across animals and recording sessions and averaged across runs.

To analyze neural population responses, we applied demixed
principal component analysis (dPCA) (Brendel et al., 2011; Kobak
et al., 2016) to the firing rate traces. As a dimensionality reduction
technique, dPCA strives to find an encoding (or latent repre-
sentation) which captures most of the variance in the data but
also expresses the dependence of the representation on different
task parameters such as stimuli or decisions. More specifically,
it decomposes neural activity into different task parameters, in
our case time (X ), sequence (X ), and certainty (X ), and any
t s c
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X = Xt + Xs + Xc + Xsc + Xst + Xct + Xnoise =
∑

φ

Xφ + Xnoise

LdPCA =
∑

φ

∥Xφ − FφDφX∥2

(1)

The various task parameters are summarized by Xφ . The de-
composition into task parameters in dPCA is analogous to the
variance decomposition in ANOVA, which some readers may be
more familiar with. Once decomposed into separate task param-
eters, dPCA then finds separate encoder (Fφ) and decoder (Dφ)
for every task parameter by minimizing the reconstruction loss
(LdPCA). This is achieved by performing reduced rank regression
for every task parameter. Eventually, the rows of Dφ contain the
demixed principal components of Xφ .

In order to obtain task trajectories in the reduced dPCA space,
the data (X) was first smoothed with a Gaussian kernel and then
projected into 3-dimensional latent space spanned by the first
three demixed principal components of the sequence-subspace
(Ds). We obtained similar results when imaging in the certainty-
subspace (DC ) or the subspace obtained by the interaction be-
tween the sequence and the certainty (Dsc) parameters.

Distance measures were obtained on the full datasets in full-
dimensional neural space, not in the reduced subspace. Euclidean
distance between all sequences was computed across all time
points for each of the 8 trial repeats and averaged across all pos-
sible sequence combinations. For PFC, distances were computed
between sequences within the two clusters (defined by whether
a sequence ended in the upper or lower visual hemisphere (se-
quences S1, S2, S5, S6 and S3, S4, S7, S8, respectively; see Fig. 1C).
As a measure of how compact the trajectories were, the Euclidian
distance of every sequence to its centroid was computed across
all time points for each of the 8 trial repeats and averaged across
sequences. A sequence’s centroid was defined as the mean across
time of a trajectory in N-dimensional space with N = 365 for
dSTR and N = 479 for lPFC.

2.2. Corticostriatal model

2.2.1. Overview
We trained a system of connected recurrent rate-networks

(Fig. 1E) on the same decision-making task (Fig. 1A; Methods
and Materials – Neural Data – Task and Stimuli) that the animals
were trained on (Seo et al., 2012). The system was composed
of two networks, a striatal and a prefrontal network (Fig. 1E).
The striatal network (STR) received actions and rewards as inputs
and produced updated value signals for each of the ten possible
actions (Fig. 3 as outputs. The prefrontal network (PFC) received
value signals as inputs, together with supplementary information
indicating move/hold and fixation signals, and produced actions
for the next step as outputs. The two networks were connected
through their outputs only, but had separate weight matrices.
This is explained in greater detail in the Architecture section.
Training details can be found in the Network system training
section.

We obtained the value signals by fitting a reinforcement
learning (RL) algorithm (specifically Q-learning) to the behavioral
choice data obtained from the two animals. More specifically,
we obtained an action value signal that tracked the animal’s
perception of reward associated with each particular choice as
indicated by his behavior. This is described in greater detail in
the Task Coding section below.

The RL-derived value signals were then used together with
the action and reward signals to train the system of networks
378
in a supervised manner. Actions and rewards were obtained
from the actual experimental runs, augmented with artificial
runs (as described in the Task Coding section). Thus, during
the training phase, the networks had to repeatedly produce
blocks of movement-sequences, just like the experimental ani-
mals. Thereby, the striatal network learned to map changes in the
action and reward signals (over the course of performing sequen-
tial movements with varying outcomes) to changes in the value
signal. The prefrontal network learned to make use of changes in
value signals (together with a few other supplementary inputs)
to produce updated actions and generate movement-sequences.
Altogether, the network system was taught to internalize the
learning process that the experimental animals exhibited over the
course of a block of movement-sequences. The system was taught
to appropriately update value and action signals by providing full
trials as a supervised training signal.

After training, the system was tested both by providing full
(held-out) test trials as well as by running the system in au-
tonomous mode. In the latter case, the system was left alone
to produce a whole block of movement-sequence trials. Thereby,
action-signals from the previous step were fed back as inputs to
the striatal network, which produced an updated value signal that
was, in turn, fed back as input to the prefrontal network, allowing
it to produce the action for the next step. This is described in
greater detail in the Autonomous section.

Finally, the model system was subjected to the same analysis
as the neural data (as outline in the Neural Data Analysis section).
The model system was then probed further to reveal how it
produced decisions. This is described in greater detail in theModel
Analysis section.

2.2.2. Architecture
We jointly trained a connected system of two recurrent neural

networks to perform the movement-sequence task (see Meth-
ods and Materials). Single-unit dynamics in these networks are
governed by:

τ ẋs(t) = −xs(t) + Ws
rrr

s(t) + Ws
ir [ua(t),ur (t)] + η(t)

rs(t) = tanh(xs)

uv = Ws
rox

s

τ ẋp(t) = −xp(t) + Wp
rrr

p(t) + Wp
ir [uv(t),uins(t)] + η(t)

rp(t) = tanh(xp)

ua(t+1) = Wp
rox

p

(2)

where xsi (t) and xpi (t) are synaptic current variables of unit i at
time t in the striatal and prefrontal network, respectively, and
activity (firing rate variables r si and rpi ) is a nonlinear function of x
(r si = tanh(xsi ) and rpi = tanh(xpi )), W

s
rr and Wp

rr are the recurrent
weight matrices, Ws

ir and Wp
ir are the input weight matrices, Ws

ro
Wp

ro are the output weight matrices, and [ua,ur ] and [uv,uins] are
the inputs of the striatal and prefrontal networks, respectively,
and added noise ηi(t).

The striatal and the prefrontal network had N s
rr = 1300

and Np
rr = 1000 units, respectively. The connectivity weight

matrices Ws
rr and Wp

rr were initially drawn from the standard
normal distribution and multiplied by a scaling factor of g

√
Ns
rr

nd g
√

Np
rr
, respectively, with g = 1.0. The neural time constant

was τ = 10 ms. Each unit received an independent white noise
input, ηi, with zero mean and SD = 0.01. Inputs were fed into
the networks through the input weight matrices Ws

ir and Wp
ir

hich were initially drawn from the standard normal distribution
nd multiplied by a scaling factor of 1√

s with N s
ir = 20 and
Nir
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Np
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with Np
ir = 510 for the prefrontal network. Outputs were

ead out through the weight matrices Ws
ro and Wp

ro, which were
nitially drawn from the standard normal distribution and mul-
iplied by the same scaling factors as the input weight matrices.
therwise, the model parameters were set in the same range as
Mante et al., 2013).

The striatal network received a 15-dimensional input vector,
s = [ua,ur ], composed of a 10-dimensional vector ua spec-

ifying actions taken and a 5-dimensional vector ur specifying
he rewards received for those actions. Outputs for each of the
etworks were linearly read out from the synaptic currents of
he recurrent circuit Eq. (2). The striatal network read-out was a
0-dimensional vector, uv , of action values derived from TD
earning (as described further below).

The prefrontal network received a 20-dimensional input,
p = [uv,uins], composed of a 10-dimensional vector uv of

action value outputs from the striatal network, together with a
10-dimensional instruction vector uins specifying when to ini-
iate fixation (Fixate) and when to move towards or hold the
arget (Move + Hold). The prefrontal network read-out was a
1-dimensional output vector, ua = [ua, uvis] composed of a

10-dimensional vector ua of action outputs for the next step, and
an additional unit uvis coding for the visual hemifield (upper or
lower) in which a particular sequence terminated.

2.2.3. Network system training
All synaptic weight matrices (Wrr , Wir , and Wro) were up-

ated with the gradient of the loss function Eq. (3), which was de-
igned to minimize the square of the difference between network
nd target output:

= 2
K∑

k=1

T∑
t=0

Nrrs∑
i=1

(ŷi − yi)2 +
K∑

k=1

T∑
t=0

Nrrp∑
i=1

(ŷi − yi)2 (3)

The error was thus obtained by taking the difference between
network output y and target output ŷ and summing over all trials
K in a batch (with K = 10), time points T and recurrent units
Nrr . The total loss function Eq. (3) was obtained by combining
the loss terms from the striatal and the prefrontal network while
assigning double weight to the striatal loss term. The striatal and
the prefrontal networks were jointly trained by obtaining the
gradient of the combined loss function Eq. (3) through automatic
differentiation with autograd (Maclaurin et al., 2017) and custom
implementations of specific functions with GPU-based accelera-
tion using JAX (Johnson et al., 2018). The network was trained
with an initial learning rate of α = 0.001 for 10 steps with 1000
iterations each, while the learning rate was decayed by 2

3 at every
step. After this training phase, all the synaptic weight matrices
remained fixed.

2.2.4. Task coding
Actions (ua) and action values (uv) were coded as 10-D vec-

tors in which every unit coded for one of the movement choice
options (Fig. 1C; see Methods and Materials — Task and Stimuli).
So, for instance, for the first binary choice option (Fig. 1C, S1-
center) one unit coded the right movement choice and the other
the left movement choice (as depicted in Fig. 2). Similarly, there
was a pair of units for each of the following binary choice options
(Figs. 2, 3). Thus, there were 10 units in total for the 10 possible
movement directions (1C). Rewards (ur ) and visual inputs which
indicated target locations and fixation points (uins) were coded as
-D vectors with every unit coding for reward delivered at one of
he 5 decision points (center, upwards, downwards, upper, lower;
ig. 1C). Actions and rewards were coded as brief transients.
he reward signal interval was 2 th as long as the action signal
10 s

379
interval. Rewards were delivered after the end of the action signal
interval.

Value signals (uv) were derived by fitting a reinforcement
learning (RL) algorithm to the choices of the experimental an-
imals. In this algorithm, rewards drove the update of action
values according to a temporal-difference reinforcement learning
algorithm (Q-Learning) (Sutton & Barto, 2018):

Q (st , at ) ←− Q (st , at ) + α [rt+1 + γ max(Q (st+1, :)) − Q (st , at )]

pt = softmax(β Qt )

Qt+1 = τ Qt

(4)

The learning rate parameter α, the discount factor γ and an
dditional inverse temperature parameter β were fitted to one
f the training sessions of monkey 1 using fminsearch in Matlab,
ith the decay parameter set to τ = 0.95. The values obtained

or the parameters were α = 0.8100, γ = 0.2010, and β = 3.050.
The Q-learning algorithm thus yielded an action-value signal

Q (st , at ), (4)) for each particular state and action available at a
articular point in time. This value signal reflects the animal’s
erception of the value of a particular action given the association
ith a reward. Upon delivery of a reward, the value signals

ncreases, while upon omission, it decreases rapidly or stays flat
if no previous rewards had been delivered). Thus, if an animal
akes a mistake and chooses a left movement instead of a right
ovement, it receives no reward, and the value signal reflects

his omission (Fig. 2). Mistakes thus feature naturally in the value
ignal, and the error distribution of the experimental animals is
eflected in the training dataset for the network system.

The full training dataset for the corticostriatal model system
as composed of these Q-learning derived value signals together
ith the choices performed by the experimental animals and the
ewards delivered during the experimental runs. The training set
hus mimicked the trial structure of the original experiment. A
ubset of 25 blocks from the experimental runs was left out as
test set. Additionally, the training dataset was augmented with
rtificial data generated by randomly choosing one of the eight
equences for the current block and drawing action movement
utcomes with the same error probabilities that the animals dis-
layed in the real task (see Fig. 5D — Behavior). During training,
batch composed of 10 blocks was randomly chosen from across
he entire training set at each step.

.2.5. Autonomous mode
After training, we also tested the model’s ability to autono-

ously produce movement-sequence blocks. This meant obtain-
ng trial-by-trial value and action estimates. More specifically, we
btained an initial set of outputs (uv; Eq. (2)) from the striatal
etwork by feeding in a vector of white noise inputs for ua (with
ero mean and SD = 0.01). Striatal outputs were then fed into the
prefrontal network together with instructions uins specifying the
particular movement stage as part of the prefrontal input vector
up. We obtained a vector of actions ua(t+1) for the next step
as outputs from the prefrontal network. Actions were decoded
from among the choice options that were possible at a particular
movement stage (after the first movement stage, certain choice
options become unavailable, i.e. for sequences S1 and S5 in Fig. 1C
the choice options in the lower visual hemifield are no longer
possible at the second movement stage). Actions were decoded
probabilistically from the result of passing action outputs through
a softmax function (achoice = softmax(ua)).

The newly obtained action vector (ua(t+1)) was then concate-
ated with the previous action vector (ua(t)) and fed back into
he dSTR network. If the action was correct, a reinforcement
ignal was delivered to the dSTR. If the action was incorrect, no
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Fig. 2. Task coding. The correct movement sequence (S5) was signaled by the corresponding output units while units coding other movement directions stay flat.
ctions (light blue) were indicated by pulses in the prefrontal network’s output units corresponding to a particular direction. Rewards (dark blue, plotted on top)
ere delivered at the end of action pulses. Action values (red, plotted on top) were indicated by striatal output units corresponding to a particular direction; action
alues increased after reward delivery. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
t
(

einforcement signal was delivered. Then, the signal for the next
ovement stage was fed into the dPFC network and a new set
f dSTR outputs, for the next movement stage, was fed into the
refrontal network, etc. After the network system performed a
omplete block of movement-sequence trials, the action vector
as reset to white noise and a new block could begin.
If the decoded action was wrong (in that it was not the correct

ction for the current movement-sequence block), the network
ystem was forced to repeat this particular movement stage be-
ore proceeding (just like the animals in the original experiment).
his was done by concatenating the set of wrong actions with
he previous action vector, and feeding it back into the striatal
etwork together with the reward vector ur set to white noise.
he striatal outputs obtained as such were then fed into the
refrontal network together with the instruction vector uins set

to the same movement stage as before.

2.2.6. Model analysis
The neural population activity from the striatal and prefrontal

networks of the corticostriatal model was imaged in the same
way as the real neural recordings, by projecting activity into
380
a 3-dimensional latent space spanned by the first three princi-
pal components of the sequence-subspace (Ds) obtained through
dPCA (Eq. (1)) (Brendel et al., 2011; Kobak et al., 2016).

Canonical correlation analysis (CCA) was used to compare
model and neural population responses, as was done previously
(Sussillo et al., 2015). First, both the model and the recorded
neural data were averaged across trials, smoothed with a
Gaussian kernel and reduced to 15 dimensions using dPCA. This
ensured CCA was not performed along dimensions of high cor-
relation but low variance. Then the first 10 canonical correlation
coefficients were obtained using the entire duration of a chosen
movement-sequence as a comparison window.

In order to image the potential surface (Figs. 7 and 9), we first
projected neural population activity into 3-dimensional latent
space and obtained a mesh of points (X∗) around the sample
trajectories. Then we projected this mesh of points back out into
neural population space using the encoder matrix of the stimulus-
subspace (Fs; Eq. (1)). We started the networks off at each of
hese points by providing them as the initial vector of firing rates
r(t); Eq. (2)), and let the network system run through a whole
block of movement-sequence trials. For illustration purposes, we
imaged the potential surface at the same point for all trials in a
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Fig. 3. Corticostriatal model: autonomous behavior. Sample transition between two blocks in which the correct sequence switches (from S2, in magenta, to S4, in
ight brown; block transition indicated by vertical gray dotted line). Decoded Actions (light blue) are plotted together with rewards (dark blue) and action values (red)
or all output units. Action values spike after correctly executed, rewarded actions and increase with successive correct actions. Action values for wrong, unrewarded
oves decay quickly. Trials with erroneous movements remain unrewarded and are repeated, just like in the original experiment. Supporting Figures: Fig. S1. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
lock. We obtained the potential surface at the chosen moment
n time by calculating the magnitude of the gradient for the mesh
f points. In order to ensure that the trough of the potential
urface at the chosen moments in time really pointed to fixed
oint regions, we kept the input fixed and continued running
he network system through 10 iterations (which corresponded
381
to the length of the fixation period) to make sure the location
of the trough remained fixed on the timescale of the network.
If the location of the minimum remained fixed for the length of
this period, we labeled this location as a fixed point. We then
obtained the joint potential surface of two chosen sequences
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y taking the point-wise minimum across the two sequences’
anifolds.
In order to calculate the distance between the minima of the

otential surfaces of two different sequences, we first confirmed
he location of the fixed points in 3-dimensional latent space as
escribed above. Then, we used Dijkstra’s algorithm to obtain the
inimal path length along the joint potential surface between

wo particular sequences’ fixed points. We repeated this for all
ossible sequence combinations in the test set and averaged the
esult. In order to calculate the distance between sequences in
atent space as well as the distance of a particular sequence
o its centroid, we first projected the data into 10-dimensional
equence dPC-subspace (for computational reasons) and then
roceeded the same way as in the neural data (see Methods and
aterials – Neural Data – Data Analysis). We found no difference

n these metrics when projecting into 10- or 20-dimensional
PC-space.

. Results

We investigated dynamics during learning in the fronto-
triatal system (Fig. 1). The task consisted of a sequence of three
ovements which the animal had to execute by saccading to

he correct targets (Fig. 1A). While the animal executed these
ovement trajectories, recordings were obtained from dPCA and
lPFC (Fig. 1B). There were a total of 8 possible arrangements
or sequences) of 3 movements (Fig. 1C). These sequences, in
urn, were arranged into blocks in which one particular sequence
emained fixed for the duration of the block (Fig. 1D). Thus the
nimal was able to learn which sequence was correct in the
urrent block using feedback about chosen movements. At the
tart of a new block, a new sequence was chosen randomly (see
ethods and Materials for further details).
Two animals performed this task while we obtained neu-

al recordings from lateral prefrontal cortex (lPFC) and dorsal
triatum (dSTR) (Fig. 1B, see Methods and Materials and Seo
t al., 2012 for further details). To investigate learning dynamics,
e built a model of the fronto-striatal system. In this model,
onsistent with the neural data, the striatum represents action
alues, and the prefrontal cortex selects actions (Fig. 1E). Whether
ctions are selected via return loops through the thalamus, or
n other structures downstream from the striatum is currently
nclear. However, at least in some conditions in the in-vivo study,
ctions were selected in cortex before they were selected in the
triatum (Seo et al., 2012). Therefore, we organized our model
onsistent with this. The prefrontal network received action value
nformation from the striatum and selected actions based on this
nformation. The prefrontal network received additional inputs
ignifying fixation and move/hold periods, which were presented
o the animal as visual cues during the task. The network system
as trained to produce movement-sequences arranged in a block
f sequential trials, akin to the experimental animals. The training
et consisted of actions performed by the two animals during the
xperiment and the rewards received during the experiment, plus
corresponding set of action values. These action values were
enerated by feeding actions and rewards through a temporal-
ifference reinforcement learning algorithm (Q-learning). All of
his is explained in greater detail in Methods and Materials —
orticostriatal model. Altogether, the network system was taught
o learn the association between actions, rewards, and value
pdates over the course of a block of movement-sequences.
After training, the fronto-striatal model learned to produce

orrect movement sequences (Fig. 2). In this example, sequence
5 (consisting of a rightwards movement, followed by upwards,
nd another rightwards movement) was the correct sequence for
he current block. The prefrontal network units coding for these
382
movements selected the correct action (light blue). Following
selection of the correct action the network received a reward
input (dark blue). The reward, in turn, made the value signal in
the striatal network (red) increase for the rewarded movement.
The output of the prefrontal and striatal network units coding for
other movement directions remained flat. Altogether, the system
learned to produce movement sequences with the correct action
and action value output.

After training, the network system could be run autonomously
(Fig. 3; see Methods and Materials – Corticostriatal Model –
Autonomous mode). That is dlPFC selected actions based on the
dSTR action value inputs and external inputs to dlPFC indicating
the ordinal position of the current movement in the sequence.
In the first step, a vector of white noise inputs and a vector
of external inputs specifying the ordinal position of the move-
ment were used to generate value signals in the striatal network.
These value signals were input to the prefrontal network which
selected the first movement. This movement was then fed back
into the striatal network together with the corresponding reward
outcome. These signals were used to generate the next value
signal, and so on. In this manner, we generated several trials of
the same movement sequence, which were strung together into
blocks, as in the original experiment (Fig. 1D). During these blocks
the system received rewards and ordinal information as the only
inputs, and it reacted by adjusting value signals and actions
accordingly. Thus, in brief, after training the network system was
able to perform blocks of movement-sequences autonomously,
just like the animals in the original experiment. In essence, the
network has successfully internalized the learning dynamics that
unfold over the course of a block.

We imaged the outputs of the network system as the correct
sequence switched from one block to the next (Fig. 3). There were
a total of 10 output units, one for each of the available movement
directions (see Methods and Materials – Corticostriatal Model –
Task Coding). Decoded actions (in light blue) from the outputs
of the prefrontal network, action value outputs (in red) from the
striatal network and rewards (in dark blue) delivered externally
were all imaged together for these two sequential blocks. The
correct sequence switched from one block to the next (sequence
S2, magenta, was correct in the first block, and S4, light brown,
was correct in the second; Fig. 3 inlays).

The correct sequence for the first block (S2, magenta) is com-
posed of a left move in the center, followed by an upwards move
on the left side and a rightwards move at the top (see Fig. 3
upper inlay on the left). Accordingly, the three output units at
center left, left up and upper right were active during the first
block (left of the gray dotted line), indicating the three sequential
movements that made up the correct sequence (S2). The correct
actions could be decoded probabilistically from the outputs of the
prefrontal network; actions were signaled by sequential pulses
(light blue) in the three output units that made up the correct
sequence. Rewards were presented as short pulses at the end of
an action (dark blue). The striatal network subsequently produced
the corresponding action value signal (red). The value signal
decayed over time, but recovered when correctly executed trials
followed upon each other (as in the panel on the upper right,
Fig. 3).

As the new block began (right of gray dotted line), the correct
sequence changed (from S2 in magenta to S4 in light brown, Fig. 3
lower inlay on the left). The new sequence was composed of a
center right move, followed by a downwards move on the right
and a move to the left at the bottom, ending up in the lower visual
hemifield. Accordingly, the three output units at center right,
right down and lower left were now active (right of gray dotted
line), indicating the three sequential movements that made up
the new correct sequence (S4). The output units representing the
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Fig. 4. Model Performance. A Outputs of prefrontal model network (blue) versus targets (black) for a sample test block. B Outputs of striatal model network (red)
ersus targets (black) for the same sample test block as in A. C–D Mean squared error (MSE) between outputs and targets averaged over 25 test blocks. MSE is
epicted as a function of trials after the sequence switched for all output units in the prefrontal (C) and striatal network (D). Supporting Figures: Fig. S2. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ovements that had been correct during the previous sequence
center left, left up, upper right) were now inactive; the stri-
tal network’s value signal in these units decayed back towards
ero.
Occasionally, the prefrontal network committed errors and the

rong movement was decoded. Errors occurred with the same
requency as in the behavioral data from the two monkeys carry-
ng out this task (as the training set for the networks was derived
rom real behavior, see Methods and Materials – Corticostriatal
odel – Overview; Fig. 5D). Upon a block switch, errors could
ccur at all three movement stages. At the first movement stage,
he PFC network produced the same movement which had been
orrect in the previous block (Fig. 3 center left panel, T1w in light
383
brown). This move remained unrewarded. The striatal value sig-
nal decayed quickly after unrewarded moves, instead of spiking
as it did after rewarded moves (e.g. center left, T8 in magenta).
The network was forced to repeat the move before progressing
further (just like the animals were in the original experiment;
see Methods and Materials – Corticostriatal model – Autonomous
mode). The striatal value signal for the opposite movement direc-
tion now increased, prompting the prefrontal network to produce
the correct move at the second attempt (center right panel, T1
in light brown). The correct action was now rewarded and the
striatal value signal for this move increased further (center right
panel), while the value signal for the unrewarded action decayed
further (center left panel). Further erroneous moves occurred at
the second and third movement stages (right up and lower right
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Fig. 5. Comparison of model and recorded data A CCA projections (canonical variables) for the striatal model network (left) and the neural data recorded from
STR (right). These projections show the directions in state–space along which the data is maximally correlated with the model. Each row shows one canonical
ariable (CV 1–5). Traces are colored based on the mean value of the projection across the entire depicted duration of the trace. Traces show responses for the
hole length one movement-sequence which is composed of three sequential movements (black dots mark movement onset). B CCA projections for the prefrontal
odel network (left) and the neural data recorded from PFC (right). C Summary of canonical correlations between model and neural data. CCA analysis provides
spectrum of correlation coefficients that can be used to assess model performance (see Methods and Materials). The canonical correlation coefficients are shown

or the trained model (striatal network in dark red and prefrontal network in dark magenta), as well as for an untrained network with the same inputs which as a
aseline (striatal network in light red, and prefrontal network in light magenta). D Fraction of correct decisions as a function of trials after the sequence switched,
eparately for the behavior of the two animals (solid line), the performance of the Q-learning algorithm (broken line; see Methods and Materials – Corticostriatal
odel – Coding), and the performance of the corticostriatal model network system (dotted line; see Methods and Materials – Corticostriatal model – Autonomous
ode). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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anels, respectively). These outputs remained unrewarded, and
he network was again forced to repeat these moves. The correct
oves were generated at the second attempt, and the network
as allowed to progress to the next trial.
To analyze the system’s performance in more detail, we plot-

ed striatal and prefrontal outputs together with their target
utputs for a sample block transition from the test set (Fig. 4A, B;
ee Methods and Materials – Corticostriatal model – Overview).
n this case, actions from the test set (a portion of the original
ataset which was not used in network training) were fed into
he striatal network to obtain value signals which, in turn, were
ed into the prefrontal network to obtain action outputs. Actions
ere not fed back into the striatal network this time; rather,
he next action from the test set was picked as the next input
o the striatal network. The network behaved similarly to the
utonomous mode, with value signals increasing after successive
orrectly executed moves. Output traces generally follow target
races. To quantify this, we computed the mean squared error be-
ween targets and outputs over the duration of a block averaged
ver all blocks in the test set (Fig. 4C–D). The largest difference
etween outputs and targets occurred for the first trial when the
384
orrect sequence was unknown. Over the course of the block,
s certainty increased, the error decreased for both prefrontal
Fig. 4C) and striatal networks (Fig. 4D). We also imaged the
igenvalue spectra of the two networks’ weight matrices after
raining (Fig. S1). We found that variance was spread across many
imensions in the prefrontal network (Fig. S1A), while most of
he variance was concentrated around 5 large eigenvalues in the
triatal network (Fig. S1B).
We compared neural activity from the model with the recorded

eural data using canonical correlation analysis (Fig. 5A–C;
ee Methods and Materials – Corticostriatal model – Model Anal-
sis). We plotted the first five canonical variables for the neural
esponses from the model and the recorded data (Fig. 5A, B). The
anonical variables are the directions in state–space along which
odel and recorded data are maximally correlated, and offer a
ay to assess the similarity between model and recorded popula-
ion responses. Neural activity was reconstructed separately from
ach of the first five canonical variables. The model (left) and the
eural data (right) shared many population-level response pat-
erns. The model was able to pick up the slow oscillatory patterns
bserved in the neural data (Seo et al., 2012). We also plotted the
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anonical correlation coefficient for the striatal and the prefrontal
etwork across the first ten canonical variables (Fig. 5C). As a
omparison, we obtained the correlation coefficients for an un-
rained model (a model that received the same inputs, but did not
ndergo supervised training). The first ten canonical correlation
oefficients of all models were significant (p < 1.0e−3, MANOVA
Wilks lambda statistic), meaning the first ten axes of the CCA
captured most of the similarity between model and neural data.
The canonical correlation coefficients were consistently higher
for the trained than the untrained model, for both the striatal
(STR) and the prefrontal (PFC) network. The first seven correlation
coefficients of the trained striatal and prefrontal model networks
were significantly higher than those of the untrained model
networks (p < 4.823e−11, Z-statistic, Fisher’s z-transformation).
This shows that the trained model system is able to capture
a lot of the detail in the neural dynamics. We also computed
the average correlation coefficient across the first ten canonical
dimensions (Fig. 5C inlay). The average correlation coefficients
were overall higher for the trained networks (0.65 striatal and
0.71 prefrontal) than for the untrained networks (0.56 striatal and
0.59 prefrontal). We retrained the model 10 times with the same
configuration and parameter settings, but starting with different
randomly initiated weights (see Methods and Materials), and
obtained a similar fit to recordings.

We also determined the behavior of the model system by
measuring the fraction of correct decisions over the course of
the movement-sequence block and compared it to the recorded
behavior from the animals (Fig. 5D). The recorded behavioral data
from the animals (solid line, as in Seo et al. (2012)) shows chance
performance at the beginning of the block, and rapid, steady
improvement over the course of the block. In order to determine
the fraction of correct decisions of the model system, we let
the networks produce movement-sequences autonomously (see
Methods and Materials – Corticostriatal model – Autonomous
mode). That is, we used the action outputs of the prefrontal
network as inputs to the striatal network. In this way we obtained
a distribution of activations for the next movement step in the
prefrontal output units, from which we decoded the predicted
action. The fraction of correct decisions of the autonomous model
system averaged over 100 blocks (orange line) approximated that
of the animals’ behavior (green line). There was no significant
difference between the outputs of the autonomous model and
the behavior of the animals across the duration of the block. We
also plotted the fraction of correct decisions obtained from the
fit of the Q-learning algorithm (gray line), and it also showed no
significant difference to the behavior of the animals (green line).
This shows the model system was able to capture the animals’
behavior in this task.

To study how neural representations evolved with learning,
we imaged PFC neural population activity in 3-dimensional latent
space using demixed principal component analysis (see Meth-
ods and Materials). Trajectories from neural recordings in dlPFC
(Fig. 6A–D) are plotted alongside trajectories from the prefrontal
network of the corticostriatal model (Fig. 6E–H). The plots capture
representations for progressive trials over the course of a block
(Fig. 1D), as the animals advance from 50% certainty at the start
of the block (Fig. 6A&B) to close to 90% certainty by the fifth trial
into the block (Fig. 6C&G).

Sequence representations from neural recordings in dlPFC
(Fig. 6A–D) showed a separation by visual hemifield: sequences
S1, S2, S5 and S6 which progressed along the upper visual hemi-
field (Fig. 1C) were clustered to the left while the remaining se-
quences which progressed along the lower visual hemifield were
clustered to the right. This separation appeared to be present
from the very start of a block. We also examined the evolution
of representations across learning. As the animals learned in
385
each block, they more frequently selected the correct option
(Fig. 5D), which suggests they become more certain of their
choices. We found that sequence trajectories within each par-
ticular cluster separated more from each other with increasing
certainty (Fig. 6A–C). To capture this effect, we computed the
Euclidean distance between sequences within clusters in neural
population space (in the full-dimensional space of recordings,
not in the reduced latent space; see Methods and Materials).
We found this measure increased with certainty as learning
progressed over the block (Fig. 6D). Sequence representations
from the prefrontal network model (Fig. 6E–H) showed the same
clustering by visual hemifield. We confirmed that there was
a significant separation by visual hemifield (strongly colored
traces belong to upper, lightly colored traces to lower hemifield)
across the whole dataset (p < 5.1e − 5, paired t-test, Bonfer-
roni corrected), for the three certainty levels displayed in both
the neural data and model (Fig. 6A–G). Task trajectories were
somewhat more distinctly clustered by hemifield at the start in
the neural data (Fig. 6A) than in the model (Fig. 6E). Overall,
though, we also found Euclidian distance between sequences
within clusters increased for the model trajectories (Fig. 6H).
We confirmed that there was a significant increase in distance
(p < 1.0e − 3, paired t-test, Bonferroni corrected) between the
sequence trajectories at the first two certainty levels (50%, 76%)
and those at a high certainty level towards the end of the block
(88%–91%), for both the neural data ((Fig. 6D) and the model
(Fig. 8H).

To study what underlies increasing separation of movement-
sequence representations with learning, we probed the prefrontal
model network further (Fig. 7). We obtained the potential sur-
face in the region around the latent sequence trajectories as
learning progressed across the block (see Methods and Mate-
rials — Model Analysis). We obtained the joint surface across
two particular movement-sequence trajectories in latent space
by taking the point-wise minimum across the potential surfaces
of the individual sequences, and imaged this common surface
for increasing levels of certainty across a block (Fig. 7A–C). The
potential surface shows how activity evolves at different points
in neural latent space in the vicinity of sequence trajectories.
Neural activity has a high propensity to be pushed away from
locations where the magnitude of the gradient is high (yellow),
and remain in locations where the magnitude is low (dark blue).
We ascertained that the troughs of the potential surface pointed
to energy minima (or fixed points) in neural activity (see Methods
and Materials — Model Analysis).

Observing the evolution of joint potential surfaces with learn-
ing (Fig. 7A–C) for a particular point along the movement trajec-
tory (magenta dot), one notices how energy minima for different
regions become increasingly well separated. Along with this sep-
aration, the ridge in the joint potential surface between the two
sequence minima heightened with increasing certainty during
learning. As this happens, it becomes increasingly less likely to
commit errors: the gradient along a particular side of the ridge
drives activity more strongly towards a particular sequence’s
fixed point region, so that the chance to end up in the other
minima decreases with learning. To quantify this effect, we deter-
mined the minimal path length between the various sequence’s
fixed point regions as learning progressed (see Methods and
Materials — Model Analysis). We observed that minimal path
length between fixed point regions increased with certainty dur-
ing learning (Fig. 7D). We confirmed that there was a significant
increase in distance (p < 1.0e − 3, paired t-test, Bonferroni
corrected) between the sequence trajectories at the first two cer-
tainty levels (50%, 76%) and those at a high certainty level towards
the end of the block (88%–91%). Altogether, we established that
the energy landscape in the network changes with learning such
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Fig. 6. Evolution of latent task coding with learning for PFC recordings and model network. A–D lPFC neural recordings. Latent task trajectories during the
execution of the three-movement sequence, from the start of a trial (black cross) to the end (black dot), depicted in three-dimensional latent space (using the
sequence subspace obtained through dPCA; see Methods and Materials – Neural Data – Data Analysis). Latent trajectories for all eight possible movement sequences
(S1–S8) are plotted together, for increasing certainty (fraction correct) levels (A–C). D Euclidean distance between all sequence trajectories within the two clusters
(brightly and lightly colored trajectories) as a function of increasing certainty (see Methods and Materials – Neural Data – Data Analysis). E–H PFC model network.
Latent task trajectories during the execution of the three-movement sequence depicted in three-dimensional latent space (using the sequence subspace obtained
through dPCA, as in A–D). Latent trajectories for all eight possible movement sequences (S1–S8) are plotted together, for increasing certainty levels (E–G). H Euclidean
distance between all sequence trajectories within the two clusters (brightly and lightly colored trajectories) as a function of increasing certainty level (calculated as
in D). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

386
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Fig. 7. Evolution of potential surface with learning in PFC model network. A–C Latent trajectories (obtained through dPCA) for two different movement sequences
re depicted in two dimensional latent space (S1 in blue and S4 in red, on the bottom). Solid dots depict the beginning (green) and end (black) of the three-movement
equence. The surface depicts the potential energy of the network in the two dimensional space in which the two sequence trajectories sit. To obtain the potential
urface, the network was iterated one step forward with inputs held fixed to a particular chosen timepoint (magenta dot; see Methods and Materials – Corticostriatal
odel – Model Analysis). Latent movement-sequence trajectories and potential surface are depicted for increasing certainty (fraction correct) levels in A–C. D Minimum
ath length between the gradient minima of all sequence pairs in the test set. Path length was calculated along the joint gradient surface by using Dijkstra’s algorithm
see Methods and Materials – Corticostriatal Model – Model Analysis). Results are depicted for increasing certainty levels. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)
hat fixed point regions for different movement-sequences are
ushed farther apart from each other, underlying the increase in
ehavioral accuracy.
We also examined how neural representations evolved with

earning in the striatum (Fig. 8). Trajectories from neural record-
ngs in dSTR (Fig. 8A–D) are plotted alongside trajectories from
he striatal model network (Fig. 8E–H). Sequence representations
n the dSTR (Fig. 8A–D) did not display any particular clus-
ering by visual hemifield, unlike representations in dlPFC
Fig. 6A–D). We confirmed that there was no significant sep-
ration by visual hemifield (upper depicted by strong traces,
ower by light traces). Sequence representations were instead
cattered around in latent space. As learning progressed, seque-
ce representations spread further apart from each other
Fig. 8A–C). We computed the Euclidean distance between all
equences in neural population space and found it to be in-
reasing with learning (Fig. 8D). Trajectories from the striatal
odel network (Fig. 8E–H) were also scattered around latent
pace, similar the neural recordings (Fig. 8A–D). Like in the
ecordings, sequence representations in the model spread fur-
her apart from each other as learning progressed. To quantify
his effect, we again computed the Euclidean distance between
equences (see Methods and Materials) and found it to be in-
reasing with learning (Fig. 8H), as in the neural data (Fig. 8D).
387
We confirmed that there was a significant increase in distance
(p < 1.0e − 3, paired t-test, Bonferroni corrected) between the
sequence trajectories at the first two certainty levels (50%, 76%)
and those at a high certainty level towards the end of the block
(88%–91%), for both the neural data (Fig. 8D) and the model
(Fig. 8H).

To examine this effect in further detail, We computed the po-
tential surface for various points as learning progressed (Fig. 9), as
done previously for the PFC model. In the STR model network we
also observed energy minima for different sequences becoming
increasingly well separated as learning progressed (Fig. 9A–C).
Along with this separation, the ridge in the joint potential surface
between different sequence minima heightened with increasing
certainty during learning. To quantify this effect, we determined
the minimal path length between the various sequence’s fixed
point regions as learning progressed, as before. We observed that
minimal path length between fixed point regions increased with
certainty during learning in the STR model network (Fig. 9D).
We confirmed that there was a significant increase in distance
(p < 1.0e − 3, paired t-test, Bonferroni corrected) between the
sequence trajectories at the first two certainty levels (50%, 76%)
and those at a high certainty level towards the end of the block
(88%–91%). Altogether, we established that the energy landscape
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he three-movement sequence, from the start of a trial (black cross) to the end (black dot), depicted in three-dimensional latent space (using the sequence subspace
btained through dPCA; see Methods and Materials – Neural Data – Data Analysis). Latent trajectories for all eight possible movement sequences (S1–S8) are plotted
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ightly colored trajectories) as a function of increasing certainty level (see Methods and Materials – Neural Data – Data Analysis). E–H STR model network. Latent
rajectories for all eight possible movement sequences (S1–S8) are plotted together in dPCA-derived latent space (using the sequence subspace obtained through
PCA, as in A–D) for increasing certainty (fraction correct) levels (E–G). H Euclidean distance between all sequence trajectories within the two clusters (brightly and
ightly colored trajectories) as a function of increasing certainty level. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
s

n the network changes with learning such that fixed point re-
ions for different movement-sequences are pushed farther apart

rom each other.
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We also examined how the shape of a particular movement-
equence representation in latent space changes with learning in
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Fig. 9. Evolution of gradient landscape with learning in STR model network. A–C Latent trajectories (obtained through dPCA) for two different movement sequences
S1 in blue, S4 in red) are depicted in two dimensional latent space (bottom). Solid dots depict the beginning (green) and end (black) of the three-movement sequence.
he surface depicts the gradient of the network in the two dimensional space in which the two sequence trajectories sit. To obtain the gradient manifold, the network
as iterated one step forward with inputs held fixed to a particular chosen timepoint (magenta dot; see Methods and Materials – Corticostriatal Model – Model
nalysis). Latent movement-sequence trajectories and gradient surfaces are depicted for increasing certainty (fraction correct) levels (50%, 76% and 90% certainty in
–C). D Minimum path length between the gradient minima of all sequence pairs in the test set. Path length was calculated along the joint gradient surface by using
ijkstra’s algorithm (see Methods and Materials – Corticostriatal Model – Model Analysis). Results are depicted for increasing certainty levels. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
he two regions (Fig. 10). We observed that trajectories became
ore compact with learning (from lighter to darker blue) as
ould be seen in neural recordings from dSTR (Fig. 10A) and
n the striatal model network (Fig. 10B). To quantify this effect,
e computed the Euclidean distance of a particular sequence
o its centroid for increasing certainty levels (see Methods and
aterials) and found this measure to be decreasing with learning

n both striatal recordings (Fig. 10C) and in the striatal model
Fig. 10D). The decreasing trend in prefrontal recordings was not
ignificant (Fig. 10E), while our PFC model network showed a
ore clear decreasing trend (Fig. 10F).
We further compared latent representations for correct and

rong movements in the prefrontal model network (Fig. S2). We
maged representations of the first movement during the first
rial in the block (when error rate is highest) in 3-dimensional
PCA-derived latent space for a few different sample sequences.
e found that when the wrong movement was executed (i.e. S1
rror, dotted blue line), the representation moved away from that
f the correct movement (right move, R in bold, for sequence
1, solid blue line) and closer to that of sequences which shared
he same executed movement (left move, L in bold, for sequence
2, solid red line, and sequence S3, solid rose line). Similarly,
he movement representation for the wrong move in sequence 8
S8, dotted light green line) moved away from the correct move
rajectory (solid light green line) and closer to the movement
389
representation of sequence 6 (solid magenta line) which shared
the same movement direction.

4. Discussion

The results reveal how learning shapes neurophysiological
responses in the corticostriatal system in the brain. Examining
data from recordings in the dlPFC-dSTR circuit during an oculo-
motor sequence learning task, we found that learning increased
the distance between action-sequence representations in activity
space. To examine this further, we built a model of the corti-
costriatal system composed of a striatal network encoding action
values and a prefrontal network selecting actions. This model was
able to autonomously perform the task, matching the animals’
behavioral accuracy and closely approximating the representa-
tional structure present in neural recordings. Our model revealed
that learning shapes the gradient landscape such that fixed point
regions corresponding to different action sequences are pushed
farther apart from each other. This makes it more likely the
network generates the correct action. This offers testable predic-
tions: when task learning is poor, representations should be more
clustered together in activity space, making accurate decision
making and decoding difficult, and vice versa. Altogether, this
work shows how learning is expressed at the network level and
suggests network level disruptions may lead to improper task
learning.
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Fig. 10. Shaping of latent movement sequence representations with learning. A–B Latent trajectory for a single movement sequence (obtained through dPCA)
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est set (averaged across time points), as a function of increasing certainty (fraction correct). Neural recordings from dSTR (C) and STR model network (D). Neural
ecordings from lPFC (E) and PFC model networks (F). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
Essentially, our network system has learned to express the
rocess of learning in network dynamics. This was achieved by
uiding the networks through sequential movement-sequence
rials arranged in blocks, analogous to the experience of the
xperimental animals. During this training phase, action and
alue network weights were continuously updated throughout
he block based on a supervisory feedback signal. Following
tandard network training approaches, this feedback signal was
ackpropagated in time so that changes in actions and values
pon rewards throughout the block were incorporated into each
etwork’s respective weight matrix. Being shared across time,
he weight matrix thus effectively internalized the process of
earning over the course of the block. During the test phase,
owever, weights remained fixed. The network system’s ability
o respond to changes in external signals (rewards, task cues)
ppropriately (by increasing or decreasing value signals upon
elivery or absence of rewards, respectively) during autonomous
esting (completing blocks of movement-sequence trials on their
wn) attests to the fact that the system has properly internalized
390
(learned) the dynamics that underlie the process of learning over
the course of a block.

Our corticostriatal model system respects neuroscientific
evidence that implicates the striatum in action value repre-
sentation (Averbeck & Costa, 2017; Pasupathy & Miller, 2005;
Samejima et al., 2005) and the PFC in action selection (Averbeck
et al., 2006). We have not explicitly modeled the direct/indirect
pathways of the striatum (Gerfen et al., 1990; Vicente et al.,
2016), however, as our data originally comes from a behaving
monkey experiment, so that we cannot be sure to which pathway
the neurons that we recorded from belong. Also, our dataset is
likely composed mostly of medium spiny projection neurons, as
these make up about 95% of striatal neurons, and we recorded
without pre-selection. We did not explicitly model the details of
different neuronal types (e.g. projection neurons, interneurons)
here, though this is a promising avenue for future research.
Our model system’s behavioral accuracy and internal task rep-
resentations are similar to those exhibited by the experimental
animals. The methods used to train this system, however, are not
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iologically validated, similar to previous approaches (Chaisang-
ongkon et al., 2017; Mante et al., 2013; Yamins et al., 2014;
ang et al., 2018). We used a supervised training paradigm to
each the movement-sequence task to the system. Alternatively,
ne may have used a reinforcement learning (RL) paradigm,
ather than the gradient of an error signal, to train the network
ystem (Song et al., 2017). This would have impacted the way
etwork weights are updated during training. Here, however,
e were interested in the dynamics underlying the learning of
equential actions, which unfold over a longer timescale (the
ength of the block) than the changes induced by moment-to-
oment updates to the network weights. Thus, findings are likely
ot impacted by different training protocols, and there is no
articular benefit to using the RL paradigm for training here. If
ne wished to study moment-to-moment changes in the network
eights due to learning, then using the RL paradigm would be
ore appropriate. One could also implement this system with
piking networks (Nicola & Clopath, 2017), though there is no
eason to believe this would change the dynamics we observed
ere in any particular way (the energy cost to the system may be
ower, however).

Our model and results largely agree with previous findings
rom the corticostriatal system (Pasupathy & Miller, 2005; Same-
ima et al., 2005; Seo et al., 2012). Our model system learned to
hoose actions with the help of an action network (analogous to
refrontal cortex) and RL-derived action values represented in a
alue network (analogous to the striatum). We found that task
epresentations in neural recordings from dlPFC were organized
y visual hemifield, unlike dSTR representations, which showed
o particular organizational structure; we also observed this in
ur model. Both, dlPFC and dSTR latent task trajectories were
ound to spread apart with learning over the course of the block,
n the neural data and the model, analogous to the effect of learn-
ng observed in neural recordings from these regions (Seo et al.,
012). Our model system naturally committed occasional errors
n its decisions, as the full dataset it was trained on contained
ccasional error trials. The effect of errors (absence of reward)
as incorporated into the value signal through the use of the
-learning algorithm. After training, the model exhibited the
ame error distribution over the course of a block as the experi-
ental animals. We observed that when the network committed
rrors, latent trajectories of wrong movements were represented
loser to the opposite movement choice in activity space (where
he trajectory would have been had the opposite movement been
orrect). This effect was previously observed in closely related
eural data, in an experiment during which we recorded only
rom dlPFC (Averbeck & Lee, 2007), and also in related work
Averbeck et al., 2002).

There are previous studies that observed accentuated
esponses to the first and last movement of an action sequence in
PFC and dSTR neurons of behaving monkeys and rodents (Barnes
t al., 2005; Fujii & Graybiel, 2003; Jin & Costa, 2010; Jog, 1999).
e have not consistently observed the start–stop activity in our
eural datasets (Averbeck & Lee, 2007; Averbeck et al., 2006; Seo
t al., 2012), and we believe it has to do with several differences
n the underlying task. Specifically, in our task, the movements
ere not explicitly cued, and had to be executed from memory.
e also used a smaller set of sequences than the studies which
bserved start–stop signals (only 8) and the changed frequently
mong them over the course of the recording period (approx.
very 10 trials). Additionally, the animals had to repeatedly learn
hich sequence was correct. Therefore, the cognitive demands
f the tasks were quite different. One could have taught the
etworks to produce somewhat modified responses to the first
391
and last movement in a trial sequence (by varying the magnitude
of the required output signal during the training phase). However,
this would not have affected our main observation which is the
change in dynamics during the period between the first and last
movement, where the process of learning is expressed. In fact,
the outputs of the two networks vary slightly in magnitude due
to the inherent noise in the system, and a significant increase in
distance between sequence trajectories is observed between the
first and last trial of a block despite this variation.

We also found that striatal representations became more com-
pact with learning, both in recordings and in our model. This
happened at the same time as sequence-specific representations
spread further apart from each other in activity space. This effect
could be partially driven by changes in the mean and variance
of the neural population firing rate with learning, as well as
by changes in higher order statistics. A decrease in responses
among top-down signals as rewards become more predictable
fits well within a predictive coding framework (Keller & Mrsic-
Flogel, 2018; Summerfield & de Lange, 2014). Previously it was
found that the Fano factor, a measure of variability (variance of
spike count divided by its mean), decreased in prefrontal neurons
with learning (Qi & Constantinidis, 2012). Also, changes in firing
patterns within the neural population with learning – such as
changes in synchronous firing (Baeg et al., 2007) – might be
responsible for the changes in latent representation observed
here.

Representations in recordings from dlPFC were not found to
become significantly more compact with learning, unlike in dSTR.
This could be a consequence of less units in dlPFC encoding a
learning signal (Seo et al., 2012). In our model we did not see
a difference in how compact the representations became with
learning in the two networks. This could be amended by addi-
tional processing steps which transform the output of the striatal
network before it reaches the prefrontal network, which were not
included in our model.

In our choice of the noise level, we were guided by previous
approaches (Chaisangmongkon et al., 2017; Mante et al., 2013;
Yamins et al., 2014; Yang et al., 2018), which suggested an ap-
propriate noise level for network training to perform well. We
have experimented with various noise levels (ranging from inde-
pendent noise with a st. dev. of 0.001 to 0.02) and we found the
networks consistently exhibited the same behavior. If the noise
level is increased much further, though, it interferes with the
training process and eventually impedes learning (by producing
large oscillatory dynamics). Overall, the results are robust to small
variations in noise, but once the signal gets drowned out by noise
the networks become impossible to train. We have not systemat-
ically studied the effect of noise on learning here, however, which
is an important avenue for future research (e.g. how different
types of (correlated) noise might enhance or hinder the learning
process).

Our findings are in line with previous work showing that
activity in a large population of neurons is confined to a lower
dimensional manifold (Chaisangmongkon et al., 2017; Gallego
et al., 2018; Mante et al., 2013; Remington et al., 2018; Shenoy
et al., 2013; Wang et al., 2018). We found striatal and prefrontal
responses encoded the sequence task on a low-dimensional man-
ifold. Previous work was confined to investigating dynamics on
this manifold once the task was acquired (and the manifold fixed).
Here, we investigated how this manifold was shaped during task
acquisition, and found that learning is expressed in dynamics that
act upon that manifold. These dynamics re-shaped the manifold
in such a way that it became less likely for the network to commit
errors.



C.D. Márton, S.R. Schultz and B.B. Averbeck Neural Networks 132 (2020) 375–393

5

r
m
n
w
n
l
l
i
i
A
c

D

c
t

A

d
S

A

o

R

A

. Conclusion

We used a model of the corticostriatal system together with
ecordings from dlPFC-dSTR circuit in macaques during an oculo-
otor sequence learning task to investigate how learning shapes
eural responses at the population level. The corticostriatal model
as able to autonomously perform the task and to approximate
eural task representations. Probing the model, we found that
earning shapes latent representations such that it becomes less
ikely to commit errors as learning increases; the potential surface
s reshaped with learning such that fixed point regions represent-
ng different action choices move farther apart from each other.
ll in all, this work reveal how neural circuit dynamics in the
orticostriatal system drive task learning.
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