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Abstract

Background: To evaluate statistical methods for genome-wide genetic analyses, one needs to be able to simulate
realistic genotypes. We here describe a method, applicable to a broad range of association study designs, that can
simulate autosome-wide single-nucleotide polymorphism data with realistic linkage disequilibrium and with spiked
in, user-specified, single or multi-SNP causal effects.

Results: Our construction uses existing genome-wide association data from unrelated case-parent triads, augmented
by including a hypothetical complement triad for each triad (same parents but with a hypothetical offspring who carries
the non-transmitted parental alleles). We assign offspring qualitative or quantitative traits probabilistically through a
specified risk model and show that our approach destroys the risk signals from the original data. Our method can
simulate genetically homogeneous or stratified populations and can simulate case-parents studies, case-control studies,
case-only studies, or studies of quantitative traits. We show that allele frequencies and linkage disequilibrium structure in
the original genome-wide association sample are preserved in the simulated data. We have implemented our method
in an R package (TriadSim) which is freely available at the comprehensive R archive network.

Conclusion: We have proposed a method for simulating genome-wide SNP data with realistic linkage disequilibrium.
Our method will be useful for developing statistical methods for studying genetic associations, including higher order
effects like epistasis and gene by environment interactions.
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Background
Evaluation of new statistical methods typically requires
simulations. Generating realistic genotype simulations
at a genome-wide scale remains challenging, however.
Ideally, simulation methods should produce realistic
allele frequency and linkage disequilibrium (LD) profiles
while allowing investigators to spike in (and then try to
find) multi-SNP causal effects against a null background.
The genetic simulation tools currently available take
different approaches to simulation and offer different
capabilities; the National Cancer Institute has provided a
web resource that catalogues existing software packages and
aids comparisons of their characteristics (https://popmodels.
cancercontrol.cancer.gov/gsr/). Most current methods for

simulating extensive genome-wide data mimic evolutionary
processes, either forward in time (e.g., [1–3]) or backward in
time through coalescent theory (e.g., [4, 5]). Such approaches
are well suited for addressing population-genetics questions;
and, although they can be applied to generate pseudo-
samples for evaluating statistical methods, setting
needed and influential simulation parameters appropri-
ately can be challenging for those not expert in evolutionary
genetics. Resampling existing data is another approach to
generating genome-wide simulations (e.g., [6, 7]). Provided
suitable data are available, resampling approaches are con-
ceptually straightforward and generally successful at retain-
ing allele frequencies and LD structure from the source
data; but they are more restricted in some applications than
approaches that mimic evolution.
The many available genetic simulators differ widely in

their features and ease of use. We sought an approach
that was conceptually straightforward and would deliver
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realistic LD structure. Those considerations led us toward
a resampling-based approach. We sought an approach that
would simulate genotype data for case-parents designs and
for case-control designs. In addition, we wanted to be able
to model traits flexibly – either dichotomous or quantita-
tive phenotypes – and be able to include possible epistatic
interactions and gene-environment interactions as con-
tributing to phenotypes. No available simulator seemed
to achieve all of those goals simultaneously.
We propose a resampling-based simulation method that

can generate genome-wide autosomal SNP genotypes under
various risk scenarios. Our method requires existing auto-
somal genotype data from a genome-wide association study
(GWAS) of case-parent triads as a starting point and largely
preserves the allele frequencies and LD structure in that
data. It creates simulated case-parents data by resampling
genotype fragments sequentially from different families and
concatenating them. Trait phenotypes, either dichotomous
or quantitative, are then assigned to offspring at random
based on a user-specified risk model. Though the
method is applicable to multiple SNPs that act inde-
pendently, we focus on risk models that involve one or
more sets of interacting SNPs (to be referred to as
“pathways”) with or without gene-environment interac-
tions. If the available GWAS data contains identified
subpopulations, the method can simulate either a
homogeneous or a stratified population. Though the
construction uses case-parents data, simulated samples
from other study designs are achieved by retaining subsets
of the simulated genotypes (e.g., discarding the simulated
parents); for example, population-based random samples
for quantitative traits (with or without parents) and
case-control samples are possible.
We begin by briefly outlining some features of our R

package followed by presenting our re-sampling algorithm
for case-parents data and describing how we assign trait
values to simulated offspring. We then document the
performance of our approach with several simulations.
We close with a brief discussion.

Implementation
Our method is implemented in an R package called
“TriadSim” (https://cran.r-project.org/web/packages/
TriadSim/index.html). The input files for the package
are triad genotype data in the widely-used PLINK format.
The output files are also in PLINK format. The user can
nominate a single SNP or multiple SNPs in “pathways”
(sets of SNP loci) through the input parameter “target.snp”.
Alternatively, the user can specify a desired allele frequency
for the SNPs in each pathway, the number of pathways
and the number of SNPs in each pathway and allow the
program to pick the SNPs in the pathways. The program
allows for an array of user-specified parameters such as the
number of simulated subjects, the number of break points

to be used for each chromosome, exposure prevalence and
the baseline disease prevalence among noncarriers. The
input parameters also include a few Boolean variables to
allow the user to perform simulations for different types of
outcome: “qtl” for designating a quantitative trait rather
than a dichotomous trait; “is.case” for simulating a case-
triad rather than a control-triad. The user also needs to
input risk parameters that quantify the effect of the geno-
type(s) on the trait. Statistical models for case-parents data
estimate relative risks (RR), e.g. equation (1), whereas the
logistic models for case-control data estimate odds ratios
(OR). For a rare disease, OR and RR are numerically simi-
lar; but for a common disease, their ratio depends on the
disease prevalence. Accordingly, our package allows users
to input either relative risk or odds ratios with an indicator
variable “is.or” to denote whether odds ratios are the input.
The program can take advantage of a multi-core computer
by running multiple processes in parallel.

Results
Algorithm
Resampling to generate null data
For input, our algorithm requires actual GWAS data
from a case-parents study: genotypes of an affected off-
spring and the two biological parents. We assume the
data have been subjected to some quality control so that,
for example, triads with evident nonpaternity or an
adopted offspring have been excluded. As depicted in
Fig. 1, we augment the GWAS data with a hypothetical
complement triad for each observed triad; the complement
triad has the same parental genotypes but its offspring
carries the parental alleles not transmitted to the case. We
then randomly select, for each chromosome, a fixed
number of break points (we used three) at recombination
hotspots and keep these break points the same across the
three individuals in each triad and across all triads to be
sampled to create a given simulated triad. (To ensure
genetic diversity, the break points are selected anew for
each simulated triad in turn.) Breaking the chromosomes
in this way creates a collection of mother-father-child
triples for each chromosomal fragment, one from each
case or complement triad. We construct each simulated
triad genotype by resampling a triple at random with
replacement from the collection for each chromosomal
fragment and concatenating them sequentially (Fig. 1). By
treating such triples as the resampling units, we preserve
realistic LD structure and transmission patterns and do
not impose any random-mating assumption. The inclusion
of the complement triads serves to destroy any risk signals
in the original GWAS data. We then also randomly switch
labels for the mother and the father in order to remove
potential asymmetries due to maternally-mediated genetic
effects or asymmetric mating in the original data.
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Assigning trait phenotypes associated with sets of SNPs
The algorithm as described to this point generates triads
under a global null. To simulate under alternative
hypotheses, trait phenotypes are assigned probabilistically
according to a specified trait model. One can generate
either dichotomous or quantitative phenotypes. A trait
model provides a stochastic rule for assigning an indi-
vidual offspring genotype to a particular trait value. For
dichotomous traits like the presence of a disease, the
trait model is a risk model that specifies the offspring’s
probability of being affected conditional on genotype;
disease status is assigned at random based on that
probability. For quantitative traits, the trait model typically
specifies the offspring’s expected trait value; adding a
randomly-generated perturbation assigns the trait value.
For simplicity, all the trait models that we consider

have as predictors some function of the offspring’s geno-
type. The function is a linear combination of p indicator
variables, denoted β′X where β = (β1, β2,…, βp)

′is a vector
of parameters and X = (X1, X2,…, Xp)

′is a vector of
indicator variables. An indicator variable can be simple;
for example, an indicator that the subject carries one or
more copies of the variant at a particular SNP locus.
Thus, X might encode indicators for p distinct SNPs
that each contribute to the trait outcome. Our focus,
however, is on epistatic scenarios where the risk is increased
by inheritance of a particular combination of variant alleles
in one or in multiple pathways. The indicator variables are

then the product of a set of SNP-specific indicator vari-
ables. For example, a scenario may involve two pathways
(p = 2), a 4-SNP and a disjoint 3-SNP pathway. Then, X1

would be the indicator that the subject carries at least one
variant allele at each of the four loci in pathway 1, X2 would
be the indicator that the subject carries at least one variant
allele at each of the three loci in pathway 2, and β1 and β2
would assess the magnitude of each pathway’s influence on
the trait. One can use the same software to generate simu-
lations where risk depends on single SNPs by regarding
them as 1-SNP pathways.
For a dichotomous disease phenotype, we model the

penetrance among those with vector X as:

log P AffectedjXð Þð Þ ¼ αþ β
0
X ð1Þ

Here, α is the log risk of disease among individuals who
do not have a complete set of SNPs for any single pathway.
As described above, each component of X is a product of
locus-specific indicator variables and, for dichotomous
traits, β is a vector of the log relative risks for the associ-
ated pathways. If two or more pathways are present in one
individual, the model shown in (1) implies that their con-
tributions combine multiplicatively on the relative risk
scale. For case-parents triad data, only families with
affected offspring are retained in the final data set. For
case-only data, the user discards the parents. For control-
parents data, only families with unaffected offspring are

Fig. 1 A schematic drawing of the resampling procedure. Triads from three different families are shown in different colors. The solid bars
represent the original GWAS subjects and open bars represent their corresponding complements. The triads used by our resampling algorithm
include both case and complement triads. Break points are introduced at random and kept the same for the mother, father, and child genotypes
across the mix of all observed and complement triads. Each chromosome is broken into several fragments with a mother-father-child triplicate
fragment from a given chromosomal location treated as a unit. For each sequential location along the chromosome, one forms a location-specific
fragment pool consisting of all the triplicate fragments from that location. A simulated triad is created by randomly sampling a triplicate fragment from
each location-specific fragment pool in turn and then sequentially splicing the sampled fragments to make simulated chromosomes. The entire
process of creating location-specific fragment pools is repeated for each subsequent simulated triad, starting with a new random set of breakpoints so
that every simulated triad is based on a distinct fragmentation pattern
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retained. For case-control data, the algorithm retains
affected and unaffected offspring according to a user-
specified ratio and the user discards parental genotypes.
For a quantitative trait, we model the trait value as:

Y jXð Þ ¼ αþ β
0
X þ � ð2Þ

Here Y denotes a quantitative trait with a mean of α
among noncarriers. Again, each component of X is a
product of SNP-specific indicator variables, β is their
corresponding vector of pathway-specific shifts of the
mean, and ϵ is a normally distributed mean-zero random
error term. With two or more pathways involved, we
assume that their effects are additive on the original scale.
The algorithm retains all offspring, regardless of trait value;
though our software returns parental genotypes, they can
be discarded subsequently.
For scenarios involving gene-environmental interactions,

we consider only a dichotomous exposure, denoted E,
coded as 1 for present and 0 for absent. For dichotomous
traits, we model penetrance as follows:

log P AffectedjX;Eð Þð Þ ¼ αþ β
0
X þ θE þ γ

0
EX ð3Þ

Here α the log risk of the disease among the unexposed
individuals who do not have a complete set of SNPs for
any single pathway. β is a vector of the log relative risks
for the associated pathways in unexposed individuals. θ
is the log relative risk associated with exposure among
individuals who do not have a complete set of SNPs for any
single pathway (exposure main effect) and γ = ( γ1, γ2,…, γp)
is a vector of the log interaction effects. The corresponding
model for quantitative traits can be expressed similarly by
including the terms for the exposure main effect and the
interaction in formula (2).

Accommodating population structure
Provided the input GWAS data contain more than
one identifiable genetically distinct sub-population
(e.g., ethnicity), our implementation also allows for the
simulation of a stratified population by sampling separ-
ately from GWAS data specific to each sub-population.
Each sub-population has its own allele frequency distribu-
tion implicitly from the input data. In addition, the user
specifies, separately for each subpopulation, its proportion
in the underlying population targeted by the simulation,
exposure prevalence (if relevant), and disease prevalence
or mean trait value among (unexposed) non-carriers (we
assume that other risk parameters are common across
sub-populations). To simulate a setting where there would
be bias due to population stratification, one should select
alleles for the risk model that differ in frequency between
the two identified sub-populations. Sub-population-specific
disease prevalence or mean trait values are achieved by
setting the α parameter to different values in each sub-

population. Our program randomly selects a sub-population
from which to generate a simulated triad with probability
given by the desired underlying sub-population proportions,
then it simulates the offspring and parent genotypes
and determines the offspring phenotype probabilistically
as described above. The program loops through these
steps until it accumulates the targeted number of retained
triads (case, control, or quantitative trait).

Evaluating genetic characteristics of simulated data sets
To evaluate the performance of our software, we con-
ducted simulations using the cleft consortium GWAS
data downloaded from dbGaP as the input genotype
source (International Consortium to Identify Genes and
Interactions Controlling Oral Clefts, Accession number:
phs000094.v1.p1). These data included complete triad
genotypes for 1899 families in two identified ethnic groups,
1028 Asian and 871 Caucasian. For these simulations,
we set the number of break points at three for each
chromosome.

Elimination of existing risk signals
The original cleft GWAS had identified several risk loci
for facial clefts [8]. We verified that our resampling algo-
rithm destroys the risk signals present in the original
data, by first simulating data under the null scenario of
no risk-increasing SNPs. For simplicity, we simulated
data for 10,279 loci on four chromosomes; we chose
chromosomes that contained the clefting risk loci that
had been reported with p < 5 × 10−8 (chromosomes 1, 8,
17, and 20). We used triad families of Asian and Caucasian
origins in homogeneous and stratified scenarios. For
homogeneous scenarios, all simulated triads are from
just one ethic group; we provide results for Asian and
Caucasian families separately. For stratified scenarios,
we used both the Caucasian and Asian triads as the
source population. The underlying proportion of the
Caucasian population was set as 0.46 and the ratio of
baseline disease prevalences was set as 1.3 (Caucasian
to Asian). For each null scenario, we generated 2000
null data sets, each containing 1000 triads, a number
close to the sample sizes of the two subpopulations in the
original cleft study. Signals from the 14 loci reported at
genome-wide significance level by the original GWAS
study were all successfully obliterated in the simulated
data as indicated by Type I error rates near the nominal
per-comparison α-level of 0.05 when testing those loci for
associations with risk (Table 1).

Preservation of LD structure and minor allele frequencies
Simulated null data based on the Asian subpopulation
also provided evidence that our algorithm preserves the
original LD structure in the genome. For pairs of SNPs
within 200 kb of each other, we compared the pairwise
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SNP correlations between the original data and the
simulated data. LD (as assessed by the correlation coef-
ficient based on genotypes (0, 1, 2)) between pairs of
SNPs in the original data was well preserved in the sim-
ulated data. Among all SNP pairs, the correlation be-
tween pairwise LD measured in the original data and
the average pairwise LD across 1000 simulated null data
sets was 1.00. On average across 1000 simulated data
sets, the absolute difference between correlations was
less than 0.1 for 99.6% of SNP pairs. Among the excep-
tions, about 71% on average involved SNP pairs with
low minor allele frequencies (MAF) (MAF <0.02, red
triangles in Fig. 2) for which LD may change simply be-
cause of sampling variation for the rare allele frequen-
cies. Examining pairs of rare SNPs (MAF ≤ 0.05) more
closely, we found that those LD discrepancies between
the original and the simulated samples that exceeded
the 0.1 threshold appeared most often when the MAF
for both SNPs was <0.005 (Additional file 1: Fig. S1).
The decay in average pairwise LD with increasing in-

ter-SNP distance was similar in the original and
simulated data (Fig. 3). When restricted to SNPs with
MAF ≤ 0.05, the matching between the decay with in-
ter-SNP distance curves for the original and simulated
data is less perfect, as indicated by the minor separation of
the red and black trajectories in Additional file 1: Fig. S3
compared to Additional file 1: Fig. S2; the more jagged
appearance in Additional file 1: Fig. S3 is attributable to
limited numbers of rare SNP pairs.
In addition to preserving LD, our simulation method

preserved the original allele frequencies, the correlation

between the MAF in the original data and the average
MAF for the same locus across the 1000 simulated null
data sets approached 1 (Fig. 4 shows an example based
on a single simulated data set). On average across the
1000 data sets, the absolute difference in allele frequencies
was less than 0.02 for 96.9% of the SNPs. Regarding a
SNP’s MAF in the original data as its true MAF, we calcu-
lated 95% binomial prediction intervals for the MAF
observed for each SNP in a new simulated sample. In a

Table 1 Original genetic signals (indicated by p values) are absent in the simulated data

SNP Original GWASa Type I error rates using simulated data b

Asian Caucasian Both Asian Caucasian Both

n = 1028 n = 871 n = 1899 n = 1000 n = 1000 n = 1000

rs560426 3.84E-08 1.73E-03 1.12E-09 0.063 0.044 0.045

rs481931 6.93E-05 1.22E-03 3.04E-07 0.054 0.041 0.049

rs4147811 3.08E-05 6.16E-04 6.99E-08 0.057 0.043 0.053

rs2073485 1.24E-07 5.93E-01 4.02E-06 0.054 0.043 0.050

rs2013162 7.98E-07 2.98E-01 1.02E-05 0.052 0.038 0.061

rs861020 1.38E-04 7.34E-03 4.01E-06 0.055 0.047 0.056

rs10863790 7.31E-09 1.14E-01 2.01E-09 0.048 0.045 0.049

rs987525 8.53E-04 2.94E-12 1.74E-14 0.042 0.054 0.051

rs6072081 1.90E-06 2.10E-03 2.52E-08 0.045 0.053 0.040

rs6065259 1.00E-05 1.19E-02 7.57E-07 0.055 0.047 0.048

rs17820943 1.50E-07 5.70E-03 9.81E-09 0.038 0.059 0.051

rs13041247 8.80E-08 4.56E-03 4.92E-09 0.040 0.058 0.048

rs11696257 9.39E-08 5.07E-03 5.88E-09 0.041 0.057 0.053

rs6102085 8.67E-08 1.23E-01 5.00E-07 0.046 0.055 0.050
aThe p values were based on the complete triads, which were used in the simulation study
bBased on a per-comparison α-level of 0.05 and 2000 simulated studies

Fig. 2 Genotype correlation (R) between loci within 200Kb of each other
in the original data plotted against the corresponding R in a single
simulated data set. Red crosses represent the SNP pairs with an observed
R that differs from that based on the original data by at least 0.1 and
where the MAF is at least 0.02 in both SNPs in the original data (0.1% of
the correlations shown are in this category). The red triangles represent
the SNPs pairs with a correlation coefficient differing from the original
data by at least 0.1 and where the MAF is less than 0.02 in either SNP in
the original data (0.3% of the correlations shown are in this category)
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typical sample, ~95% of the SNP-specific MAFs from the
simulated sample fell within those prediction limits,
including rare SNPs (Fig. 4; Additional file 1: Fig. S4).
Across 1000 simulated data sets, the empirical coverage of
the SNP-specific prediction intervals (i.e., the proportion
of simulations in which a SNP’s simulated MAF fell within
its 95% prediction limits) had both median and mean 95%
across all SNPs (Fig. 5). Those values were relatively
constant across all true MAFs, though the mean coverage
fell slightly and variability in coverage increased for rare
SNPs (MAF ≤ 0.005) (Fig. 5 and Additional file 1: Fig. S5).
We conclude that our simulation procedure provides

simulated data that successfully mimics both the LD
structure and the minor allele frequencies present in the
original input data, though with some minor degradation
among rare alleles.

Proper insertion of SNP-associated traits
We also simulated data under different scenarios to verify
that the trait-related pathways that we spiked in could be
recovered analytically. For all these simulated scenarios,
we used the same 10,279 loci and assumed two causative
pathways, each with four interacting loci. We selected the
eight pathway SNPs for these simulations from among
SNPs with the targeted allele frequencies and selected
SNPs that were widely spread across four chromosomes.
First, we studied stratified null scenarios using 2000 simu-
lated studies of 1000 triads each. We wanted to create
stratification that would generate substantial bias under a
naive analysis; consequently, we needed two subpopula-
tions that differed in both allele prevalence and baseline
disease rate. For these null scenarios, the two subpopula-
tions were separately resampled from the Asian and
Caucasian GWAS data, respectively. We selected SNPs to
ensure that the allele frequency of each of the SNPs in the
two pathways designated for testing was close to 0.15 and
0.5 in the two subpopulations, respectively. The under-
lying proportion of the second population was set at 0.46
(mimicking Caucasian proportion in the clefting data).
The baseline disease risks in the two subpopulations were
set to 0.17% and 0.5% for a dichotomous trait (Table 2,
Stratified null) and the shift in mean was set to 1.1 for
a continuous trait with standard deviation 1 (Table 3,
Stratified null). For each alternative scenario, we simu-
lated 1000 data sets, each with 1000 triads from a

Fig. 3 Average squared genotype correlations (R2) between loci
plotted against the distance between them. The black line shows
the curve based on the original data while the red line shows the
corresponding averaged value based on 1000 simulated data sets.
The two lines coincide and only the red line is visible

Fig. 4 Comparison of minor allele frequencies (MAFs) in the original
data versus those in a single simulated data set. The red crosses
represent the SNPs with MAF in the simulated data that fall outside
95% binomial prediction intervals calculated using the SNP’s MAF in the
original data as its true MAF (4.9% of the SNPs are in this category)

Fig. 5 Empirical coverage of nominal 95% binomial prediction
intervals plotted against the SNP’s minor allele frequency (MAF) in the
original data. Prediction intervals are calculated for each SNP in each
simulated data set using the SNP’s MAF in the original data as its true
MAF. Empirical coverage for a SNP is calculated as the proportion of
1000 simulated data sets in which the SNP’s observed MAF was within
its prediction interval. Each point represents empirical coverage for one
of 10,279 SNPs in the simulations. The horizontal reference lines
correspond to mean and median coverage across all SNPs (both 95%
coverage, matching the nominal coverage) and to the 2.5th and 97.5th
percentiles (93% and 97% coverage, respectively), One SNP at
MAF = 0.051and with coverage less than 70% does not appear in
the figure
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homogeneous population based on the Asian subpopula-
tion. We simulated data under scenarios with pathway
genetic effects only and scenarios with gene-environment
interactions. Frequencies for the individual SNPs at each
locus in the pathways were around 0.2 or 0.3. We selected
these values for MAFs because they were typical of the
single SNPs detected as risk-associated in the clefting
GWAS and values for relative risks that were likely to give
reasonably tight confidence limits for a study with 1000
triads. Assessing performance over a range of allele
frequencies is outside the scope of this paper. For a
dichotomous trait, the baseline risk of the disease was
set at 1.66 per 1000 individuals and the relative risks
associated with carrying at least one variant allele at all
SNPs in the pathway were 1.65 and 2.71 for the two
pathways, respectively (Table 2, Alternative). For gene-
environment interactions, we considered a pure-interaction
scenario where the relative risks for each pathway’s genetic
main effects and for the exposure main effect were set at 1
while the interaction effects were set at 1.65 and 2.71 for
the two pathways, respectively (Table 4, Dichotomous). For
the quantitative trait, the trait mean was set at zero and the
mean shifts for those carrying at least one variant
alleles at all SNPs in the pathway were 0.1 and 0.15 for
the two pathways, respectively (Table 3, Alternative).
For gene-environment interactions, we retained 0.1 and
0.15 as the genetic main effect parameters, set the

exposure main effect parameter to 0, and had the inter-
action induce a 0.02 greater shift in mean for the ex-
posed (Table 4, Continuous). To analyze these data, we
fit the same trait model used to generate them; in other
words, we sought to demonstrate that the estimated pa-
rameters tracked the true parameters assuming that we
knew the true pathways in advance.
For a dichotomous trait, we estimated the pathway

genetic risk parameters in both the null and alternative
scenarios without bias (Table 2); in addition, empirical
confidence interval coverage agreed well with the nominal
95%. For a quantitative trait, we also estimated the
pathway genetic shift parameters in both the null and
alternative scenarios without bias (Table 3), and empirical
confidence interval coverage matched the nominal 95%.
We saw the same unbiased-estimation and confidence-
interval-coverage properties when the scenarios included
gene-environment interactions (Table 4). We conclude
that our approach to spiking multi-SNP causal effects is
operating properly.

Processing time
We assessed the computation time based on a multi-
processor computer with AMD Opteron Processor 6380
with a CPU speed 1400 MHz and 504 G memory. We
ran our program with 5 parallel processes. For each sim-
ulated data set of 1000 triads, the program took under

Table 2 Analytic recovery of pathway genetic effects for a dichotomous trait, based on 1000 (under alternatives) or 2000 (under the
null) simulated studies of 1000 triads

Simulation Setup Simulation Results

Scenario Allele Frequency for each of
the 4 SNPs in each pathway

True Relative Risk Average Estimated Relative Risk
(95% CI for the mean)

Estimated Coverage
of Nominal 95% CIs

Pathway 1 Pathway 2 Pathway 1 Pathway 2 Pathway 1 Pathway 2

Stratified null a 1 1 1.00 (0.99,1.01) 1.00 (0.99,1.01) 0.948 0.952

Alternative b 0.3 1.65 2.71 1.65 (1.63,1.66) 2.73 (2.71,2.75) 0.948 0.959

Alternative b 0.2 1.65 2.71 1.64 (1.61,1.67) 2.72 (2.67,2.77) 0.963 0.964
aBy design, the allele frequency for each of the 4 SNPs in each tested pathway in subpopulation one was close to 0.15 while that in subpopulation two was close
to 0.5
bSimulations under alternatives used homogeneous populations

Table 3 Analytic recovery of pathway genetic effects for a continuous trait, based on 1000 (under alternatives) or 2000 (under the null)
simulated studies of 1000 offspring

Simulation Setup Simulation Results

True Shift in mean Average Estimated Shift in Mean
(95% CI for the Mean Shift in Mean)

Estimated Coverage of
Nominal 95% CIs

Scenario
Allele Frequency for each of
the 4 SNPs in each pathway

Pathway 1 Pathway 2 Pathway 1 Pathway 2 Pathway 1 Pathway 2

Stratified null a 0 0 0.00 (−0.02,0.03) −0.01 (−0.03,0.02) 0.949 0.958

Alternative b 0.3 0.1 0.15 0.10 (0.09,0.11) 0.15 (0.14,0.15) 0.949 0.95

Alternative b 0.2 0.1 0.15 0.10 (0.09,0.12) 0.14 (0.13,0.16) 0.949 0.96
aBy design, the allele frequency for each of the 4 SNPs in each pathway in subpopulation one was close to 0.15 while that in subpopulation two was close to 0.5
bSimulations under alternatives used homogeneous populations
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three minutes for 10 k SNPs but took about 35 min for
~500,000 SNPs (Table 5). The main time-limiting step
seems to be file read and write rather than the resampling
step based on the risk model since the time difference is
minor for diseases with different prevalences, especially
when the number of SNPs is large.

Discussion
The principal novelty to our resampling approach is our
use of complement triads and our use of sets of chromo-
somal fragments from the triple of mother-father-child
genotypes as the re-sampling unit. The inclusion of all

of the complement triads effectively destroys signal from
the original GWAS, as was demonstrated. Our resampling
procedure, before any assignment of SNP-associated traits,
recapitulates the allele frequencies in the case-parents
input data rather than those in the underlying source
population. The two can differ because any allele (in-
cluding interacting alleles) that is positively associated
with the offspring phenotype will have a slightly higher
prevalence in the parental genotypes of the observed
triads than in the source population from which they
came; that enrichment will be propagated to the simulated
triads. We selected three break points per chromosome in
our simulations for convenience. Some researchers may
prefer to take the chromosome size into consideration when
picking the number of break points, and our R functions
allow users to specify the number of breakpoints separately
for each chromosome. The idea of using chromosomal
fragments broken at recombination hotspots as part of
a resampling scheme has been employed by others. It was
used to simulate case-control data [9] and to increase
diversity through simulated crossover [7]. Our approach,
which also uses a newly chosen set of breakpoints for each
simulated triad, creates simulated data with genetic
diversity while retaining the realistic LD structure from
the original data. It also foregoes the random mating
assumptions inherent in many genetic simulators.
Our framework is more broadly applicable than our

current software implementation supports. In addition

Table 4 Analytic recovery of gene-environment interaction effects for dichotomous and continuous traits in a homogeneous popu-
lation, based on 1000 simulated studies of 1000 triads (dichotomous) or offspring (continuous)

Phenotype Allele
Frequency

Pathway Truth or
Estimate

Parameter Valuesa Estimated Coverage of Nominal 95% CIs

Pathway Genetic Effect GxE Interaction Effect Pathway Genetic Effect GxE Interaction Effect

Dichotomous 0.3 1 True 1 1.65

Estimated 1.00 (0.99,1.01) 1.65 (1.61,1.69) 0.953 0.954

2 True 1 2.71

Estimated 1.00 (0.99,1.02) 2.72 (2.67,2.77) 0.936 0.954

Dichotomous 0.2 1 True 1 1.65

Estimated 1.01 (0.98,1.04) 1.79 (1.67,1.91) 0.959 0.954

2 True 1 2.71

Estimated 1.01 (0.98,1.04) 3.05 (2.80,3.33) 0.958 0.957

Continuous 0.3 1 True 0.1 0.02

Estimated 0.10 (0.09,0.11) 0.02 (0.00,0.04) 0.944 0.966

2 True 0.15 0.02

Estimated 0.15 (0.14,0.16) 0.02 (0.00,0.03) 0.948 0.941

Continuous 0.2 1 True 0.1 0.02

Estimated 0.10 (0.08,0.11) 0.03 (−0.01,0.07) 0.945 0.949

2 True 0.15 0.02

Estimated 0.17 (0.15,0.18) 0.02 (−0.02,0.06) 0.936 0.933
aParameter values relate to relative risks for dichotomous traits and to mean shifts for quantitative traits. For all models, we assumed that in the absence of either
genetic pathway there was no effect of the dichotomous exposure

Table 5 Simulation time for generation of 1000 triads

Number of
SNPs

Number of
chromosomes

Disease prevalence
or QT

Time used
(seconds)

10,279 4 0.0002 159

10,279 4 0.00166 104

10,279 4 0.01 94

10,279 4 0.1 89

566,393 22 0.0002 2258

566,393 22 0.00166 2268

566,393 22 0.01 2190

566,393 22 0.1 2252

10,279 4 QT 92

566,393 22 QT 2223
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to the study designs mentioned, one could simulate
data based on outcome-dependent (extreme phenotype)
sampling for a quantitative trait: after simulating offspring-
parent data for the quantitative trait, the probability of
inclusion into the simulation sample would depend on a
user-specified function of the trait value. Additional risk
models could be incorporated. For example, instead of the
present multiplicative structure in eq. (1), one could build
an additive structure. Risk models could allow for the
effects of maternal genes acting during pregnancy on
offspring phenotype as well as maternal exposures and
parent-of-origin effects. Maternal-fetal genotype interac-
tions could also be simulated. Dichotomous traits could be
extended to polytomous traits and univariate quantitative
traits to multivariate quantitative traits. Error distributions
other than the normal errors of eq. (2) could be incorpo-
rated. An important extension would be to accommodate
a richer genetic structure for each pathway. Currently, our
code is restricted to a dominant (at least one variant
present) mode of inheritance for each SNP in a pathway;
our framework would allow more flexibility in that
specification, ideally the Boolean specifications used in
logic regression [10, 11].
Our approach does have some inherent limitations.

Any re-sampling-based approach such as ours may be
limited to an extent by the original data. Ideally the triads
to be used as the raw material should include a large set
of unrelated families. Also, to simulate stratified popula-
tions with our approach, the available data needs to
contain distinct sub-populations. Also, unlike simulations
based on mimicking evolutionary processes, resampling
approaches cannot introduce new variants into a simu-
lated population. For many purposes, this drawback is
minor though it may be relevant when studying rare
variants. Our approach may not be ideal for simulating
rare variants. SeqSIMLA [12], a coalescent-based simula-
tor for either unrelated case-control or family samples,
and RarePedSim [13], a forward-time simulator for
general pedigree structures, are two packages designed
specifically to simulate sequence-based data incorporating
rare variants into the determination of phenotypes. Because
our approach simulates a genotype at each locus, it cannot
provide simulated haplotypes. If haplotypes are needed, a
web-based tool HAP-SAMPLE is available that relies on
resampling chromosome-length haplotypes derived from
30 triads in the HapMap project [7] and can simulate both
case-control and case-parents data. This tool has some
restrictions, however, that make it unattractive compared
to our approach when only genotypes are of interest.
HAP-SAMPLE assumes random mating and can include
at most one risk locus per chromosome; neither restriction
applies to our approach. In addition, the small original
sample of chromosome-length haplotypes currently
available to HAP-SAMPLE would tend to limit the

genetic diversity available in any simulated data sets versus
that achievable with the larger number of case-parents
GWAS studies that could be used by our approach.
As always, the choice of a simulation method will depend

on the goals of the project. If assessment of methods for
studying genome-wide genetic associations, particularly
those involving multi-SNP epistasis, is the goal, our
method could serve this purpose well.

Conclusion
We have provided a resampling-based method to simulate
autosomal SNP genotypes for use in evaluating data-analysis
methods. The required raw-materials input for these simula-
tions is GWAS triad genotype data from individuals and
their parents. Our approach can simulate both case triads
but also control triads and offspring with quantitative traits
(with or without their parents). Discarding parents from
case triads provides case-only samples and discarding
parents from both case and control triads provides
case-control samples. We showed through simulations
that our method produces simulated data sets that
largely preserve the allele frequencies and the realistic
SNP-pair LD structure that existed in the original data.
Using our approach, one can simulate complex scenarios
that involve multiple genetic pathways, each containing
multiple interacting SNPs, pathways that possibly interact
with dichotomous environmental factors.

Availability and requirements
Project name: TriadSim.
Project home page: https://cran.r-project.org/web/

packages/TriadSim/index.html
Operating system: Platform independent.
Programming language: RLicense: GPL-3.

Additional file

Additional file 1: Fig. S1. Genotype correlation (R) between rare SNP
pairs within 200Kb of each other in the original data plotted against the
corresponding R in a single simulated data set. Red triangles represent
the SNP pairs with an observed R that differs from that based on the
original data by at least 0.1 (LD discrepant pairs). a) 0% discrepant among
16 pairs of SNPs both with 0.04 < MAF ≤ 0.05 in the original data; b) 0%
discrepant among 26 pairs of SNPs both with 0.03 < MAF ≤ 0.04; c) 2.6%
discrepant among 38 pairs of SNPs both with 0.02 < MAF ≤ 0.03; d) 8.6%
discrepant among 35 pairs of SNPs both with 0.01 < MAF ≤ 0.02; e) 31%
discrepant among 13 pairs of SNPs both with 0.005 < MAF ≤ 0.01;
f) 14.2% discrepant among 296 pairs of SNPs both with MAF ≤ 0.005.
Fig. S2. Average squared genotype correlations (R2) between loci plotted
against the distance between them. This figure is similar to Fig. 2 in the
text but instead it shows the LD decay for SNPs up to 200 kbps apart
(to facilitate comparison to Additional file 1: Fig. S3). The black line shows
the curve based on the original data while the red line shows the
corresponding averaged value based on 1000 simulated data sets. The
two lines coincide and only the red line is visible. Fig. S3. Average
squared genotype correlations (R2) between loci plotted against the
distance between them for rare SNPs. The black line shows the curve
based on the original data while the red line shows the corresponding
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averaged value based on 1000 simulated data sets. When the two lines
coincide only the red line is visible. a) 1782 pairs of SNPs both with
MAF ≤ 0.05; b) 1495 pairs of SNPs both with MAF ≤ 0.04; c) 1147 pairs of
SNPs both with MAF ≤ 0.03; d) 848 pairs of SNPs both with MAF ≤ 0.02;
e) 593 pairs of SNPs both with MAF ≤ 0.01; f) 446 pairs of SNPs both with
MAF ≤ 0.005. Fig. S4 Comparison of minor allele frequencies (MAFs) in
the original data versus those in a single simulated data set for rare
SNPs (MAF ≤ 0.05). The crosses represent the SNPs with MAF in the
simulated data that fall outside 95% binomial prediction intervals
calculated using the MAF in the original data as the true MAF (these
MAF discrepant SNPs should make up about 5% of SNPS by definition).
The colors denote SNPs in different MAF ranges in the original data:
orange, 2.8% discrepant among 178 SNPs with 0.04 < MAF ≤ 0.05; blue,
5.6% discrepant among 214 SNPs with MAF 0.03 < MAF ≤ 0.04; green,
4.8% discrepant among 228 SNPs with 0.02 < MAF ≤ 0.03; purple, 5.2%
discrepant among 248 SNPs with 0.01 < MAF ≤ 0.02; red, 7.9% discrepant
among 151 SNPs with 0.005 < MAF ≤ 0.01; black, 4.7% discrepant among
852 SNPs with MAF ≤ 0.005. Overall, 4.97% of 1871 SNPs with MAF ≤ 0.05
lay outside their corresponding 95% prediction interval. Fig. S5 Empirical
coverage of nominal 95% binomial prediction intervals for rare SNPs
(MAF ≤ 0.05) plotted against the SNP’s minor allele frequency (MAF) in the
original data. Prediction intervals are calculated for each SNP in each
simulated data set using the SNP’s MAF in the original data as its true MAF.
Empirical coverage for a SNP is calculated as the proportion of 1000
simulated data sets in which the SNP’s observed MAF was within its
prediction interval. Each point represents empirical coverage for one of
1871 SNPs with MAF ≤ 0.05 in the simulations, based on 1000 simulated
data sets. The horizontal reference lines correspond to mean and median
coverage across all 10,279 SNPs in the simulations (both 95%, matching the
nominal coverage) and to the 2.5th and 97.5th percentiles (93% and 97%,
respectively). (DOCX 1187 kb)
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nucleotide polymorphism
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