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Abstract

In this paper, we propose six Student’s t based compound distributions where the scale

parameter is randomized using functional forms of the half normal, Fréchet, Lomax, Burr III,

inverse gamma and generalized gamma distributions. For each of the proposed distribution,

we give expressions for the probability density function, cumulative distribution function,

moments and characteristic function. GARCH models with innovations taken to follow the

compound distributions are fitted to the data using the method of maximum likelihood. For

the sample data considered, we see that all but two of the proposed distributions perform

better than two popular distributions. Finally, we perform a simulation study to examine the

accuracy of the best performing model.

1 Introduction

The Student’s t distribution due to Gosset [1] is the most common and parsimonious

model for economic and financial data [2, 3]. It not only offers the potential to fit the lepto-

kurtic properties of financial data but also, can serve as a foundation for building complex

statistical models that can describe more subtle features of financial data such as volatility

clustering. In recent times, many notable modifications to its functional form have been

proposed, for example, see Hansen [4], Fernández and Steel [5], Theodossiou [6], Jones and

Faddy [7], Sahu et al. [8], Bauwens and Laurent [9], Aas and Haff [10], Zhu and Galbraith

[11, 12] and Papastathopoulos and Tawn [13]. They have been applied beyond Bayesian

finite and infinite variance models [14], Markov regime switching models [15] as well as

multivariate stochastic volatility models [16]. A detailed review of various modifications of

the Student’s t distribution is provided by Li and Nadarajah [17] but the list is still by no

means complete.

One of the Student’s t popular generalizations, often recommended for risk quantification

in finance as noted by McNeil et al. [18] is the generalized hyperbolic distribution (GHYP)

due to Barndorff-Nielsen [19]. The GHYP distribution offers a flexible functional form and

possesses a number of attractive properties. For instance, the GHYP distribution can be both

symmetric and skewed and is classified as a normal mean-variance mixture distribution and

has the Student’s t as one of its special cases. Normal mean-variance distributions are also
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widespread and not uncommon. For example, mixing of this type can be traced back to Press

[20] and Praetz [21], followed by Andrews and Mallows [22], Barndorff-Nielsen [19], Barn-

dorff-Nielsen et al. [23], Kon [24], West [25], Madan and Seneta [26], Madan et al. [27], Tjet-

jep and Seneta [28], Luciano and Semeraro [29], Geweke and Amisano [30], Nadarajah [31],

among others. Typically, these class of models (compound distributions) capture heteroge-

neous characteristics of financial data by randomizing one of the parameters (often the scale

parameter) of the parent distribution with appropriate mixing distributions, for example, see

McDonald and Butler [32], Hoogerheide et al. [33] and Ardia et al. [34, 35].

Recently, Afuecheta et al. [36], unlike the previous compositions which are based on the

normal distribution, introduced mixture models based on scale mixing of the Student’s t dis-

tribution by specifically focusing on the leptokurtic properties of financial data. In particular,

they provided flexible compositions of the Student’s t with three mixing distributions: expo-

nential, Weibull and gamma. Their models were shown to provide better fits than some of the

popular and more complicated generalizations of the Student’s t distribution, including the

GHYP distribution. Hence, given good empirical performance of these models and because of

the increasing interest in terms of methodology and applications, we extend this work by con-

sidering six mixing distributions. We proceed with the assumption that the conditional distri-

bution for financial returns follows the Student’s t distribution. The variance (volatility) of

returns is assumed to follow any of the six mixing distributions: one parameter half normal,

two parameter Fréchet, two parameter Lomax, two parameter Burr III, two parameter inverse

gamma and three parameter generalized gamma distributions. With these distributions, our

research offers six new compound distributions.

The primary objectives of this paper are: (i) to propose six new compound distributions

based on the Student’s t distribution; (ii) to illustrate applications of these distributions using

real financial data sets; (iii) to compare the proposed distributions with two of the most popu-

lar parametric distributions used in finance–the GHYP distribution and asymmetric Student’s

t (AST) distribution due to Zhu and Galbraith [11, 12]. For each of the proposed compound

distribution, we provide its probability density function (PDF), cumulative distribution func-

tion (CDF), moments and characteristics functions. We perform our estimations using the

method of maximum likelihood (ML). For the samples considered, empirical comparisons are

made using a common set of log-likelihood based criteria. We show that all but one of the pro-

posed distributions perform better than the GHYP distribution under the selection criteria.

We also show that all but two of the proposed distributions perform better than the AST distri-

bution under the selection criteria.

The rest of this paper is organized as follows. In Section 2 and corresponding subsections,

we present the general form of the proposed distributions; Section 3 describes the data, con-

ducts some exploratory analysis linked to the proposed distributions and outlines evaluation

criteria; the results and their discussion are given in Section 4. In Section 5, we conduct a sim-

ulation study to assess the performance of the ML estimators with respect to sample size n
and to demonstrate the ability of the best performing model. The simulation study also helps

to evaluate the uncertainty surrounding the parameters of the best performing model, which

ensures that the results obtained are reproducible if the same model is applied to the same

data sets, but at a different time interval; finally, Section 6 concludes and summarises our

work.

Two of the data sets used are data on cryptocurrencies. There are many papers on risk esti-

mation for cryptocurrency data. Most notable papers include Acereda et al. [37], Trucios et al.
[38] and Jimenez et al. [39].
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2 Compound distributions

In this section, we begin by writing down the general form of the proposed distributions. Let X
denote a continuous random variable representing the observed financial data series; in our

case, log-returns of two financial stock indices, two fuel commodities and two cryptocurren-

cies exchange rates. Assuming that the conditional asset return distribution is Student’t with

the PDF given by

f x j s2ð Þ ¼
G nþ1

2

� �

ffiffiffiffiffiffiffiffiffiffi
nps2
p

G n

2

� � 1þ
x2

2s2

� �� nþ1
2

ð1Þ

for −1< x<1 and where σ2 > 0.

Now, assuming that the variance σ2 itself is a random variable with PDF given by g(σ2),

then the unconditional/actual stock return distribution will be given by the PDF

fXðxÞ ¼
Z 1

0
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nps2
p

G n

2

� � 1þ
x2

ns2

� �� nþ1
2

g s2ð Þds2; ð2Þ

for convenience, we shall let σ2 = τ and rewrite the Eq (2) as
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By making use of the series expansion
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we can further simplify (3) as
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where (a)k = a(a + 1) � � � (a + k − 1) denotes the ascending factorial. Eq (4) is in its general

form and shall be used to provide distributions for log-returns of our financial series. The gen-

eral form of the CDF of X corresponding to (4) can be derived as
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for −1< x<1. By making use of the series expansion
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we can further simplify (5) as
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The general form of the kth moment of X can be expressed as
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provided that 0< k< ν. The general form of the characteristic function of X can be expressed

as

E exp itXð Þ½ � ¼ EfE exp itXð Þ j t½ �g ¼

Z 1

0

Kn
2

ffiffiffiffiffi
nt
p
j t j

� �
t
n
4gðtÞdt

� �
ð
ffiffiffi
n
p
j t jÞ

n
2

2
n
2
� 1G n

2

� � ; ð8Þ

where i ¼
ffiffiffiffiffiffiffi
� 1
p
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Having obtained the general expressions for the PDF given by (4), the CDF given by (6),

the kth moment given by (7), and the characteristic function given by (9), we shall proceed to

obtain expressions for any given mixing distribution, g(�). The choice of the mixing distribu-

tions (two parameter inverse gamma distribution, two parameter Lomax distribution, the gen-

eralize gamma distribution, two parameter Burr distribution, two parameter Fréchet and one

parameter half normal) is motivated by Fig 1, showing the histograms of the volatility for

financial series considered in Section 3. The volatility is measured by the standard deviation

taken over non-overlapping windows of length 50 days. From Fig 1, we see that g(�) corre-

sponds to an exponential-type family of distributions with unimodal PDF, suggesting overall

appropriateness of the choices. Notably, the following procedure was used for the choice of

g(�): (i) fit the considered g(�) forms to the standard deviation series obtained using MLE; (ii)

select the best performing g(�) based on the lowest negative log-likelihood and provide the best
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fitting parametric outcome for each histogram shown in Fig 1. With this, we observe that the

volatility for stock indices and cryptocurrencies is best described by the generalized gamma

PDF.

The calculations in the following sections make use of two special functions: the generalized

hypergeometric function defined by

pFq a1; . . . ; ap; b1; . . . ; bq; x
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the Wright [40] generalized hypergeometric function defined by
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The properties of these special functions can be found in Prudnikov et al. [41], Gradshteyn

and Ryzhik [42], Mathai and Saxena [43] and Srivastava et al. [44].

2.1 Two parameter inverse gamma: With g taking the form

gðtÞ ¼
b
a
t� a� 1 exp � b

t

� �

GðaÞ

for τ> 0, α> 0 and β> 0. Note that β and α are the scale and shape parameters, respectively.

Fig 1. Histogram of standard deviations computed over non-overlapping windows of length 50 days for the specified daily log-returns (S&P500,

DJI, Diesel, Propane, BTC and LTC).

https://doi.org/10.1371/journal.pone.0239652.g001
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This PDF has a unique mode (which is found at τ = β/(α+ 1)) and skewed moderately to the

right. It can be used to describe a wide range of physical phenomenon in diverse disciplines,

including climatology, reliability, option pricing, economics, finance and survival analysis. See

Bouchaud and Potters [45] for some application of the inverse gamma distribution to stock

returns. For the two parameter inverse gamma distribution,

Z 1

0
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b
Z
Gða � ZÞ
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:

Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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respectively.

2.2 Two parameter Lomax: With g taking the form

gðtÞ ¼
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ðbþ tÞ
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for τ> 0, β> 0 and α> 0. The scale and shape parameters are respectively governed by β and

α. This PDF has a unique mode (with the mode at zero). It is notable for characterizing busi-

ness failure. As a distribution within the Pareto family it has often used in modelling tail losses

of returns. In fact, this distribution is also known as type II Pareto distribution and is a special

case of the generalized Pareto. It has also been used extensively in analyzing lifetime data. See

Benckert and Jung [46], Revankar et al. [47], Arnold [48], Hogg and Klugman [49] and Nair

and Hitha [50] for some applications of the Lomax distribution. For the two parameter Lomax

distribution,
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Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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2.3 Generalized gamma: With g taking the form
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al

for τ> 0, β> 0, λ> 0 and α> 0. The scale, first shape and second shape parameters are

respectively given by β, λ and α. This PDF has a unique mode and skewed to the right. The

generalized gamma distribution has extensive applications in different areas, including hydrol-

ogy, water resources, biology, and economics. It encompasses a number of other distributions

often used in survival analysis. For example, if λ = α = 1 then the generalized gamma distribu-

tion becomes the exponential distribution; if λ = 1 the generalized reduces to the gamma distri-

bution; and if α = 1 the generalized becomes the Weibull distribution. For applications of this

family of distribution to stock returns, see Madan and Seneta [26] and Tjetjep and Seneta [28].

For the generalized gamma distribution,
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Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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b
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respectively.

2.4 Two parameter Burr III distribution: With g taking the form

gðtÞ ¼
cltc� 1

ðtc þ 1Þ
lþ1

for τ> 0, c> 0 and λ> 0. The two parameters are commonly referred to as the shape (c, λ)

parameters. This distribution has a unique mode and moderately skewed to the right. The

Burr distribution is one of the popular distribution in statistics. It is often used in reliability

analysis as more flexible alternative to other competing distributions such as the lognormal,

etc. It has a wide range of applications in other areas such as forestry, meteorology, etc. For the

two parameter Burr III distribution,

Z 1

0

tZgðtÞdt ¼
G cþZ

c

� �
G l � Z

c

� �

GðlÞ
:

Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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and
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respectively.

2.5 Two parameter Fréchet: With g taking the form

gðtÞ ¼
ab

a exp � b

t

� �a� �

taþ1

for τ> 0, α> 0 and β> 0. This distribution has a unique mode and skewed to the right. The

shape and scale parameters are, respectively, governed by α and β. The distribution is also

known as inverse Weibull distribution because if 1/O has the Weibull distribution then O will

have the Fréchet distribution. It is a special case of the generalized extreme value distribution

which is widely used in characterization of “tail risks” in fields ranging from insurance to

finance. Some other application areas of the Fréchet distribution include business and opera-

tions research, economics, hydrology, materials and product technology. For the two parame-

ter Fréchet distribution,
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:

Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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respectively.
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2.6 One parameter half normal: With g taking the form

gðtÞ ¼
2
ffiffiffiffiffiffi
2p
p

y
exp �

t2

2y
2

� �

for τ> 0 and θ> 0. The half normal distribution is a normal distribution with scale parameter

θ bounded from below at zero. Its applications cut across many areas. For instance, see Meeu-

sen and van Den Broeck [51] and Chou and Liu [52] for applications of the half normal distri-

bution in production processes; Lawless [53] and Cooray and Ananda [54] for applications in

life data analysis; Dobzhansky and Wright [55] for applications in genetics; and Bland and Alt-

man [56] for applications in biological sciences. For the one parameter half normal distribu-

tion,
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:

Hence, from (4), (6), (7), and (9) we obtain the closed form expressions for the PDF, CDF,

moments and characteristic function as
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respectively.

2.7 Skewness and kurtosis

By definition, each of the six compound distributions has zero skewness. The kurtosis values

can be computed using (11), (13), (15), (17), (19) and (21). These values versus the degree of

freedom parameter, ν, are shown in Fig 2.

We see that kurtosis is a decreasing function of ν for each compound distribution. The kur-

tosis for each distribution takes larger values compared to the Student’s t distribution; hence,

they are more flexible with respect to heavy tailed data. Over the plotted range, the compound

Lomax distribution takes the largest kurtosis values. We note further that the kurtosis is a

decreasing function of: α for the compound inverse gamma distribution; α for the compound

Lomax distribution; λ for the compound generalized gamma distribution; c for the compound

Burr distribution; α for the compound Fréchet distribution.
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Fig 2. Kurtosis values corresponding to (11) (top left), (13) (top right), (15) (middle left), (17) (middle right), (19) (bottom left)

and (21) (bottom right) versus ν and selected values of other parameters.

https://doi.org/10.1371/journal.pone.0239652.g002
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For details about how skewness and kurtosis can be used to improve model fitting and fore-

casting performance, see Feunou et al. [57] and Lalancette and Simonato [58].

3 Data

To investigate the empirical performance of the proposed distributions, we consider six popu-

lar financial series. These include: two financial stock indices, two fuel commodities prices and

two cryptocurrencies exchange rates. Stock indices are Standard & Poor’s 500 (S&P500) and

Dow Jones Industrial Average (DJI) for the period starting from the 28th of April 2003 to the

15th of June 2018 as provided by Bloomberg. Fuel commodities are spot prices for the Los

Angeles Ultra-Low-Sulfur Diesel (Diesel) and Mont Belvieu, Texas Propane (Propane) in

USDs per gallon for the period starting from the 2nd of January 1997 to the 15th of June 2018

as provided by the United States Energy Information Administration. Cryptocurrencies are

Bitcoin (BTC) for the period starting from the 18th of July 2010 to the 16th of June 2018 and

Litecoin (LTC) for the period starting from the 24th of October 2013 to the 16th of June 2018.

Both cryptocurrencies are denominated in USD with their sample sizes representing their

entire life cycle on the moment of the data downloaded from Quandl, BNC2 database. For

more extensive discussion on cryptocurrencies see Chan et al. [59] and the references therein.

In general, there are no specific rationale for composing our data set, though alongside some

very common stock indices (S&P500 and DJI) we aim to have some financial series with nota-

ble tail (excess kurtosis) characteristics (Propane and LTC), since our work is partially moti-

vated by the heavy tail potential of the parent distribution of the compound distributions. For

the above discussed financial series, we computed log-returns as

Ri;t ¼ log
Pi;t

Pi;t� 1

 !

;

where Ri,t is the return on the index i for the period t, Pi,t is the closing rate/price of the index

at the end of period t and Pi,t−1 is the price of the index at the end of the period t − 1. The histo-

gram of the transformed data and their kernel density evaluations are shown in Fig 3. Their

characteristics described in Table 1 are: minimum, first quartile (Q1), median, mean, third

quartile (Q3), maximum, skewness, kurtosis, standard deviation (SD), variance, range and

inter quartile range (IQR).

From Table 1, we observe the highest range is for the cryptocurrencies returns, followed by

the commodities and the smallest for the stock indices. Fig 3 shows the time series plots of

returns which appear to oscillate around zero. The oscillations vary a great deal in magnitude,

but are almost constant in average over period of the study. Also, from the plot we observe that

for each return, periods of high volatility are followed by the periods of low volatility and vice

versa. This is not surprising as it is a typical nature of financial indices [60–62]. Notably, from

Fig 3, there is evidence of sharp market corrections for Diesel and Propane in the early 2000s.

This could be explained by the changes in the fundamentals of hydrocarbons, while lack of the

clearly defined fundamentals best explains the highest range for the cryptocurrencies. For the

stock indices, the pronounced spikes around 2008 could be attributed to the events of the

financial crisis, while their lowest range may be explained by their composite nature. The high-

est kurtosis values are depicted by the Propane and LTC. For S&P500, DJI, Deisel and BTC,

the kurtosis values are similar and are greater than that of the normal distribution. All the

returns under investigation are clearly heavy tailed. Diesel and LTC are the only two positively

skewed series. Overall, inspecting the histograms in Fig 3, we note that each participating

return appears more or less symmetrically distributed around zero with the exception of the

Propane.
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Finally, we proceed to fit GARCH versions of the proposed distributions in Section 2 to the

six data sets using the method of ML. Formally, suppose x1, x2, � � �, xn are independent obser-

vations, then the optimal parameters are the values maximizing the likelihood

LðΘÞ ¼
Yn

i¼1

f ðxi;ΘÞ;

Fig 3. Time series plots of the daily log-returns of S&P500, DJI, Diesel, Propane, BTC and LTC with their histograms and kernel based density

estimates.

https://doi.org/10.1371/journal.pone.0239652.g003

Table 1. Summary statistics of daily log-returns of S&P500, DJI, Diesel, Propane, BTC and LTC.

Statistic S&P500 DJI Diesel Propane BTC LTC

n 3811 3811 5388 5388 2890 1696

Minimum -0.09469 -0.08201 -0.22716 -0.49913 -0.49152 -0.93452

Q1 -0.03903 -0.00388 -0.01149 -0.01025 -0.01273 -0.02003

Median 0.00069 0.00053 0.00000 0.00000 0.00141 0.00000

Mean 0.00029 0.00028 0.00019 0.00009 0.00386 0.00204

Q3 0.00526 0.00507 0.01139 0.01121 0.02276 0.01810

Maximum 0.10957 0.10508 0.26826 0.19979 0.42457 0.89035

Skewness -0.37707 -0.15289 0.10768 -2.02435 -0.34656 0.63046

Kurtosis 15.2352 14.59654 13.8692 45.13415 14.70389 36.08584

SD 0.01146 0.01064 0.02336 0.02572 0.05840 0.07981

Variance 0.00013 0.00011 0.00054 0.00066 0.00341 0.00637

Range 0.20426 0.18708 0.49542 0.69892 0.91611 1.82488

IQR 0.00916 0.00895 0.02288 0.02146 0.03550 0.03814

https://doi.org/10.1371/journal.pone.0239652.t001
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or in most cases due to computational convenience we use the log-likelihood as

logLðΘÞ ¼
Xn

i¼1

log f ðxi;ΘÞ;

where Θ = (θ1. . .θk)0 is the parameter vector. Consequently, the optimal estimates for Θ are

Θ̂ ¼ ðŷ1 ; ŷ2 ; . . . ; ŷkÞ
0

. All our computations were performed using the standard Nelder-Mead

optimization routine with optim command in R as provided by R Core Team [63].

Since the considered distributions are not nested, discrimination among them is performed

using the Akaike information criterion (AIC) due to Akaike [64], the Bayesian information

criterion (BIC) due to Schwarz [65], the corrected Akaike information criterion (AICc) due to

Hurvich and Tsai [66], the Hannan-Quinn criterion (HQC) due to Hannan and Quinn [67],

and the consistent Akaike information criterion (CAIC) due to Bozdogan [68]. Extensive dis-

cussion on these commonly used criteria is provided by Burnham and Anderson [69] and

Fang [70]. Roughly speaking, the smaller the values of these criteria the better the fit.

4 Estimation results and discussion

The GARCH (1, 1) model with the six innovation distributions proposed in Section 2 was fit-

ted to the data described in Section 3. The six innovation distributions do not allow for asym-

metry. Also fitted is the GARCH (1, 1) model with the AST and GHYP distributions chosen as

the innovation distributions. These two distributions allow for asymmetry of the volatility,

which has been noted in the literature for cryptocurrency and energy data sets [37, 71, 72]. We

have chosen GARCH (1, 1) as a baseline model, because it is the most simple and accessible

model available in the R packages fGarch and rugarch for fitting GARCH type models.

We fitted also GARCH models of higher orders, but they did not provide significantly better

fits. The method of ML was used for fitting all of the models. For fitting the GARCH (1, 1)

model with GHYP innovations, we used the rugarch package. For fitting the GARCH (1, 1)

model with AST innovations, we used the VaRES package. The log-likelihood values and the

values of two of the five selection criteria (AIC and BIC) for all the proposed distributions are

provided in Table 2. The values of the three remaining selection criteria can be obtained from

the authors. They led to the same conclusions. Table 2 also gives the differences in empirical

and fitted estimates of kurtosis.

According to the selection criteria and the kurtosis values in Table 2, the GARCH (1, 1)

with compound generalized gamma innovations gives the best fit, the compound Burr innova-

tions give the second best fit, the compound Fréchet innovations give the third best fit, the

compound inverse gamma innovations give the fourth best fit, the AST innovations give the

fifth best fit, the compound Lomax innovations give the sixth best fit and the GHYP innova-

tions give the seventh best fit. The worst fit is given by the GARCH (1, 1) model with com-

pound half normal innovations. These conclusions are the same for all the returns.

The probability plots of the standardized residuals for the best fitting GARCH (1, 1) model

with compound generalized gamma innovations are shown in Fig 4. The corresponding quan-

tile plots are shown in Fig 5. Both figures suggest that the fit of the model is adequate.

The p-values of Vuong [73]’s likelihood ratio test to see if the best fitting model is signifi-

cantly better than the other seven models are given in Table 3. The p-values of Amisano and

Giacomini [74]’s likelihood ratio test to see if the best fitting model is significantly better

than the other seven models in the left and right tails are given in Table 4. The p-values in

all these tables show that the GARCH (1, 1) model with compound generalized gamma inno-

vations provides significantly better fits than all other models. Vuong [73]’s test was per-

formed using the command vuongtest in the nonnest2 package. Amisano and
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Table 2. Log-likelihood values, AIC values, BIC values and differences between empirical and fitted estimates of kurtosis for the GARCH(1, 1) model with the eight

innovation distributions fitted to the specified daily log-returns (S&P500, DJI, Diesel, Propane, BTC and LTC).

Returns Innovation distribution −logL AIC BIC Δ Kurtosis

S&P500 (14) -14576.42 -29138.85 -29095.13 1.22

(16) -14557.67 -29103.34 -29065.87 1.54

(18) -14533.38 -29054.77 -29017.29 1.61

(10) -14220.60 -28429.21 -28391.73 1.85

AST -14178.9 -28351.80 -28333.06 2.08

(12) -14176.46 -28340.93 -28303.45 2.29

GHYP -14173.22 -28332.44 -28301.42 4.17

(20) -14170.14 -28330.28 -28299.05 4.89

DJI (14) -14983.02 -29952.04 -29908.32 0.64

(16) -14973.84 -29935.68 -29898.20 0.75

(18) -14945.96 -29879.93 -29842.45 1.85

(10) -14421.98 -28831.96 -28794.48 2.48

AST -14329.1 -28652.20 -28633.46 2.72

(12) -14323.70 -28635.40 -28597.93 3.28

GHYP -14311.13 -28608.26 -28545.48 5.46

(20) -14285.74 -28561.49 -28530.26 5.95

Diesel (14) -18882.19 -37750.38 -37704.24 0.78

(16) -17316.24 -34620.47 -34580.92 1.50

(18) -17109.01 -34206.01 -34166.46 2.10

(10) -16503.12 -32994.24 -32954.69 3.01

AST -16300.61 -32595.22 -32575.44 3.29

(12) -16286.97 -32561.95 -32522.39 3.78

GHYP -16281.32 -32548.64 -32500.09 4.54

(20) -16046.50 -32083.01 -32050.05 4.91

Propane (14) -18961.81 -37909.63 -37863.48 0.26

(16) -18168.30 -36324.59 -36285.04 1.49

(18) -16986.69 -33961.38 -33921.82 2.69

(10) -16595.60 -33179.20 -33139.64 3.78

AST -16511.43 -33016.86 -32997.08 3.80

(12) -16427.15 -32842.30 -32802.74 5.77

GHYP -16378.45 -32742.9 -32674.32 6.13

(20) -16319.42 -32628.84 -32595.88 6.67

BTC (14) -8976.20 -17938.40 -17896.61 0.90

(16) -8863.32 -17714.65 -17678.83 0.93

(18) -8599.89 -17187.78 -17151.97 1.83

(10) -8407.14 -16802.28 -16766.46 2.24

AST -8240.46 -16474.92 -16457.01 3.23

(12) -8032.90 -16053.79 -16017.98 3.62

GHYP -7832.78 -15651.56 -15611.87 4.01

(20) -7104.36 -14198.71 -14168.87 4.42

LTC (14) -5179.45 -10344.90 -10306.84 1.60

(16) -4755.62 -9499.24 -9466.62 1.70

(18) -4642.14 -9272.29 -9239.67 3.77

(10) -4456.49 -8900.99 -8868.37 4.13

AST -4402.01 -8798.02 -8781.71 4.14

(12) -4304.53 -8597.05 -8564.43 4.57

GHYP -4290.43 -8566.86 -8493.39 4.63

(20) -4182.78 -8355.55 -8328.37 6.90

https://doi.org/10.1371/journal.pone.0239652.t002
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Giacomini [74]’s test was performed using the code available in https://sites.google.com/site/

gianniamisanowebsite/.

Table 5 tests the significant difference between mean squared errors when the GARCH (1,

1) models were fitted to rolling windows of length 100 days and used to predict the 101th data

value [75]. The GARCH (1, 1) with compound generalized gamma innovations is used as the

baseline model. The R package fDMA was used to perform the tests. The p-values show that

the GARCH (1, 1) model with compound generalized gamma innovations provides signifi-

cantly better mean squared errors than all other models. These conclusions were the same

when the widow length was taken to be 200, 300, . . ., 1000 days.

Finally, Table 6 gives the p-values of three backtesting methods at 99 percent value-at-risk.

In each triplet, the first is the p-value of Kupiec’s proportion of failures [76] test, the second is

the p-value of Escanciano and Olmo [77]’s test, and the third is the p-value of peak over thresh-

old’s method. For the last method, we used the evd package. The threshold was chosen by the

mean residual plot which was drawn using the command mrlplot. As expected, the peak

over threshold’s method gives the largest p-values. For the first two methods, the GARCH (1,

1) with compound generalized gamma innovations gives the largest p-values, the compound

Burr innovations give the second largest p-values, the compound Fréchet innovations give

the third largest p-values, the compound inverse gamma innovations give the fourth largest

Fig 4. P-P plots of the standardized residuals of the GARCH(1, 1) model with innovations given by (14).

https://doi.org/10.1371/journal.pone.0239652.g004
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p-values, the AST innovations give the fifth largest p-values, the compound Lomax innovations

give the sixth largest p-values, and the GHYP innovations give the seventh largest p-values.

The smallest p-values with all of them below the 5 percent significance level are given by the

GARCH (1, 1) model with compound half normal innovations. Some of the p-values for the

GARCH (1, 1) model with GHYP innovations are also below the 5 percent level of significance.

The remaining p-values are all above the 5 percent level of significance.

Fig 5. Q-Q plots of the standardized residuals of the GARCH(1, 1) model with innovations given by (14).

https://doi.org/10.1371/journal.pone.0239652.g005

Table 3. p-values of Vuong 73’s likelihood ratio test comparing the GARCH(1, 1) with (14) versus the seven models.

Model S&P500 DJI Diesel Propane BTC LTC

GARCH(1, 1) with (16) 0.019 0.018 0.016 0.020 0.014 0.015

GARCH(1, 1) with (18) 0.015 0.015 0.012 0.017 0.010 0.007

GARCH(1, 1) with (10) 0.008 0.010 0.010 0.013 0.008 0.005

GARCH(1, 1) with AST 0.008 0.010 0.009 0.013 0.007 0.003

GARCH(1, 1) with (12) 0.008 0.010 0.008 0.013 0.007 0.002

GARCH(1, 1) with GHYP 0.007 0.009 0.007 0.010 0.005 0.002

GARCH(1, 1) with (20) 0.001 0.005 0.006 0.005 0.004 0.001

https://doi.org/10.1371/journal.pone.0239652.t003
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5 Simulation study

In this section, we conduct a simulation study to assess the performance and accuracy of the

ML estimators of the best fitting GARCH(1, 1) model with compound generalized gamma

innovations. The following scheme was used:

Table 4. p-values of Amisano and Giacomini 74’s likelihood ratio test for the left (right in brackets) tails comparing the GARCH(1, 1) with (14) versus the seven

models.

Model S&P500 DJI Diesel Propane BTC LTC

GARCH(1, 1) with (16) 0.033 0.032 0.039 0.034 0.036 0.039

(0.033) (0.035) (0.030) (0.037) (0.033) (0.035)

GARCH(1, 1) with (18) 0.031 0.030 0.034 0.031 0.024 0.032

(0.028) (0.018) (0.025) (0.036) (0.030) (0.032)

GARCH(1, 1) with (10) 0.030 0.028 0.023 0.028 0.015 0.017

(0.021) (0.017) (0.018) (0.031) (0.016) (0.028)

GARCH(1, 1) with AST 0.016 0.021 0.020 0.027 0.013 0.015

(0.021) (0.015) (0.017) (0.025) (0.012) (0.025)

GARCH(1, 1) with (12) 0.013 0.020 0.005 0.026 0.012 0.014

(0.020) (0.014) (0.016) (0.022) (0.010) (0.024)

GARCH(1, 1) with GHYP 0.008 0.002 0.004 0.020 0.009 0.008

(0.018) (0.007) (0.012) (0.008) (0.007) (0.023)

GARCH(1, 1) with (20) 0.002 0.002 0.003 0.016 0.005 0.006

(0.005) (0.002) (0.010) (0.002) (0.005) (0.014)

https://doi.org/10.1371/journal.pone.0239652.t004

Table 5. p-values of Diebold and Mariano 75’s test comparing mean squared errors of the 101th day forecast for rolling windows of length 100 days for the GARCH

(1, 1) with (14) versus the same for the seven models.

Model S&P500 DJI Diesel Propane BTC LTC

GARCH(1, 1) with (20) 0.004 0.000 0.001 0.012 0.003 0.005

GARCH(1, 1) with GHYP 0.010 0.001 0.005 0.012 0.006 0.010

GARCH(1, 1) with (12) 0.018 0.017 0.024 0.021 0.012 0.013

GARCH(1, 1) with AST 0.023 0.017 0.025 0.036 0.015 0.016

GARCH(1, 1) with (10) 0.031 0.029 0.028 0.036 0.021 0.020

GARCH(1, 1) with (16) 0.038 0.033 0.029 0.040 0.028 0.023

GARCH(1, 1) with (14) 0.041 0.035 0.029 0.044 0.030 0.038

GARCH(1, 1) with (14) 0.044 0.048 0.046 0.046 0.035 0.049

https://doi.org/10.1371/journal.pone.0239652.t005

Table 6. p-values of Kupiec’s proportion of failures [76] test, Escanciano and Olmo [77]’s test and peak over threshold’s method for the eight models.

Model S&P500 DJI Diesel Propane BTC LTC

GARCH(1, 1) with (14) (0.37, 0.59, 0.62) (0.58, 0.60, 0.64) (0.59, 0.61, 0.63) (0.51, 0.54, 0.60) (0.55, 0.56, 0.59) (0.58, 0.59, 0.65)

GARCH(1, 1) with (16) (0.29, 0.41, 0.62) (0.37, 0.49, 0.64) (0.45, 0.49, 0.63) (0.49, 0.52, 0.60) (0.54, 0.55, 0.59) (0.45, 0.46, 0.65)

GARCH(1, 1) with (18) (0.23, 0.40, 0.62) (0.28, 0.36, 0.64) (0.41, 0.43, 0.63) (0.21, 0.24, 0.60) (0.45, 0.47, 0.59) (0.40, 0.44, 0.65)

GARCH(1, 1) with (10) (0.17, 0.25, 0.62) (0.21, 0.29, 0.64) (0.37, 0.39, 0.63) (0.17, 0.19, 0.60) (0.34, 0.39, 0.59) (0.15, 0.22, 0.65)

GARCH(1, 1) with AST (0.16, 0.23, 0.62) (0.17, 0.25, 0.64) (0.32, 0.28, 0.63) (0.11, 0.19, 0.60) (0.34, 0.39, 0.59) (0.12, 0.20, 0.65)

GARCH(1, 1) with (12) (0.16, 0.22, 0.62) (0.16, 0.24, 0.64) (0.15, 0.20, 0.63) (0.09, 0.19, 0.60) (0.32, 0.37, 0.59) (0.11, 0.13, 0.65)

GARCH(1, 1) with GHYP (0.11, 0.13, 0.62) (0.12, 0.22, 0.64) (0.09, 0.19, 0.63) (0.02, 0.06, 0.60) (0.25, 0.28, 0.59) (0.06, 0.11, 0.65)

GARCH(1, 1) with (20) (0.00, 0.03, 0.62) (0.03, 0.04, 0.64) (0.02, 0.05, 0.63) (0.00, 0.02, 0.60) (0.02, 0.03, 0.59) (0.01, 0.04, 0.65)

https://doi.org/10.1371/journal.pone.0239652.t006
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1. simulate a sample of size n from the GARCH(1, 1) model with generalized gamma

innovations;

2. estimate (ν, β, λ, α) and the three GARCH parameters;

3. repeat steps 1 and 2 ten thousand times;

4. hence, estimate the biases and the mean squared errors for the seven parameters;

5. repeat steps 1 to 4 for n = 20, 21, . . ., 500.

The plots of the biases versus n are shown in Fig 6. The plots of the mean squared errors

versus n are shown in Fig 7.

We can observe the following from the figures: the biases can be positive or negative but

approach zero as n approaches 500; the biases appear largest for b̂ and smallest for n̂; the biases

appear reasonably small at around n = 500; the mean squared errors gradually decrease with

increasing n; the mean squared errors appear largest for b̂ and smallest for n̂; the mean squared

errors appear reasonably small at around n = 500.

Fig 6. Biases of the parameter estimates of the GARCH(1, 1) model with innovations given by (14) based on the

simulation study of Section 5.

https://doi.org/10.1371/journal.pone.0239652.g006
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In the simulation scheme, we have taken the initial parameter values as the estimated values

for S&P500 returns. The results were similar for a wide range of other initial values including

the estimated values for the other five returns.

6 Conclusions

In this paper, based on the scale mixing of the Student’s t distribution, we have developed six

new compound distributions. We have also derived their basic properties such as the PDF,

CDF, moments and characteristic functions. With these distributions taken as innovations for

the GARCH(1, 1) model, we have shown that all but one (respectively, two) of the six distribu-

tions perform better than the GARCH(1, 1) model with generalized hyperbolic (respectively,

asymmetric Student’s t) innovations. The comparison was made in terms Akaike information

criterion values, Bayesian information criterion values, consistent Akaike information crite-

rion values, corrected Akaike information criterion values, Hannan-Quinn criterion values, p-

values of Vuong [73]’s likelihood ratio test, p-values of Amisano and Giacomini [74]’s likeli-

hood ratio test for the left tails, p-values of Amisano and Giacomini [74]’s likelihood ratio test

Fig 7. Mean squared errors of the parameter estimates of the GARCH(1, 1) model with innovations given by (14) based

on the simulation study of Section 5.

https://doi.org/10.1371/journal.pone.0239652.g007
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for the right tails, mean squared errors of one-day ahead forecasts, and three backtesting

methods.

In addition, we have performed a simulation study to examine the accuracy of the best fit-

ting GARCH(1, 1) model with compound generalized gamma innovations. The accuracy was

assessed in terms of biases and mean squared errors. Both decreased in magnitude when the

sample size increased. Both appeared reasonably small when the sample size was as large as

500. The sample sizes of all six data sets considered are well above 500. The results showed that

the GARCH (1, 1) model with compound generalized gamma innovations is valid and worth

considering in the general financial context of risk exposure modelling.

Nearly all of the data sets we have considered have skewness close to zero. Hence, there is

no need for the compound distributions in Section 2 to incorporate a skewness parameter.

However, there are several ways that these distributions can be extended to incorporate skew-

ness. A prominent approach is described in Theodossiou and Savva [78] and Savva and Theo-

dossiou [79]. Another prominent approach is described in Fernández and Steel [5].

An extension of the paper is an analysis of the finiteness of the return distribution uncondi-

tional moments through the tail-index according to the “power law” literature; see Gabaix

et al. [80], Ibragimov et al. [81] and references therein. This analysis could lead to a better

understanding of the empirical results on the existence of the unconditional higher-order

moments under the proposed distributions.

Further extensions to the GARCH time series frameworks could be also considered. How-

ever, framework of the Generalized Autoregressive Score (GAS) models of Creal et al. [82] and

Harvey [83] is more intriguing. The GAS framework allows relatively straightforward intro-

duction of the time-varying dynamics for any desired parameters and can enhance empirical

performance of the suggested models further.
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