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ABSTRACT
We developed a novel method based on the Fourier analysis of protein molecular
surfaces to speed up the analysis of the vast structural data generated in the post-
genomic era. This method computes the power spectrum of surfaces of the molecular
electrostatic potential, whose three-dimensional coordinates have been either ex-
perimentally or theoretically determined. Thus we achieve a reduction of the initial
three-dimensional information on the molecular surface to the one-dimensional
information on pairs of points at a fixed scale apart. Consequently, the similarity
search in our method is computationally less demanding and significantly faster
than shape comparison methods. As proof of principle, we applied our method to
a training set of viral proteins that are involved in major diseases such as Hepatitis
C, Dengue fever, Yellow fever, Bovine viral diarrhea and West Nile fever. The train-
ing set contains proteins of four different protein families, as well as a mammalian
representative enzyme. We found that the power spectrum successfully assigns a
unique signature to each protein included in our training set, thus providing a direct
probe of functional similarity among proteins. The results agree with established
biological data from conventional structural biochemistry analyses.

Subjects Biophysics, Computational Biology, Mathematical Biology, Computational Science
Keywords Protein similarity search, Structural biology, Harmonic space, Electrostatic potentials,
Drug design

INTRODUCTION
The spatial structure of proteins encodes information on their function which is essential

for a successful drug design. In the post-genomic era, the search for functional similarities

among proteins is based mostly on identity and/or similarity of genomic sequences rather

than on their spatial structure. An approach that has been widely used is the application of

self-organizing maps to the protein amino acid sequence in order to predict the protein

shape and to infer the protein function (Kohonen, 1982; Andrade et al., 1997). This

approach searches for local similarities in the amino acid sequence and is based on the

assumption that the proteins have the same size and that the amino acid sequence is a
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determinant of the protein structure. However, there are many examples of proteins where

sequence-based searches are insufficient to describe their biological function (Dobson

et al., 2004). While self-organizing maps can classify proteins into families, they fail at

predicting the structure. Since structure is more conserved than sequence, evolutionary

relationships among proteins, protein structure-function predictions and comparative

modelling should be based on structural information, rather than on primary amino acid

or genomic sequence (Illergård, Ardell & Elofsson, 2009).

Other approaches have been developed that search for functional similarities using

the complete three-dimensional information encoded in the spatial coordinates of

all the atoms within the protein structure, which have been derived from X-ray or

nuclear magnetic resonance experiments. In these approaches, the three-dimensional

protein structure is modelled by a representation (or descriptor) based on topological

characteristics or structure elements (see e.g., Venkatraman, Sael & Kihara, 2009 and

references therein). Although the structure-based approaches are more informative on the

function than the sequence-based ones, structure comparison methods are too slow and

are thus rendered impractical to use in large-scale experiments and real-life applications

(Kolodny, Koehl & Levitt, 2005; Mayr, Domingues & Lackner, 2007; Berbalk, Schwaiger &

Lackner, 2009).

Other approaches use the protein solvent-accessible surface, since it is a stronger

determinant of the protein function than sequence or structure (Via et al., 2000). Shape

descriptors have been developed based on spatial symmetries, where the search for

similarities consists of shape comparison (Kazhdan, Funkhouser & Rusinkiewicz, 2003;

Ritchie, Kozakov & Vajda, 2008; Venkatraman, Chakravarthy & Kihara, 2009). However,

surface comparison methods are computationally challenging, largely because they suffer

from ambiguity in spatial orientation and require that the surfaces be aligned for an

optimal matching (see, Via et al., 2000 and references therein).

Bioinformatics has become the new biomedical informatics bottleneck, as the cost of

genome sequencing and the sheer quantity of genomic data has recently skyrocketed.

It has been estimated that the unprocessed data generated per sequencing machine can

be of order at least 30 Gbs per day, which can scale up by a significant factor in the case

of mapped/processed data. There is a clear requirement for fast and efficient analysis

of the entire genome/proteome sequencing data in the upcoming era of personalized

medicine. Due to the continuous improvements in sequencing technologies and proteomic

methodologies, the current scaling of available computing, storage and analysis through-

put is far lower than the scaling of the data generation rate. The induced lag between

the processing potential and the processing requirements already poses problems to

researchers and companies in the bioinformatics field. Since it is impossible to constantly

upgrade computer hardware to keep up with the increasing data production rate, the only

feasible solution is to devise algorithms that can offer a competing processing scaling using

the existing hardware at its full potential.

Here, we propose a new approach to search for functional similarities among proteins

using their molecular surfaces (Vlachakis et al., 2012). Protein molecular surfaces are
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determinant of the protein biological activity, with different types of molecular surfaces

encoding different information about the protein function. We choose to use surfaces

of the molecular electrostatic potential due to the importance of the charge distribution

in the protein-protein interactions. Protein-protein interactions are essential for cell

signalling and cell function (Przytycka, Singh & Slonim, 2010; Berger-Wolf et al., 2010).

These processes require a correct and fast molecular recognition in which interactions

among electrostatic charges intervene. Disturbances in these processes are in the origin

of almost every major disorder (Gire et al., 2012) and may lead to severe diseases such as

cancer (Elcock et al., 1999; Sept, Elcock & McCammon, 1999; Wlodek, Shen & McCammon,

2000). Therefore the electrostatic potential distribution on the protein molecular surfaces

is crucial to virtually all biological macromolecules involved in key biochemical pathways

(Honig & Nicholls, 1995; Wong & Pollack, 2010; McCammon, 2009).

Once we calculate the molecular surface for a particular filter, we proceed to measure

the signal off of the molecular surface. For our signal analysis, we propose a method based

on the Fourier analysis of molecular surfaces. An advantage of Fourier analysis is that it

most easily separates large from small scales. The signal at each point can be regarded as

a realization of a distribution of fluctuations around an average value of the molecular

surface (Vlachakis, Champeris-Tsaniras & Kossida, 2012; Kandil et al., 2009). Instead of

measuring information on the individual points over the surface as shape descriptors do,

we measure information on the correlations among the points, thus waiving the need

that the surfaces be aligned. The simplest statistic is the two-point correlation function in

Fourier space, which averages the signal over the whole volume and measures the variance

in the distribution. Hence our approach transforms three-dimensional spatial data into

one-dimensional frequency data.

The manuscript is organized as follows. First we present the selected proteins and how

we synthesise the corresponding molecular surfaces. Then we describe our proposed

method to extract functional information, based on the Fourier analysis of molecular

surfaces and on a dimensionality reduction of the usable information. Then we present

the results and discuss further improvements in the robustness of this method. Finally we

outline an integrated solution for a functional similarity search among proteins, which

progresses towards a dimensionality increase of the usable information and a reduction of

the protein sample size.

METHOD
Selected proteins
For our training set, we selected four distinct protein families, which include twelve

helicase proteins, six methyltransferase proteins, four polymerase proteins and four

glycoproteins. These proteins are mainly viral components that are involved in major

diseases such as Hepatitis C, Dengue fever, Yellow fever, Bovine viral diarrhea and West

Nile fever. We use the Mouse kinase protein as a decoy, since it has a very different function

from all the other proteins.
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Helicases are responsible for the unwinding of double stranded DNA or RNA during

viral replication. Polymerases are key enzymes that are used for copying the viral genetic

material. Methyltransferases or methylases are transferase enzymes that are responsible

for transferring methyl groups from a donor to an acceptor. Finally glycoproteins are used

for molecular recognition by viruses. Protein treatments vary depending on the needs of

each comparison chart. The main treatment is the default X-ray crystallography protein

conformation as it is deposited in the RCSB database (Berman et al., 2000). The selected

unedited proteins were the following. Among the helicases, we selected: (a) 1A1V and

8OHM of the Hepatitis C virus (HCV), (b) 1YMF, 1YKS and 2V80 of the Yellow fever virus

(denoted by YF 1YMF, YF 1YKS and YF 2V80 respectively), and (c) 2JLU, 2BHR, 2BMF

and 2JLQ of the Dengue fever virus (denoted by DEN 2JLU, DEN 2BHR, DEN 2BMF

and DEN 2JLQ respectively). Among the polymerases, we selected 2CJQ, 2HCS and

2HCN of the West Nile fever virus (denoted by WN 2CJQ, WN 2HCS and WN 2HCN

respectively). Among the methyltransferase, we selected 3EVA, 3EVB, 3EVC, 3EVD, 3EVE

and 3EVF of the Yellow fever virus (denoted by YF 3EVA, YF 3EVB, YF 3EVC, YF 3EVD,

YF 3EVE and YF 3EVF respectively). Among the glycoproteins, we selected 1NB7, 4DVN,

4DW4 and 4DW3 of the bovine diarrhea virus (denoted by BVDV 1NB7, BVDV 4DVN,

BVDV 4DW4 and BVDV 4DW3 respectively).

In the Hepatitis C viral protein family, we considered two HCV helicase proteins,

namely the HCV helicase strain A (the 1A1V entry, denoted by HCV helicaseStrA) and

the HCV helicase strain B (the 8OHM entry, denoted by HCV helicaseStrB), whose

three-dimensional coordinates were obtained from the RCSB database (Berman et al.,

2000) of X-ray protein crystallography structures. Furthermore, we generated two sim-

ulations of the 1A1V protein crystal, namely the energy-minimized version (denoted by

HCV helicaseEM) and the molecular dynamics version (denoted by HCV helicaseMD).

Both the HCV helicaseEM and the HCV helicaseMD have been energetically minimized

up to a gradient of 0.05. The HCV helicaseMD has additionally been subject to a molecular

dynamics simulation. We also established a homology model of the HCV helicase

(denoted by HCV helicaseHM) so that the in silico three-dimensional model of HCV

was included in our training set. We also included an example of a non-helicase HCV viral

protein, namely the 1NB7 structure of the HCV polymerase (the 1NB7 entry, denoted by

HCV polymerase).

Molecular surfaces of the selected proteins
Surfaces of the molecular electrostatic potential follow the nonlinear Poisson-Boltzmann

equation (Konecny, Baker & McCammon, 2012; Unni et al., 2011). We solved numerically

for the electrostatic potential using the finite-difference method as implemented in the

APBS Software (Baker et al., 2001). The potential was calculated on a regular grid of size

(65, 65, 65),5 with the grid-fill-by-solute parameter set to 80%. The dielectric constants of
5 The size of the grid was kept small in

order to speed up the calculation and
reduce the computational load. It was
tested to be suitable for this study, as
higher detail would not change the
surface much, while it would increase
the computational load significantly.

the solvent and the solute were set to 80.0 and 2.0, respectively. An ionic exclusion radius of

2.0 Å, a solvent radius of 1.4 Å and a solvent ionic strength of 0.145 M were applied. Default

APBS charges and atomic radii were used.
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Figure 1 Surfaces of the electrostatic molecular potential. A: Hepatitis C helicase protein, B: Hepatitis
C polymerase protein. The electrostatic potential is measured in eV, with range as shown in the corre-
sponding colour bar.

Energy minimization (EM) removes any residual geometrical strain from each

molecular system, whereas molecular dynamics (MD) simulates a periodic cytoplasm-like

aqueous environment. Both EM and MD were performed with the Gromacs suite (Hess

et al., 2008; Lindahl, Hess & van der Spoel, 2001; van der Spoel et al., 2005) through our

previously developed graphical interface (Sellis, Vlachakis & Vlassi, 2009). Molecular

dynamics took place in a periodic environment, which was subsequently solvated with

the simple point-charge water model using the truncated octahedron box extending

to 7 Å from each molecule. Partial charges were applied and the molecular systems

neutralized with counter-ions as required. The temperature was set to 300 K, the pressure

to 1 atm and the step size to 2 fs. The total time elapsed at each molecular complex run was

50 ns, using constant number of atoms, volume and temperature (NVT) throughout the

calculation in a canonical environment. The results of the MD simulations were collected

in a molecular trajectory database for further analysis.

The homology model was produced using Modeller (S̆ali & Blundell, 1993; Eswar et al.,

2003) and was evaluated using the Procheck utility (Laskowski et al., 1996). This model

was designed in order to include a computer modelled structure in our training set, which

however shares high sequence identity with its template structure (approximately 90%).

The RCSB/PDB entries of the selected proteins are summarized in Table 1. In Fig. 1

we show surfaces of the electrostatic molecular potential for two HCV proteins, namely

the helicase and the polymerase. The electrostatic potential is measured in eV. In these

manuscript, we used the Connolly representation for the molecular surfaces (Connolly,

1983).

Power spectrum of molecular surfaces
Molecular surfaces contain information on a property of proteins along the three spatial

dimensions. This property, in this case the values of the electrostatic potential, can be

Carvalho et al. (2013), PeerJ, DOI 10.7717/peerj.185 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.185


Table 1 Input data. Protein families, protein PDB names and sizes of the corresponding molecular
surfaces along the [x,y,z]-directions, measured in Å.

Family Protein Size = [lx,ly,lz]

HCV helicaseStrA [72.4, 64.8, 55.1]

HCV helicaseEM [72.8, 65.1, 55.5]

HCV helicaseMD [72.3, 65.5, 56.3]

HCV helicaseHM [71.5, 65.7, 55.9]

HCV helicaseStrB [61.9, 69.6, 61.7]

DEN 2BHR [93.5, 101.4, 76.8]

DEN 2BMF [84.4, 111.7, 106.0]

DEN 2JLQ [66.8, 69.6, 77.0]

DEN 2JLU [80.4, 95.0, 85.0]

YF 1YKS [62.2, 58.4, 67.8]

YF 1YMF [63.6, 58.2, 67.8]

Helicase

YF 2V8O [49.2, 69.6, 67.6]

HCV polymerase [59.0, 77.7, 65.0]

BVDV 2CJQ [74.4, 69.5, 64.5

WN 2HCN [78.5, 75.4, 61.1]
Polymerase

WN 2HCS [77.2, 75.2, 63.2]

YF 3EVA [43.9, 56.2, 62.7]

YF 3EVB [43.6, 56.4, 62.6]

YF 3EVC [43.8, 56.0, 62.2]

YF 3EVD [44.1, 55.5, 63.3]

YF 3EVE [44.6, 55.9, 65.2]

Methyltransferase

YF 3EVF [43.9, 56.1, 64.2]

BVDV 4DVN [46.2, 67.2, 68.0]

BVDV 4DW3 [46.3, 68.5, 67.9]Glycoproteins

BVDV 4DW4 [46.8, 73.4, 67.6]

Kinase Mouse kinase [52.5, 69.0, 48.8]

regarded as a field F(x) defined over points x on the surface. Functional information is

encoded not only in the positions of the points but also in the correlations among points.

The simplest correlation function that we can measure is that between pairs of points. The

two-point correlation function ξ of the field F measures the convolution of the field over its

complex conjugate (see e.g., Peacock, 1999)

ξ(r)≡
〈
F∗(x)F(x+ r)

〉
=

1

L3

∫
d3x F∗(x)F(x+ r). (1)

The angle brackets indicate an averaging over the normalization volume, which here we

take as the volume of the molecular surface, L3.

We assume that the field has a flat geometry and can be decomposed in a Fourier

expansion of plane waves

F(x)=
∑

k

Fkexp[−ik · x], (2)
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where the wavenumber k relates with the frequency ν by k = 2π/ν. If the field has a

curved geometry, then a Fourier expansion in spherical harmonics should be used instead.

However, the difference between the two expansions only matters in scales of order the

size of the molecular surface, which correspond to the smallest frequency. The smallest

frequency is the zero-mode in the Fourier expansion and describes a global offset. The

two-point correlation function becomes

ξ(r)=

〈∑
k

∑
k′

F∗kFk′ exp[i(k− k′) · x]exp[−ik′ · r]

〉
. (3)

Since the molecular surface is closed, the field is periodic within the size of the surface,

which restricts the allowed wavenumbers to the harmonic boundary condition kn =

(n2π/L)êk, where n ∈ {0,1,...} is the order of the Fourier modes. As a consequence, all

the cross terms with k′ 6= k average to zero and the remaining sum is

ξ(r)=
(

L

2π

)3∫
d3k |Fk|

2exp[−ik · r]. (4)

Hence the correlation function is the Fourier transform of the power spectrum P(k) =
|Fk|

2. This relationship is known as the Wiener-Khinchin theorem. The power spectrum

measures amplitude correlations among the modes and discards information on the phase.

We proceed to compute the Fourier transform Fk of the molecular surface inferred over a

regular grid. The Fourier-transformed surface measures the amplitude of the plane waves

whose combination reproduces the information on the original surface. The frequencies

of the plane waves range from the frequency corresponding to the extension of the surface

(i.e., to n = 1), up to the Nyquist frequency corresponding to twice the bin size of the

grid (i.e., to n = N/2, where N is the number of bins along a direction of the grid). The

size of the molecular surfaces ranges between 5 and 7 nm (Table 1). The smallest spatial

scale of biological interest is the size of a typical cluster of aminoacids, which is of order

xball ∼ 0.3 nm. We choose this spatial scale for the size of the grid, so that the largest

frequency scale that can be probed is of order kball ∼ 10 nm−1.

Furthermore, we assume that the field is isotropic, i.e., that it does not have a

preferential direction, so that the power spectrum depends only on the distance between

each pair of points. (See Fig. 2A for an illustration.) By assuming isotropy, we are

discarding information on the direction. We proceed to take the ensemble average of

P(k) so that the power at the mode k is the sum of the power at all the points on a sphere

of radius k from the zero-mode, resulting in a one-dimensional function P(k). In this way,

we collapse the information on the three-dimensional field over the molecular surface onto

a one-dimensional power spectrum over the wavenumbers of the Fourier-transformed

molecular surface.

For a given k, we are sampling a distribution, which we assume to be Gaussian with

mean value 〈Fk〉 and variance
〈
|Fk|

2
〉
= P(k), from which the Fourier coefficients Fk

are drawn. Hence there is a fundamental uncertainty about the underlying variance,
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Figure 2 Schematic representation of point configurations for correlations in harmonic space. A:
The configuration of the two-point correlation function contains one free parameter, k12, which is the
distance in harmonic space between the two points P1 and P2. B: The configuration of the three-point
correlation function contains two free parameters, e.g., k12 and k23, describing the distances in harmonic
space respectively between P1 and P2, and between P2 and P3. The third parameter k13 is related to the
former two by the triangle condition k12+ k23+ k31 = 0.

which depends on the number of coefficients sampled at a given k. Since the number

of k’s on a sphere of radius k scales as k2 and for any real field it holds that F−k = Fk
∗,

where the asterisk stands for the complex conjugate, then the uncertainty scales as

1P(k)/P(k)=
√

2/k2.

RESULTS
Power spectrum of the molecular surfaces of the selected proteins
To test our method, we used the protein simulations described above for a training set,

containing four different protein families. For each molecular surface of the electrostatic

potential, we computed its power spectrum and the corresponding white-noise power

spectrum. The white-noise power spectrum was computed from a surface synthesised

as a Gaussian distribution N(0,1) times the mean value of the corresponding molecular

surface. We observe that the power spectra of all molecular surfaces have comparable

magnitudes, stabilizing around 10−6 for sufficiently large k (not shown), whereas the

white-noise power spectra have magnitudes that range from 10−11 to 10−7 (Fig. 3). This

range is populated by the HCV polymerase at the top, followed by the HCV helicaseStrB

and HCV helicaseHM in the intermediary range, and finally the 1A1Vs helicase

HCV helicaseStrA and its models HCV helicaseEM and HCV helicaseMD at the bottom.

Hence the information derived from the mean value alone, assuming an underlining

Gaussian distribution, suggests a coarse clustering of the proteins in helicases, polymerases

and a mixed cluster containing helicases and non-helicases.

For an easier comparison of the results, we divided the power spectra of molecular

surfaces by the mean of the corresponding white-noise power spectra (Figs. 4–9). For each

molecular surface, the power at each k is one realization of a distribution, hence the power

spectrum is noisy. This noise was estimated by the uncertainty of the Fourier coefficients

at each k, given by 1P(k) = P(k)
√

2/k2, which we used to compute the error bars. We

also included the power spectrum of Mouse kinase in all plots, which shows a nearly flat

spectrum punctuated by irregular peaks.

First we analyse the HCV helicase protein set which illustrates how our method

performs at distinguishing different treatments and strains of the same protein. We plotted

Carvalho et al. (2013), PeerJ, DOI 10.7717/peerj.185 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.185


Figure 3 Power spectrum of the molecular surfaces of the selected proteins. Power spectra of the
corresponding white-noise molecular surfaces of some helicase and polymerase proteins. The values of k
are measured in nm−1.

Figure 4 Power spectrum of the molecular surfaces of the selected HCV helicase proteins. Power spec-
tra of the molecular surfaces divided by the power spectra of the corresponding white-noise molecular
surfaces. The symbols depict the power spectra and the error bars depict the error associated with the
measurement. The values of k are measured in nm−1.
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Figure 5 Power spectrum of the molecular surfaces of the selected Dengue virus helicase pro-
teins. Power spectra of the molecular surfaces divided by the power spectra of the corresponding
white-noise molecular surfaces. The symbols depict the power spectra and the error bars depict the error
associated with the measurement. The values of k are measured in nm−1.

Figure 6 Power spectrum of the molecular surfaces of the selected Yellow fever virus helicase pro-
teins. Power spectra of the molecular surfaces divided by the power spectra of the corresponding
white-noise molecular surfaces. The symbols depict the power spectra and the error bars depict the error
associated with the measurement. The values of k are measured in nm−1.
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Figure 7 Power spectrum of the molecular surfaces of the selected polymerase proteins. Power spectra
of the molecular surfaces divided by the power spectra of the corresponding white-noise molecular
surfaces. The symbols depict the power spectra and the error bars depict the error associated with the
measurement. The values of k are measured in nm−1.

the power spectra of the HCV helicase proteins in Fig. 4. We observe that the power spectra

of HCV helicaseStrA, HCV helicaseEM, HCV helicaseMD and HCV helicaseStrB exhibit

a similar pattern up to k≈ 10 nm−1 compatible with that of HCV helicaseHM.

A further inspection reveals details that distinguish among the helicases. In particular,

we observe that the power spectra of the models HCV helicaseEM and HCV helicaseMD

exhibit very similar patterns of peaks attesting to their similar binding state. Although

HCV helicaseStrA is in a different binding state, its power spectrum exhibits the same level

of similarities with both HCV models, with an anticipated HCV-like grouping of peaks

specific to our data. For k> 1 nm−1, these three helicase proteins exhibit three strong peaks

at k≈ 2.3,4.6,7.3 nm−1. From the distance between peaks, we infer an average wavelength

of λ ≈ 2.5 nm. The power spectrum of HCV helicaseHM follows the same pattern as that

of HCV helicaseStrA shifted to smaller k with a varying relative phase which most of the

time is close to π , with strong peaks at k ≈ 1.8,3.6 nm−1. In comparison with the HCV

models, the power spectrum of HCV helicaseStrB exhibits differences in the position of

the peaks (found at k≈ 2.7,3.6,5.5 nm−1) and in their amplitude ratios, which attest to the

different treatment in HCV helicaseStrB from that in the HCV models. As k increases, we

observe a gradual damping of the power of the helicases and an emerging tail reminiscent

of shot noise in a Poisson power spectrum, more prominent in HCV helicaseHM and

HCV helicaseStrB, which indicates the damping of the fluctuations about the mean

value and thus the vanishing of the structural signal. This damping is most visible for

k > 6 nm−1. This agrees with the observation above that sets the upper limit of k to

the size of a typical cluster of aminoacids and hence sets the minimum distance below
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Figure 8 Power spectrum of the molecular surfaces of the selected methyltransferase proteins. Power
spectra of the molecular surfaces divided by the power spectra of the corresponding white-noise molecu-
lar surfaces. The symbols depict the power spectra and the error bars depict the error associated with the
measurement. The values of k are measured in nm−1.

which correlations are not of biological interest nor can be reliably probed by X-ray/NMR

experiments.

We now proceed to analyse the remaining helicase strains, which illustrates how our

method performs at distinguishing strains of the same family. We plotted the power spectra

of the Dengue virus (DEN) helicase proteins in Fig. 5 and the Yellow fever virus (YF)

helicase proteins in Fig. 6.

The power spectra of both the YF helicase proteins and the DEN helicase proteins

exhibit a similar pattern with a varying relative phase among the proteins of each strain,

with the difference between the two strains being in the typical wavelength and amplitude.

In particular, we observe that the DEN helicases have an underlying flat spectrum

punctuate by peaks at k ≈ 2.0,3.8,5.5 nm−1 (DEN 2BHR), k ≈ 3.0,5.0,6.0 nm−1

(DN 2JLQ) and k ≈ 3.5,5.0,6.5 nm−1 (DN 2JLU), that yield an average λ ≈ 4.2 nm.

The DEN 2BMF shows a different pattern characterized by a decreasing power law up to

k ≈ 5, with superposed peaks k ≈ 5.5,7.0,8.5 nm−1. In contrast, the YF helicases have

a nearly flat spectrum punctuated by small peaks at k ≈ 1.0,3.5,5.5 nm−1 (YF 1YKS)

and k ≈ 1.5,5.5 nm−1 (YF 1YMF), that yield an average λ ≈ 2.0 nm. The YF 2V80

shows a nearly flat spectrum with barely no peaks, indicating a predominantly isotropic

distribution of power. These families have a similar pattern with the HCV helicases but the

features have smaller amplitudes. The global pattern attests to the fact that these proteins

are also helicases and have the same treatment as the HCV, whereas the differences in

amplitude attest to the fact that are of different strains.
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Figure 9 Power spectrum of the molecular surfaces of the selected glycoproteins proteins. Power spec-
tra of the molecular surfaces divided by the power spectra of the corresponding white-noise molecular
surfaces. The symbols depict the power spectra and the error bars depict the error associated with the
measurement. The values of k are measured in nm−1.

We now proceed to analyse the non-helicase families, which illustrates how our method

performs at distinguishing protein families.

We plotted the power spectra of the polymerase proteins in Fig. 7. We observe that all

the polimerases have the same pattern characterized by an underlying decreasing power

law with superposed peaks. In particular, the West Nile strains have the same pattern at

all scales and a peak at k ≈ 8 nm−1, i.e., close to the smallest scale accessible. The BVDV

strain has a very similar power law behaviour to the WN strains but is punctuated by

regular peaks namely at k ≈ 1.5,3.0,4.5,6.0,8.0 nm−1, corresponding to an average

λ ≈ 4 nm. The HCV polymerase has the steepest decreasing power law behaviour and

peaks at k≈ 5.5,7.5 nm−1.

We plotted the power spectra of the methyltransferase proteins in Fig. 8. We observe that

all the YF methyltransferase have similar patterns characterized by a nearly flat, featureless

power spectrum punctuated by irregular low-amplitude peaks.

Finally, we plotted the power spectra of the glycoproteins in Fig. 9. We observe that

all the BVDV glycoproteins have the same pattern characterized by an underlying a

convex quadratic function with superposed peaks. In particular both the strains 4DVN

and 4DW3 have a single peak at k ≈ 7.5 nm−1, whereas the 4DW4 have peaks at

k≈ 2.0,4.5,6.0,8.0 nm−1, corresponding to an average λ≈ 3.3 nm.

Power spectrum of a dynamical simulation
To further test our method, we used the 1A1V template energetically minimized up to

a gradient of 10−5 to generate ten dynamical realizations captured in ten time frames
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Figure 10 Power spectra of the molecular surfaces of the HCV helicaseEM after being subject to
molecular dynamics simulations for 100 ps. Power spectra of the molecular surfaces divided by the
power spectra of the corresponding white-noise molecular surfaces. The symbols depict the power spectra
and the error bars depict the error associated with the measurement. The values of k are measured in
nm−1.

separated by 10 ps. We then energetically minimized the tenth frame up to a gradient

of 10−5 (Vangelatos et al., 2009; Sellis et al., 2012; Vlachakis et al., 2013). We computed

the power spectrum of each frame, generated the corresponding white noise surface and

plotted the results in Fig. 10.

The purpose of this test is to show how our method behaves when applied to controlled

simulations. We observe that there is no significant difference among the different frames.

This observation supports the fact that the surfaces do not change over time after energy

minimization (EM). Also we observe that the two simulations energetically minimized up

to a gradient 10−5 are in phase, whereas the simulation with up to a gradient 5× 10−2

is visibly out of phase with the former. This observation supports the fact that there is a

difference between crude and fine EM.

CONCLUSIONS
We presented a new method based on the Fourier analysis of protein molecular surfaces to

extract functional information on proteins. For a selected set of proteins of HCV with

different structural features, we first produced surfaces of the molecular electrostatic

potential, as well as the corresponding white-noise surfaces, and then computed their

two-point correlation function in harmonic space (the power spectrum). We found that

this method can distinguish different functional protein groups. More specifically, in this

manuscript we established a helicase, a polymerase, a methyltransferase and a glycoprotein

group. We also tested this method on dynamical simulations after energy minimization.

Carvalho et al. (2013), PeerJ, DOI 10.7717/peerj.185 14/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.185


An immediate extension of this work is the application of this method to isolated

structural subunits that form larger structures within proteins. Similarly sized subunits

will have a strong signal in the same frequency range, which will add up in the protein

power spectrum. Hence, we must first measure the contribution of each subunit separately

and produce a catalogue of subunit signatures, so we can distinguish them in the combined

signal when running similarity searches.

By reducing the initial three-dimensional information on the molecular surface to the

one-dimensional information on pairs of points at a fixed scale apart, this method allows

for a fast similarity search. Further refinements in the similarity search will require meth-

ods that use information from higher-order correlation functions, such as the correlation

among three points at a fixed triangular configuration or its Fourier-transformed (the

bispectrum). (See Fig. 2 right panel for an illustration.) The bispectrum measures phase

correlations among the modes and thus deviations from a Gaussian distribution.

Our ultimate goal is to integrate higher-order correlations and to apply the resulting

method to the RCSB database so as to provide the biopharmaceutical and structural

research communities with a novel and easily searchable reference without the three-

dimensional information compromising the speed of the calculation. This method aims

to coalesce techniques, which have been extensively tested and used in other fields such

as cosmology, into a fast and robust pipeline for the analysis and processing of very large,

three-dimensional biological datasets in an effort to speed up protein similarity searches.
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