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iRNA–disease association
prediction model using a Laplacian score of the
graphs and space projection federated method

Yi Zhang,†a Min Chen, †*b Xiaohui Chenga and Zheng Chenb

Lots of research findings have indicated that miRNAs (microRNAs) are involved in many important biological

processes; their mutations and disorders are closely related to diseases, therefore, determining the

associations between human diseases and miRNAs is key to understand pathogenic mechanisms.

Existing biological experimental methods for identifying miRNA–disease associations are usually

expensive and time consuming. Therefore, the development of efficient and reliable computational

methods for identifying disease-related miRNAs has become an important topic in the field of biological

research in recent years. In this study, we developed a novel miRNA–disease association prediction

model using a Laplacian score of the graphs and space projection federated method (LSGSP). This

integrates experimentally validated miRNA–disease associations, disease semantic similarity scores,

miRNA functional scores, and miRNA family information to build a new disease similarity network and

miRNA similarity network, and then obtains the global similarities of these networks through calculating

the Laplacian score of the graphs, based on which the miRNA–disease weighted network can be

constructed through combination with the miRNA–disease Boolean network. Finally, the miRNA–disease

score was obtained via projecting the miRNA space and disease space onto the miRNA–disease

weighted network. Compared with several other state-of-the-art methods, using leave-one-out cross

validation (LOOCV) to evaluate the accuracy of LSGSP with respect to a benchmark dataset, prediction

dataset and compare dataset, LSGSP showed excellent predictive performance with high AUC values of

0.9221, 0.9745 and 0.9194, respectively. In addition, for prostate neoplasms and lung neoplasms, the

consistencies between the top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed

from the updated HMDD, miR2Disease, and dbDEMC databases) reached 96% and 100%, respectively.

Similarly, for isolated diseases (diseases not associated with any miRNAs), the consistencies between the

top 50 predicted miRNAs (obtained from LSGSP) and the results (confirmed from the above-mentioned

three databases) reached 98% and 100%, respectively. These results further indicate that LSGSP can

effectively predict potential associations between miRNAs and diseases.
Introduction

MiRNAs are non-coding RNAs of about 20–25 nucleotides,1

which are widely found in eukaryotes. MiRNAs can account for
1–4% of human genes.2 MiRNAs normally regulate gene
expression at the post-transcriptional level through targeting
mRNAs for cleavage or translational inhibition.3 Many life
processes, such as cell growth,4,5 differentiation,3 proliferation,6

aging7 and signal transduction,8 have been found to be associ-
ated with miRNAs. There is increasing evidence showing that
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miRNAs are closely related to complex diseases in humans, and
can be regarded as tumor genes or tumor suppressor genes. For
example, Mussnich et al.9 found that miR-199a and miR-375
affect the sensitivity of colon cancer cells to cetuximab
through targeting PHLPP1, and that mir-106b-25 is related to
esophageal neoplastic progression and proliferation via the
suppression of 2 target genes: p21 and Bim.10 MiR-367 exerts
a tumor-promoting effect through negatively regulating FBXW7
in non-small cell lung cancer (NSCLC), and it could be
a potential therapeutic target for NSCLC intervention.11MiR-100
and miR-125b are associated with lymph node metastasis in
early colorectal cancer, and may be novel biomarkers for the
lymph node metastasis of early colorectal cancers with
submucosal invasion.12 Therefore, studying disease-related
miRNAs is helpful for analyzing pathogenesis and exploring
the rules related to diseases.
RSC Adv., 2019, 9, 29747–29759 | 29747
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The biological experiments, such as qRT-PCR and micro-
array proling, used for discovering the associations between
miRNAs and diseases are time consuming and labor inten-
sive.13,14Moreover, evidence relating to the associations between
miRNAs and diseases discovered through biological experi-
ments is only the tip of the iceberg, meaning that our under-
standing of the biological functions of miRNAs has a long way
to go, although lots of miRNA–disease associations have been
explored by scientists. It is an extremely urgent requirement to
develop rapid and efficient computational methods to predict
disease-related miRNAs to guide biological experiments.15,16

Based on the hypothesis that miRNAs with similar functions
are oen associated with diseases of similar phenotypes,17–19

Jiang et al.20 used a hypergeometric distribution to predict the
associations between miRNAs and diseases. Based on the
weighted-k-most-similar-neighbour method, Xuan et al.21

proposed HDMP to predict the relationship between miRNA
and disease. On the basis of the method proposed be Xuan
et al., Han et al.22 proposed DismiPred, which used topology
information between nodes. Chen et al.23,24 designed two KNN-
based disease association ranking algorithms (RKNNMDA and
BLHARMDA). Chen et al.25 used random walks to predict
disease-related miRNAs. However, these methods cannot
predict diseases without any known related miRNAs. To solve
this problem, Chen et al.26 used disease semantic similarity,
miRNA similarity, Gaussian interaction prole kernel similarity
and experimentally validated miRNA–disease associations to
construct a heterogeneous graph approach, named HGIMDA,
for revealing potential miRNA–disease associations. Shi et al.27

further integrated miRNA–gene relationships and random
walks to predict miRNA–disease associations. Liao et al.28

proposed a new prediction method for disease-related miRNAs
using the Laplacian score of the graphs and a random walk
method. Chen et al.29 also proposed a new computational
method named WBSMDA to uncover potential miRNAs related
to multiple complex diseases through integrating known
miRNA–disease association, semantic disease similarity,
miRNA functional similarity, Gauss's nuclear spectrum of
disease and miRNA to obtain nal relevance scores for uncon-
rmed miRNA–disease associations. These methods have ach-
ieved good predictive performance and can be used for the
prediction of isolated diseases.

Sun et al.30 proposed a method, named NTSMDA, using
network topology to predict disease–miRNA associations. Nal-
luri et al.31 designed DISMIRA, a prediction method for disease-
related miRNAs, from the two aspects of a maximum weighted
matching model and motif-based analyses, respectively. You
et al.32 proposed a path-based prediction method named
PBMDA through integrating different biological data. Chen
et al.33 proposed a bipartite heterogeneous network link
prediction method (BHCN) based on bipartite network co-
neighbours to predict miRNA–disease associations. Chen
et al.34 proposed a method named NetCBI to predict disease-
associated miRNAs using consistency of disease networks. Gu
et al.35 and Chen et al.36 predicted potential miRNA–disease
associations using bipartite network projections. Le et al.37

applied RWR, PRINCE, PRP and KSM to correlation analysis for
29748 | RSC Adv., 2019, 9, 29747–29759
predicting miRNA–disease associations. Chen et al.38 used
network distance analysis. Yu et al.39 used global linear neigh-
bours to predict miRNA–disease associations.

Machine learning methods have also entered the eld of
bioinformatics research.40–42 Support vector machines (SVMs)
were used by Jiang et al.,43 Xu et al.,44 Zeng et al.45 and Wang
et al.,46 a logistic model tree was used by Wang et al.,47 and
a decision tree was used by Zhao et al.;48 these are excellent
classication tools with global optimality and better general-
ization abilities to predict potential disease-related candidate
miRNAs, but such methods require known negative sample
information related to disease-related miRNAs that is difficult
to obtain. In order to solve the problem of negative sample
acquisition, Chen et al.49 used a regularized least squares
approach to optimize similarity networks of miRNAs and
diseases, respectively, and the nal miRNA–disease associa-
tions were linear weightings of miRNA similarity scores and
disease similarity scores. Restricted Boltzmann machine,50

auto-encoder,51 extreme gradient boosting machine,52 convolu-
tional neural network,53 kernelized Bayesian matrix factoriza-
tion,54,55 non-negative matrix factorization,56,57 singular value
decomposition,58 Kronecker regularized least squares,59,60 Lap-
lacian regularized sparse subspace learning,61 regularized least
squares62 and semi-supervised link integrated prediction
methods all were used to infer the relationships between
potential diseases and miRNAs with good prediction results.
Jiang et al.63 proposed a novel similarity kernel fusion (MDA-
SKF) method via integrating multiple similarity kernels (three
miRNA similarity kernels and three disease similarity kernels)
to overcome the limitations through which some initial infor-
mation may be lost in the process and some noise may exist in
the integrated similarity kernel. SKF as an accurate network
similarity construction method for MDA-SKF utilized the Lap-
lacian regularized least squares method to uncover potential
miRNA–disease associations, and it can be used as an accurate
and efficient computational tool for guiding traditional experi-
ments. Zou et al.64 utilized two methods of social network
analysis (KATZ and CATAPULT) to predict potential disease-
related candidate miRNAs. Li et al.65 utilized recommendation
systems to predict associations between environmental factors,
miRNAs and diseases. Peng et al.66 combined negative-aware
and rating-based recommendation algorithms to predict
miRNA–disease associations. Chen et al.67 constructed a simi-
larity network and utilized ensemble learning to combine
ranked results, called ensemble learning and link prediction for
miRNA–disease association prediction. Chen et al.68 presented
a HAMDAmodel that considered not only the network structure
and information propagation but also eld-related information
to reveal miRNA–disease associations through mixing graph-
based recommendation algorithms, and it obtained satisfac-
tory prediction results.

For experimentally veried less well-known miRNA–disease
associations and hard-to-obtain negative samples of miRNA–
disease associations, Zeng et al.,69 Li et al.,70 Chen et al.71 and
Peng et al.72 utilized matrix completion to estimate potential
miRNA–disease associations. Chen et al.73 combined a sparse
learning method with a heterogeneous graph inference method
This journal is © The Royal Society of Chemistry 2019
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for miRNA–disease association predictions. Tang et al.74 fully
exploited miRNA functional similarity and disease semantic
similarity to achieve the matrix completion of miRNA–disease
association through using a dual Laplacian regularization term,
which transformed miRNA–disease association prediction into
a matrix completion problem. This achieved good prediction
effects, only needing experimentally validated miRNA–disease
associations, and it provided new ideas for solving the problems
that occur whenmiRNA–disease association data is insufficient.

Although existing computational methods have made
outstanding contributions to the eld of miRNA–disease asso-
ciation prediction, they still have the following defects:

(1) These prediction methods are not accurate enough;
(2) Isolated diseases and new miRNAs (miRNAs not associ-

ated with any disease) cannot be predicted; and
(3) Negative samples of miRNA–disease associations are

required.
In order to overcome these defects, our proposed LSGSP

model mainly consists of the following four steps to predict
miRNA–disease associations:

(1) Reconstructing similarity networks for diseases and
miRNAs, using known miRNA–disease associations, disease
semantic similarity, miRNA family information and miRNA
functional similarity, respectively;

(2) Obtaining the global similarity scores of the disease
similarity networks and miRNA similarity networks through
calculating the Laplacian scores of the graphs;

(3) Constructing miRNA–disease weight networks on the
basis of experimentally veried miRNA–disease Boolean
networks combined with global disease similarity networks and
global miRNA similarity networks;

(4) Representing the miRNA–disease association scores
using vector projections.

Therefore, LSGSP, as a global approach that does not require
negative samples, can simultaneously predict all miRNA–
disease associations, and can be used to predict isolated
diseases and new miRNAs with good prediction effects in
LOOCV and case analysis.
Materials and methods
Data preparation

We used three datasets, known as the benchmark dataset,
prediction dataset and compare dataset, in this paper. The
benchmark dataset, obtained from the ESI in ref. 20, is
composed by processed 99 miRNAs, 51 diseases and 225
miRNA–disease associations from an original 271 miRNA–
disease associations veried by experiments. The prediction
dataset, obtained from the ESI in ref. 19, is composed by pro-
cessed of 271 miRNAs, 137 diseases and 1395 miRNA–disease
associations. The compare dataset,75 obtained from the
HMDDv2.0 database, is composed by processed 495 miRNAs,
383 diseases and 5430 miRNA–disease associations. The matrix
MD was used to represent the miRNA–disease associations, and
the corresponding value of MD(i,j) is set to 1 if the miRNA node
mi is associated with the disease node dj, otherwise it is set to 0.
This journal is © The Royal Society of Chemistry 2019
Functional similarity scores between miRNAs obtained from
the ESI in ref. 19 were represented by the matrix MM. MiRNA
family information obtained from the miRBase database76 was
represented by the matrix MMfa. MMfa(i,j) is set to 1 if the
miRNA node mi is associated with the miRNA node mj, other-
wise it is set to 0. We used the matrix DD to represent the
semantic similarity scores between diseases obtained from the
ESI in ref. 66.

Construction of disease–disease similarity networks. The
accuracy of disease similarity directly affects the effects of
miRNA–disease association predictions. Wang et al.19 calculated
disease similarity based on semantic information through
utilizing the attributes of diseases from the Mesh database, but
the accuracy of this method is not so high. Therefore, we used
known miRNA–disease associations to reconstruct a disease–
disease similarity network based on the semantic matrix DD
from Wang et al.19

Firstly, we used the known matrix MD to calculate the
disease similarity information DDas, which can be represented
by:

DDasði; jÞ ¼

8><
>:

DDcm

�
di; dj

�
degðdiÞ þ deg

�
dj

�

0

DDcm

�
di; dj

�
s0

DDcm

�
di; dj

� ¼ 0
(1)

where DDas(i,j) denotes the similarity score between disease di
and disease dj, calculated using the known matrix MD. DDcm(-
di,dj) denotes the number of miRNAs co-owned by diseasedi and
disease dj. deg(di) denotes the degree of diseasedi in matrix MD.
Then, we integrated and made use of the disease similarity
score DD(i,j) from Wang et al.,19 using the disease similarity
score DDas(i,j) from known miRNA–disease associations to
dene the nal disease similarity score of disease di and disease
dj, DDfs(i,j) through:

DDfs(i,j) ¼ m � DD(i,j) + (1 � m) � DDas(i,j) (2)

where m denotes a weight parameter whose value range is set to
m ˛ (0,1).

Construction of miRNA–miRNA similarity networks. The
construction of miRNA–miRNA similarity networks is a key step
to predict miRNA–disease associations. In order to construct
a more accurate miRNA similarity network than the functional
similarity score matrix MM for miRNAs from Wang et al.,19 we
integrated the functional similarity score matrix MM from
Wang et al.19 with the miRNAs family information MMfa to
construct an miRNA–miRNA similarity network:

MMfs(i,j) ¼ q � MM(i,j) + (1 � q) � MMfa(i,j) (3)

where MMfs(i,j) denotes the nal similarity score between the
miRNA node mi and miRNA node mj, which is integrated from
the functional similarity score MM(i,j) from the miRNA node
mi–mj and the family information MMfa(i,j) from the miRNA
node mi–mj. The weight parameter q has a value range of q ˛
(0,1).

Construction of global similarity based on the Laplacian
score of the graphs. Considering the similarities of a global
RSC Adv., 2019, 9, 29747–29759 | 29749
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network can improve prediction accuracy more effectively than
using a local network. The global similarity scores of disease
nodes and miRNA nodes were obtained via calculating the
Laplacian score of the graphs:77

min
d

X
i;j

DDfsði; jÞ
�
d0

i � d0
j

�2 þ 1� a

a
�
X
i

ðd0
i � d0

iÞ2 (4)

where DDfs denotes the normalized matrix of the disease
similarity matrix DDfs, and a is an equilibrium factor with
a range of a ˛ (0,1). The approximate solution of formula (4) is
as follows:77

d0 ¼ ð1� aÞ � �
I� a�DDfs

��1 � d
0 (5)

where I denotes the identity matrix, and d ¼ fd0
1;d0

2;/;d0
ndg

denotes the initial vector used for representing the similarity
between the disease node dk(k ¼ 1,2,.,nd) and other disease
nodes, where the corresponding element value of d0

k is 1 when
querying the kth position in this vector, and the other elements
are 0. The Laplacian scores of the graphs between all diseases
are represented by the matrix DDla, which is the collection of
vectors d0.

Similarly, the Laplacian score of the graphs between all
miRNAs is represented by MMla, which is as follows:

MMla ¼ ð1� bÞ � �
I� b�MMfs

��1
(6)

where MMfs denotes the normalized matrix of MMfs, and
b denotes an equilibrium factor with a range of b ˛ (0,1).

Construction of disease–miRNA weighted networks. As
mentioned before, the matrix MD, which represents miRNA–
disease associations with experimental verication, is a Boolean
network. MD can only express whether there is an association
between the disease and miRNA: it cannot indicate the strength
of association.

By integrating the global similarity matrix of disease DDla

and the experimentally veried Boolean network MD of miRNA–
disease associations, the weighted network MDdl of miRNA–
disease associations was constructed based on the global
similarity information of diseases.

MDdlði; jÞ ¼ MDði; jÞ þ g�
Xnd

k¼1; ksi

DDla

�
dk; dj

�

�MDði; kÞ=sumðMDði; : ÞÞ (7)

where MDdl(i,j) denotes the weight between miRNA mi and
disease dj, MD denotes the miRNA–disease association matrix,
sum(MD(i,:)) denotes the number of disease nodes associated
with miRNA node mi in the miRNA–disease association network,
DDla(dk,dj) denotes the global similarity score between the
disease node dk (k¼ 1, 2,., nd) and the disease node dj, and nd
denotes the number of diseases. Similarly, g is an equilibrium
factor with a range of [0, 1], as in the previous formula.

Through integrating the global similarity matrix of miRNAs
MMla and the experimentally veried Boolean network MD of
miRNA–disease associations, the weighted network MDml of
miRNA–disease associations was constructed based on the
global similarity information from miRNAs.
29750 | RSC Adv., 2019, 9, 29747–29759
MDmlðj; iÞ ¼ MDTði; jÞ þ d�
Xnm

k¼1; ksj

MMlaðmi;mkÞ

�MDðk; jÞ=sumðMDð:; jÞÞ (8)

where MDml(j,i) denotes the weight between the miRNA mi and
disease dj, MD denotes the miRNA–disease association matrix,
MDT denotes the transposed matrix of MD, sum(MD(:,j))
represents the number of miRNAs associated with the disease
node dj, MMla(mi,mk) denotes the global similarity score
between the miRNA mi and miRNA mk (k ¼ 1, 2, ., nm),
and nm denotes the number of miRNAs. As in the previous
formula, d is an equilibrium factor with a range of [0, 1].

Calculation of miRNA–disease association prediction scores.
The miRNA–disease association prediction scores in LSGSP
were weighted using the spatial projection scores with the two
Laplacian similarities of disease andmiRNA, respectively. In the
ow chart shown in Fig. 1, we took the calculation of the
association prediction score between the miRNA node mi and
the disease node dj as an example.

(1) Spatial projection scores based on the Laplacian simi-
larities of diseases:

We used the projected scores of the disease similarity
networks in the weighted network MDml of miRNA–disease
associations to represent the miRNA–disease association
scores; the calculation is as follows:

MDpmðj; iÞ ¼ DDlaðj; :Þ �MDmlð:; iÞ
kMDmlð:; iÞk (9)

where MDpm(j,i) denotes the prediction score of the association
between the disease dj and miRNA mi, DDla denotes the Lap-
lacian similarity matrix between diseases, kMDmlk denotes the
MDml norm, which was mentioned before as the weighted
network of miRNA–disease associations based on the global
similarity information from miRNAs.

(2) spatial projection scores based on the Laplacian simi-
larities of miRNAs:

We used the projected scores of miRNA similarity networks
in the weighted network MDdl to represent the miRNA–disease
scores; the calculation is as follows:

MDpdði; jÞ ¼ MMlaði; : Þ �MDdlð:; jÞ
kMDdlð:; jÞk (10)

where MDpd(i,j) denotes the prediction score of the association
between the miRNA mi and disease dj, and MMla denotes the
Laplacian similarity matrix of miRNAs. Similarly, MDdl denotes
the MDdl norm, which was mentioned before as the weighted
network of miRNA–disease associations based on global disease
similarities.

(3) Final integrated spatial projection scores based on Lap-
lacian similarities of diseases and miRNAs:

Finally, we integrated the spatial projection scores based on
the Laplacian similarities of diseases and spatial projection
scores based on Laplacian similarities of miRNAs to calculate
the nal prediction scores, as shown below:

MDfs(i,j) ¼ u�MDT
pm(i,j) + (1 � u) � MDpd(i,j) (11)
This journal is © The Royal Society of Chemistry 2019



Fig. 1 A flowchart showing the whole modelling procedure.
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where MDT
pm denotes the transposed matrix of MDpm and u

denotes a weighting parameter for MDpm and MDpd. The nal
prediction score MDfs(i,j) represents the association between
the miRNA mi and disease dj, where a higher score means there
This journal is © The Royal Society of Chemistry 2019
is a higher probability of the miRNA mi being associated with
the disease dj.

Although many researchers have used Laplacian regulariza-
tion to identify miRNA–disease associations (such as
LRSSLMDA,61 MDA-SKF,63 and DLRMC74), our proposed LSGSP
RSC Adv., 2019, 9, 29747–29759 | 29751



Fig. 2 The influence of parameter variations on the prediction
accuracy.
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differs from these research approaches in the following three
aspects:

Firstly, it differs in terms of the data preparation process.
MDA-SKF used miRNA sequence similarity, but others (LSGSP,
LRSSLMDA and DLRMC) did not. LSGSP uses miRNA family
information, but others (MDA-SKF, LRSSLMDA and DLRMC) do
not.

Secondly, it differs in terms of the purposes of Laplacian
regularization utilization. LRSSLMDA, MDA-SKF and DLRMC
used Laplacian regularization in the classication decision
stage. LRSSLMDA built an objective function from the common
miRNA/disease subspace for miRNA/disease feature spaces, an
L1-norm constraint and Laplacian regularization, and nally
combined these optimization results to attain the nal predic-
tion outcomes. MDA-SKF optimized objective Laplacian regu-
larized least squares functions to obtain a predicted association
matrix, which uncovered potential miRNA–disease associa-
tions. DLRMC used a matrix completion model to calculate the
potential missing entries of the miRNA–disease association
matrix, and then used dual Laplacian regularization to regu-
larize the miRNA–disease association matrix. The purpose of
using Laplacian scores of the graphs in LSGSP is to obtain
global network similarity, and for missing miRNA–disease
association calculations, a network projection method was
used.

Thirdly, it differs in the type of model used. From a classier
perspective, LRSSLMDA, DLRMC and MDA-SKF all utilized
a machine learning-based model for miRNA–disease associa-
tion prediction, which needed to optimize objective functions to
obtain prediction results. However, our LSGSP is a network
analysis-based computable model, whose missing miRNA–
disease association calculations do not need the optimal solu-
tion to obtain an objective function. The implementation
process of LSGSP is simple, and the prediction results of LSGSP
are intuitive and easy to interpret.

Results
Parameter selection method

This section mainly discusses the inuences of different types
of parameters (the weighting parameters q and m, equilibrium
parameters a and b, equilibrium parameters g and d, and
weighting parameter u) on the prediction performance of
LSGSP.

(1) The weight parameters q and m for similarity network
construction.

The weight parameter q represents the proportion of the
functional similarity scores from Wang et al.19 used for con-
structing the miRNA similarity network. In order to nd the
optimal q value, we rst set the parameters to xed values (m ¼
a ¼ b¼ g ¼ d¼ u ¼ 0.5), and changed the value of q from 0.1 to
0.9. Through experiments involving cross-validating and
calculating AUC values from the benchmark dataset, we found
that the AUC value increased gradually from 0.9006 to 0.9010
when q went from 0.1 to 0.2 and the AUC value decreased
gradually from 0.9010 to 0.8892 when q went from 0.2 to 0.9.
From the changing curve shown in Fig. 2, the AUC value reached
29752 | RSC Adv., 2019, 9, 29747–29759
a maximum when q ¼ 0.2; therefore, we set q ¼ 0.2 to obtain
good prediction performance.

The weight parameter m from the disease similarity network
indicates the semantic similarity score proportion in the con-
structed network. On the basis of q ¼ 0.2, we set the rest of the
parameters to 0.5 (q ¼ 0.2, a ¼ b ¼ g ¼ d ¼ u ¼ 0.5). By taking
0.1 as the step size to increase the m value, we found that the
AUC value reached a maximum when m¼ 0.3 and the AUC value
decreased gradually when m went from 0.3 to 0.9, as shown in
Fig. 2. Therefore, we set m ¼ 0.3 for good prediction
performance.

(2) The equilibrium parameters a and b for the global simi-
larity network.

The Laplacian similarity equilibrium factor a, used for the
disease similarity network, and the Laplacian similarity equi-
librium factor b, used for the miRNA similarity network, were
initially set to 0.1 and gradually changed to the same value
using a step size of 0.1. The other three types of parameter
values were set to xed values (q ¼ 0.2, m ¼ 0.3, g ¼ d ¼ u ¼ 0.5)
at the same time. When a and b increased gradually, the AUC
value decreased from 0.9093 to 0.8805 gradually in the experi-
ment; therefore the AUC value was optimal when a and b were
set to 0.1.

(3) The equilibrium parameters g and d for miRNA–disease
weight network construction.

Similarly, the third type of parameter included the equilib-
rium parameters g and d, used for miRNA–disease weight
network construction; their values were set to the same value.
The effects of the equilibrium parameters g and d on LSGSP
were tested in the same way as before, and the AUC value
reached an optimal value of 0.9113 when g andd were set to 0.1.

(4) The weight parameteru for spatial projection scores.
Finally, in order to obtain the optimal u value, we gradually

increased the value of u, taking 0.1 as the step size. Through
experiment, we found that the AUC value increased gradually
from 0.9113 to 0.9221 when the value of u was increased from
0.1 to 0.3. When the value of uwas increased from 0.3 to 0.9, the
This journal is © The Royal Society of Chemistry 2019
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AUC value decreased from 0.9221 to 0.8812. Therefore, we set u
¼ 0.3 to obtain the optimal AUC value, which indicated that our
prediction results depended more on the spatial projection
scores based on the Laplacian similarities of miRNAs.

In summary, our parameter selections from the benchmark
dataset were: q ¼ 0.2; m ¼ 0.3; a ¼ b ¼ 0.1; g ¼ d ¼ 0.1; u ¼ 0.3.
By using the same method, the parameter selections from the
prediction dataset were: q ¼ 0.2; m ¼ 0.1; a ¼ b ¼ 0.1; g ¼ d ¼
0.9; u¼ 0.9. For the compare dataset, the parameter q was set to
1 because family information was not used. From the same
method as used before, the parameter selections from the
compare dataset were: q¼ 1; m ¼ 0.1; a ¼ b ¼ 0.1; g ¼ d¼ 0.9; u
¼ 0.3.
Fig. 3 ROC curves and AUC values based on LOOCV in different
situations, using the benchmark dataset.

Fig. 4 A comparison of the ROC curves and AUC values from the
benchmark dataset.
Comparison of the prediction performance in different
situations

In this paper, the proposed LSGSP predicted the association
scores of miRNAs and diseases using the spatial projection
scores of Laplacian similarity. The execution process of LSGSP
was as follows:

(1) Reconstructing the miRNA network using family
information;

(2) Reconstructing the disease network using miRNA–
disease association pairs;

(3) Obtaining the global similarity network using the Lap-
lacian scores;

(4) Constructing the miRNA–disease weighted network using
the global disease similarity network, the global miRNA simi-
larity network and miRNA–disease association information;

(5) Obtaining the prediction scores using vector space
projection.

We evaluate the predictive performance of LSGSP in the
following ve situations:

(1) The predictive performance without considering miRNA
network reconstruction and disease network reconstruction
(LSGSP without NR);

(2) The predictive performance in the case of reconstructing
the miRNA network (LSGSP with MNR);

(3) The predictive performance in the case of reconstructing
the disease network (LSGSP with DNR);

(4) The predictive performance in the case of reconstructing
the miRNA network and disease network without reconstruct-
ing the miRNA–disease weight network (LSGSP without
MDWN); and

(5) The predictive performance with all relevant information
(LSGSP with all information).

From the results from performing LOOCV shown in Fig. 3, it
can be found that the worst predictive performance occurred in
the situation of LSGSP without MDWN, where the AUC value
was only 0.7809. However, once the miRNA–disease weighted
network was constructed, even without considering the recon-
struction of the miRNA network and disease network (LSGSP
without NR), the AUC value reached 0.8973, which indicated
that miRNA–disease weighted network construction had
a signicant effect on the improvement of prediction perfor-
mance. In the situation of LSGSP with MNR, the AUC value
This journal is © The Royal Society of Chemistry 2019
increased from 0.8973 to 0.9135. Aer reconstructing the
disease network through adding structural information relating
to the known association network (LSGSP with DNR), the AUC
value increased from 0.8973 to 0.9049, and the AUC value in the
situation of LSGSP with all information was increased to 0.9221.
This shows that LSGSP is commendable at predicting the
associations between miRNAs and diseases.
Comparison with other methods

To further evaluate the predictive performance of LSGSP, we
compared it with three classical methods, RLSMDA,49 IDNC78

and GSTRW,79 with the same parameter selection as described
in the respective papers. From the results of performing LOOCV
on the benchmark dataset, as shown in Fig. 4, the AUC values of
RLSMDA, IDNC, GSTRW and LSGSP were 0.8059, 0.8479, 0.8814
and 0.9221, respectively, which showed that LSGSP achieved the
best predictive performance, with a value 12.60%, 8.05% and
4.41% higher, respectively, than RLSMDA, IDNC and GSTRW.

To avoid data dependence, the prediction dataset was used
to further compare the four methods mentioned above.
According to the prediction dataset, with more known
RSC Adv., 2019, 9, 29747–29759 | 29753



Table 1 A comparison of the results between LSGSP and the other
computational methods

No. Method AUC

1 LSGSP 0.9194
2 LRSSLMDA 0.9178
3 DLRMC 0.9174
4 MDA-SKF 0.9576
5 LSGSP-SKF 0.9675
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associations than the benchmark dataset, the accuracy of all
four methods greatly improved. The AUC values of RLSMDA,
IDNC, GSTRW and LSGSP for the prediction dataset were
0.9232, 0.9434, 0.9512 and 0.9745, respectively, as shown in
Fig. 5. The AUC value of LSGSP using the prediction dataset was
the highest, with a value 5.26%, 3.19% and 2.39% higher,
respectively, than those of RLSMDA, IDNC and GSTRW. The
prediction results showed the excellent predictive abilities of
LSGSP, mainly due to the use of Laplacian scores and network
projection, and LSGSP showed more outstanding advantages
with less experimentally veried miRNA–disease associations.

So far, LRSSLMDA,61MDA-SKF63 and DLRMC74 have obtained
good predictive results from the compare dataset using Lap-
lacian regularization to identify miRNA-disease associations. To
compare LSGSP with the above-mentioned three methods
equally, the AUC values from LSGSP, LRSSLMDA, MDA-SKF and
DLRMC given from the compare dataset in Table 1 are the
optimal values described in the papers that they belong to.
When using the same available experimental data without any
family information for LSGSP, LRSSLMDA and DLRMC equally,
the AUC value of LSGSP was 0.9194, which was higher than
those of LRSSLMDA and DLRMC, as shown in Table 1. MDA-
SKF showed the best prediction results, with an optimal AUC
value of 0.9576, which were attributed to its accurate SKF
network construction method. However, it is unfair to compare
the prediction results of MDA-SKF with those from LSGSP
directly, because MDA-SKF used extra miRNA sequence simi-
larity information but LSGSP did not. Using SKF for network
reconstruction with LSGSP (named LSGSP-SKF) to compare
with MDA-SKF under the same experimental conditions, the
AUC value was 0.9675, shown as LSGSP-SKF in Table 1; this
value was the highest among all methods.

The prediction of new miRNAs and isolated diseases

The term isolated disease refers to associations between
a disease and all miRNAs that are unknown, and the term new
miRNA refers to a miRNA with unknown association informa-
tion related to diseases. The prediction of isolated diseases and
new miRNAs can further help scientists to understand the
molecular mechanisms of diseases and further reveal the
mechanisms behind the occurrences of diseases. Recently,
Fig. 5 A comparison of the ROC curves and AUC values from the
prediction dataset.
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more and more miRNAs have been found with unknown
disease-related information. It is urgent to develop efficient
calculation methods to predict the associations between new
miRNAs and isolated diseases, to reduce the blindness of
subsequent biological experiments, to help scientists under-
stand the regulationmechanisms of miRNAs, and to analyze the
pathogenesis of diseases at the molecular level.

We implemented LOOCV on the benchmark dataset to
evaluate the predictive performance of LSGSP for new miRNAs
and isolated diseases. For each new miRNA veried, the asso-
ciations between the miRNA and all diseases were removed to
simulate a new miRNA. The ROC curves and AUC values pre-
dicted by LSGSP using the benchmark dataset are shown in
Fig. 6, in which the AUC of LSGSP was 0.8597. Similarly, the
associations between the disease and all miRNAs were removed
to simulate an isolated disease, and the AUC value from the
benchmark dataset was 0.7767. According to the prediction
results, LSGSP showed excellent predictive performance in
predicting new miRNA-related diseases and isolated disease-
related miRNAs.
Case studies

Lots of research evidence has indicated that miRNA mutations
and disorders are important causes of disease; thus, the further
evaluation of the LSGSP performance for miRNA–disease asso-
ciation prediction is necessary. We selected prostate neoplasms
and lung neoplasms as case studies with model training and
prediction using the prediction dataset, and then validated all
predictions using the updated HMDD, miR2Disease, and
dbDEMC databases, respectively. Aer that, the predictive
abilities of LSGSP for potential miRNA–disease associations and
Fig. 6 Predictions for new miRNAs and isolated diseases using the
benchmark dataset.

This journal is © The Royal Society of Chemistry 2019
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associations between isolated diseases and miRNAs were
analyzed.
Potential miRNA–disease prediction

Prostate neoplasms are a disease occurring in the male repro-
ductive system, especially common in countries with a severely
aging population.80 Biological experiments have proved some
important associations between prostate cancer and miRNAs,
such as the epigenetically altered mir-193b target cyclin D1.81

Rauhala et al.82 found that mir-193b is an epigenetically regu-
lated putative tumor for prostate cancer. Yang et al.83 found that
the downregulation of mir-221 and mir-222, which inhibited
prostate neoplasm cell proliferation and migration, was medi-
ated in part by SIRT1 activation. Recognizing prostate neoplasm
related miRNAs helps to understand the pathogenic mecha-
nism of prostate neoplasms, so as to start treatment at the early
stages of the disease.

We used LSGSP for training and prediction, using 34 known
associations between prostate neoplasms and miRNAs from the
prediction dataset. Only 2 of the top 50 miRNAs predicted to be
associated with prostate neoplasms were not conrmed from
the updated HMDD, miR2Disease, and dbDEMC databases
(shown in Table 2), which were hsa-mir-429 and hsa-mir-7
(ranked 23rd and 50th in predictive results, respectively).
However, we found evidence of associations between these two
miRNAs and prostate neoplasms upon searching the latest
literature. Ouyang et al.84 found that the down-regulation of hsa-
mir-429 inhibited the proliferation of prostate cancer cells.
Zhou et al.85 identied a total of 130 differentially expressed
miRNAs via miRNA microarray studies and found that hsa-mir-
Table 2 The prediction and confirmation of the top 50 prostatic neopla

Rank miRNA name Evidence

1 hsa-mir-18a dbDEMC
2 hsa-mir-19b HMDD, dbDEMC, miR2Disease
3 hsa-let-7a dbDEMC, miR2Disease
4 hsa-mir-19a dbDEMC
5 hsa-mir-34a HMDD, dbDEMC, miR2Disease
6 hsa-let-7d HMDD, dbDEMC, miR2Disease
7 hsa-let-7e dbDEMC, miR2Disease
8 hsa-mir-155 dbDEMC
9 hsa-let-7f dbDEMC, miR2Disease
10 hsa-mir-200b HMDD, dbDEMC
11 hsa-let-7b HMDD, dbDEMC, miR2Disease
12 hsa-let-7c HMDD, dbDEMC, miR2Disease
13 hsa-mir-20b dbDEMC
14 hsa-let-7i dbDEMC
15 hsa-mir-92a dbDEMC
16 hsa-mir-34b HMDD, dbDEMC
17 hsa-mir-29a HMDD, dbDEMC, miR2Disease
18 hsa-mir-141 HMDD, dbDEMC, miR2Disease
19 hsa-mir-18b dbDEMC
20 hsa-mir-126 HMDD, dbDEMC, miR2Disease
21 hsa-mir-200a HMDD, dbDEMC
22 hsa-mir-125a dbDEMC, miR2Disease
23 hsa-mir-429 Unconrmed
24 hsa-let-7g dbDEMC, miR2Disease
25 hsa-mir-125b dbDEMC, miR2Disease
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7-1 was up-regulated. Sánchez et al.86 proposed synergy between
miR-21-5p and miR-7p in the regulation of prostate carcino-
genesis. However, the dates of publication for these literature
studies were all aer the last updates of the three databases,
further conrming the effectiveness of LSGSP.

Due to the low detection rate of lung neoplasms, a common
lethal disease, they pose a great threat to people's lives,87,88

especially in developing countries. Recent studies have found
that miRNA dysregulation can be considered a diagnostic
biomarker for lung neoplasms, such as the expression of mir-
1246 and mir-1290, which can be a key driving factor
promoting tumor initiation and progression in human non-
small cell lung cancer89. Lin et al.90 conrmed that mir-324-5p
and mir-324-3p play carcinogenic roles with respect to lung
cancer. MiR-101 represses lung cancer via down-regulating
CXCL12.91 With the discovery of more and more lung
neoplasm-related miRNA functions, their study can provide
more help for the early detection of lung neoplasms.

We used 72 lung neoplasm–miRNA associations from the
prediction dataset to train LSGSP and then predicted the
remaining unknown associations. We found supporting
evidence for all the rst 50 miRNAs related to lung neoplasms
predicted by LSGSP using the above-mentioned three databases
(as shown in Table 3).
Isolated disease-related miRNA prediction

Next we validated the predictive ability of LSGSP for isolated
diseases, through simulating isolated diseases by removing all
known miRNA associations with veried diseases. The pre-
dicted results from LSGSP relating to prostate neoplasms and
sm-related candidate miRNAs

Rank miRNA name Evidence

26 hsa-mir-9 dbDEMC
27 hsa-mir-30d HMDD, dbDEMC
28 hsa-mir-15b dbDEMC
29 hsa-mir-30b dbDEMC
30 hsa-mir-302a dbDEMC
31 hsa-mir-143 HMDD, dbDEMC, miR2Disease
32 hsa-mir-218 dbDEMC, miR2Disease
33 hsa-mir-92b dbDEMC
34 hsa-mir-302b dbDEMC
35 hsa-mir-372 dbDEMC
36 hsa-mir-200c dbDEMC
37 hsa-mir-24 dbDEMC, miR2Disease
38 hsa-mir-181a dbDEMC
39 hsa-mir-339 hsa-miR-339-5p
40 hsa-mir-302c dbDEMC, miR2Disease
41 hsa-mir-151 dbDEMC
42 hsa-mir-27a HMDD, dbDEMC, miR2Disease
43 hsa-mir-215 dbDEMC
44 hsa-mir-320 dbDEMC, miR2Disease
45 hsa-mir-1 dbDEMC
46 hsa-mir-29c dbDEMC
47 hsa-mir-196a dbDEMC
48 hsa-mir-383 dbDEMC
49 hsa-mir-195 HMDD, dbDEMC, miR2Disease
50 hsa-mir-7 Unconrmed
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Table 3 The prediction and confirmation of the top 50 lung neoplasm-related candidate miRNAs

Rank miRNA name Evidence Rank miRNA name Evidence

1 hsa-mir-106b dbDEMC 26 hsa-mir-302b dbDEMC, miR2Disease
2 hsa-mir-93 dbDEMC 27 hsa-mir-27a HMDD, dbDEMC
3 hsa-mir-200b HMDD, dbDEMC 28 hsa-mir-215 dbDEMC
4 hsa-mir-20b HMDD, dbDEMC 29 hsa-mir-151 dbDEMC
5 hsa-mir-25 dbDEMC 30 hsa-mir-339 dbDEMC, miR2Disease
6 hsa-mir-127 HMDD, dbDEMC 31 hsa-mir-373 dbDEMC
7 hsa-mir-429 dbDEMC 32 hsa-mir-302a dbDEMC
8 hsa-mir-141 dbDEMC 33 hsa-mir-367 HMDD, dbDEMC, miR2Disease
9 hsa-mir-92b HMDD, dbDEMC 34 hsa-mir-181a dbDEMC, miR2Disease
10 hsa-mir-18b dbDEMC 35 hsa-mir-148a dbDEMC
11 hsa-mir-98 HMDD, dbDEMC, miR2Disease 36 hsa-mir-15a dbDEMC
12 hsa-mir-221 HMDD, dbDEMC, miR2Disease 37 hsa-mir-520b dbDEMC
13 hsa-mir-200a dbDEMC 38 hsa-mir-103 dbDEMC
14 hsa-mir-200c dbDEMC, miR2Disease 39 hsa-mir-133a dbDEMC
15 hsa-mir-222 dbDEMC 40 hsa-mir-372 HMDD, dbDEMC, miR2Disease
16 hsa-mir-16 HMDD 41 hsa-mir-107 HMDD, dbDEMC
17 hsa-mir-10b HMDD, dbDEMC, miR2Disease 42 hsa-mir-99b dbDEMC
18 hsa-mir-194 HMDD, dbDEMC, miR2Disease 43 hsa-mir-130a dbDEMC, miR2Disease
19 hsa-mir-195 dbDEMC, miR2Disease 44 hsa-mir-451 dbDEMC
20 hsa-mir-7 dbDEMC 45 hsa-mir-15b dbDEMC, miR2Disease
21 hsa-mir-181b dbDEMC 46 hsa-mir-499 dbDEMC, miR2Disease
22 hsa-mir-320 HMDD, dbDEMC, miR2Disease 47 hsa-mir-204 dbDEMC, miR2Disease
23 hsa-mir-296 dbDEMC 48 hsa-mir-23b dbDEMC
24 hsa-mir-135b dbDEMC 49 hsa-mir-302d dbDEMC
25 hsa-mir-302c dbDEMC 50 hsa-mir-153 dbDEMC
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lung neoplasms from an isolated disease perspective are listed
in Table 4 and 5; they were obtained under the conditions of
removing the 34 known prostate neoplasm–miRNA associa-
tions, where only hsa-mir-302d from the predicted top 50
Table 4 The prediction and confirmation of the top 50 isolated disease

Rank miRNA name Evidence

1 hsa-mir-21 HMDD, dbDEMC, miR2Disease
2 hsa-mir-155 HMDD, dbDEMC, miR2Disease
3 hsa-mir-15a HMDD, dbDEMC, miR2Disease
4 hsa-mir-377 HMDD
5 hsa-mir-373 HMDD, dbDEMC
6 hsa-mir-372 HMDD, dbDEMC, miR2Disease
7 hsa-mir-29c HMDD, dbDEMC, miR2Disease
8 hsa-mir-34a dbDEMC
9 hsa-mir-302b dbDEMC
10 hsa-mir-451 HMDD, dbDEMC, miR2Disease
11 hsa-mir-184 dbDEMC, miR2Disease
12 hsa-mir-29a HMDD
13 hsa-mir-16 HMDD, dbDEMC, miR2Disease
14 hsa-mir-19a dbDEMC
15 hsa-mir-17 HMDD, dbDEMC, miR2Disease
16 hsa-mir-211 dbDEMC
17 hsa-mir-20a HMDD, dbDEMC, miR2Disease
18 hsa-mir-125b dbDEMC
19 hsa-mir-18a HMDD, dbDEMC, miR2Disease
20 hsa-mir-10a dbDEMC, miR2Disease
21 hsa-mir-221 HMDD, dbDEMC, miR2Disease
22 hsa-mir-19b dbDEMC
23 hsa-mir-92a HMDD, dbDEMC
24 hsa-mir-222 HMDD, dbDEMC, miR2Disease
25 hsa-mir-181b HMDD, dbDEMC, miR2Disease
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prostate neoplasm-related miRNAs was not found. Of the pre-
dicted top 50 lung neoplasm-related miRNAs, all were found in
the above three databases. However, Aghanoori et al.92 found
that hsa-mir-302d was down-regulated in lung cancer tissue.
-related candidate miRNAs (using a prostate neoplasm simulation)

Rank miRNA name Evidence

26 hsa-mir-146a HMDD, dbDEMC, miR2Disease
27 hsa-mir-137 dbDEMC
28 hsa-let-7a HMDD, miR2Disease
29 hsa-mir-205 dbDEMC
30 hsa-mir-141 dbDEMC
31 hsa-mir-302a dbDEMC
32 hsa-mir-181a dbDEMC, miR2Disease
33 hsa-mir-200b HMDD, dbDEMC
34 hsa-mir-30a dbDEMC
35 hsa-mir-143 HMDD, dbDEMC, miR2Disease
36 hsa-let-7e dbDEMC
37 hsa-let-7b HMDD, dbDEMC, miR2Disease
38 hsa-mir-223 HMDD, dbDEMC, miR2Disease
39 hsa-let-7d HMDD, dbDEMC, miR2Disease
40 hsa-let-7c HMDD, dbDEMC, miR2Disease
41 hsa-let-7f dbDEMC, miR2Disease
42 hsa-let-7i dbDEMC
43 hsa-let-7g dbDEMC, miR2Disease
44 hsa-mir-9 dbDEMC
45 hsa-mir-302c dbDEMC
46 hsa-mir-15b HMDD, dbDEMC
47 hsa-mir-145 HMDD, dbDEMC
48 hsa-mir-92b dbDEMC
49 hsa-mir-302d Unconrmed
50 hsa-mir-127 dbDEMC
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Table 5 The prediction and confirmation of the top 50 isolated disease-related candidate miRNAs (using a lung neoplasm simulation)

Rank miRNA name Evidence Rank miRNA name Evidence

1 hsa-mir-21 HMDD, dbDEMC, miR2Disease 26 hsa-mir-18a HMDD, dbDEMC
2 hsa-mir-373 dbDEMC 27 hsa-mir-137 HMDD, dbDEMC
3 hsa-mir-29c HMDD, dbDEMC, miR2Disease 28 hsa-mir-146a HMDD, dbDEMC, miR2Disease
4 hsa-mir-302b dbDEMC 29 hsa-mir-19b HMDD, dbDEMC, miR2Disease
5 hsa-mir-451 dbDEMC, miR2Disease 30 hsa-mir-92a HMDD, dbDEMC
6 hsa-mir-34a HMDD, dbDEMC 31 hsa-let-7a HMDD, dbDEMC, miR2Disease
7 hsa-mir-184 dbDEMC 32 hsa-mir-141 dbDEMC, miR2Disease
8 hsa-mir-29a HMDD, dbDEMC 33 hsa-mir-181a HMDD, dbDEMC
9 hsa-mir-16 dbDEMC, miR2Disease 34 hsa-mir-30a HMDD, dbDEMC, miR2Disease
10 hsa-mir-372 dbDEMC 35 hsa-mir-200b HMDD, dbDEMC
11 hsa-mir-155 HMDD, dbDEMC, miR2Disease 36 hsa-mir-223 HMDD, dbDEMC
12 hsa-mir-148a HMDD, dbDEMC, miR2Disease 37 hsa-let-7e HMDD, dbDEMC, miR2Disease
13 hsa-mir-211 dbDEMC 38 hsa-let-7b HMDD, dbDEMC, miR2Disease
14 hsa-mir-148b dbDEMC 39 hsa-let-7d HMDD, dbDEMC, miR2Disease
15 hsa-mir-152 dbDEMC 40 hsa-let-7c HMDD, dbDEMC, miR2Disease
16 hsa-mir-15a dbDEMC 41 hsa-let-7i HMDD, dbDEMC
17 hsa-mir-125b HMDD, dbDEMC, miR2Disease 42 hsa-let-7f HMDD, dbDEMC, miR2Disease
18 hsa-mir-17 HMDD, dbDEMC, miR2Disease 43 hsa-let-7g HMDD, dbDEMC, miR2Disease
19 hsa-mir-19a HMDD, dbDEMC, miR2Disease 44 hsa-mir-143 HMDD, dbDEMC, miR2Disease
20 hsa-mir-221 HMDD, dbDEMC, miR2Disease 45 hsa-mir-9 HMDD, dbDEMC
21 hsa-mir-10a dbDEMC 46 hsa-mir-302c dbDEMC
22 hsa-mir-20a HMDD, dbDEMC, miR2Disease 47 hsa-mir-302a dbDEMC
23 hsa-mir-222 HMDD, dbDEMC 48 hsa-mir-92b HMDD, dbDEMC
24 hsa-mir-205 HMDD, dbDEMC, miR2Disease 49 hsa-mir-302d dbDEMC
25 hsa-mir-181b HMDD, dbDEMC 50 hsa-mir-145 HMDD, dbDEMC, miR2Disease
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Therefore, supporting evidence for the prediction capabilities of
LSGSP for potential disease–miRNA associations and isolated
disease–miRNA associations was found from the databases and
was validated by the latest literature studies, which means that
LSGSP has excellent predictive performance.
Discussion and conclusions

MiRNAs play a crucial role in the occurrence and development
of diseases, therefore studying disease-related miRNAs can help
people to understand pathogenesis and explore the rules
related to diseases. In recent years, many calculation methods
have emerged to extract useful information from massive
biomolecular datasets.93–95 Our proposed LSGSP is one such
calculationmethods for predicting miRNA–disease associations
with some good attributes (such as being easy to implement,
being able to predict isolated diseases and new miRNAs, and
not requiring negative samples of miRNA–disease associations).
Through implementing LOOCV on a benchmark dataset,
prediction dataset and compare dataset, AUC values were ob-
tained of 0.9221, 0.9745 and 0.9194, respectively, which proved
that the predictive performance of LSGSP was signicantly
better than other existing methods.

In a case study, LSGSP, when used in selected prostate
neoplasm and lung neoplasm cases, achieved 96% and 100%
accuracy in potential disease-related miRNA prediction, and
98% and 100% accuracy for isolated disease prediction,
respectively, further demonstrating the excellent predictive
performance of LSGSP; it also provided supporting evidence for
the top 50 predicted disease–miRNA associations in the
This journal is © The Royal Society of Chemistry 2019
updated HMDD, mir2Disease and dbDEMC databases. Sup-
porting evidence for the other miRNA–disease associations not
veried in the above three databases was found in the latest
literature studies; this demonstrated that LSGSP shows excel-
lent predictive performance for potential associations between
miRNAs and diseases. This is helpful for understanding path-
ogenic mechanisms at the level of miRNAs and nding disease-
related miRNAs.

The excellent predictive performance of LSGSP is mainly
attributed to the following factors. (1) The good construction of
the relationship networks: we reconstructed the disease simi-
larity network and the miRNA similarity network using known
miRNA–disease association information, disease semantic
similarity, miRNA family information and miRNA functional
similarity. (2) The full utilization of network topology charac-
teristics; we used Laplacian scores of the graphs to obtain the
global similarities of the miRNA network and the disease
network. (3) The accurate construction of weighted networks;
we integrated the global similarities of diseases, global simi-
larities of miRNAs and the experimentally validated miRNA–
disease Boolean network to construct the miRNA–disease
weighted network with a more accurately portrayed miRNA–
disease relationship. (4) The use of a calculable projection of
network space; we used vector projection to represent the
miRNA–disease association degree.

Although LSGSP has achieved creditable predictive results,
there are still some capabilities that need to be improved in the
future to make the model more efficient and general: (1) the
time for selecting the optimal parameters needs to be short-
ened; and (2) the accuracy of the representation of miRNA–
RSC Adv., 2019, 9, 29747–29759 | 29757
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miRNA similarities needs to be improved further through using
biological information data, such as lncRNA–miRNA interac-
tions and miRNA expression proles.
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