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Recent advances in computational biology suggest that any perturbation to the transcriptional

programme of the cell can be summarised by a proper ‘signature’: a set of genes combined with a pattern

of expression. Therefore, it should be possible to generate proxies of clinicopathological phenotypes and

drug effects through signatures acquired via DNA microarray technology.

Gene expression signatures have recently been assembled and compared through genome-wide

metrics, unveiling unexpected drug–disease and drug–drug ‘connections’ by matching corresponding

signatures. Consequently, novel applications for existing drugs have been predicted and

experimentally validated.

Here, we describe related methods, case studies and resources while discussing challenges and benefits

of exploiting existing repositories of microarray data that could serve as a search space for systematic

drug repositioning.
Introduction
During past decades the main strategy of drug development has

been high-throughput screening of different molecules to identify

lead compounds showing activity against single therapeutic tar-

gets and pathways. However, the ratio of successfully identified

drugs to screened molecules has decreased dramatically over the

years [1]. Furthermore, targeting individual elements of patho-

genic pathways is not always a successful approach for tackling the

complexities of the disease state; even when a target pathway is

identified, a suitable drug might not be found. For example, in

Alzheimer’s disease the ‘amyloid hypothesis’ has driven the search

for drugs that stop aggregation of pathogenic beta-amyloid, which

generates potentially toxic oligomers and plaques, but so far these

efforts have not led to a successful disease-modifying treatment

[2]. In addition, the cost of bringing an effective drug to the market

is large and growing with a significant portion of investment
Corresponding author:. Saez-Rodriguez, J. (saezrodriguez@ebi.ac.uk)
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needed in the research and development phase [3]. Many promis-

ing molecules never come into clinical use because they show

unfavourable pharmacokinetic properties or cause adverse reac-

tions in humans. As a consequence there is a pressing need to

identify successful treatments for many diseases in innovative

ways that could overcome these drawbacks.

Drug repositioning [4] is a potential alternative to new drug

discovery that promises to address some of these issues by identi-

fying new therapeutic applications for existing drugs. One of the

advantages of reconsidering established drugs is that they have

already been approved and, hence, they can potentially be re-

marketed in a faster and more cost-efficient way – by skipping

Phase I clinical trials [5]. Moreover, pharma company pipelines

already include many drug candidates that have passed Phase I

trials but were not successful in Phase II or III (i.e. being safe but

not sufficiently effective in treating the condition they were

originally designed for). This implies that the search basin for

repositionable drugs is vast and much larger than the set of

approved drugs [6].
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Most cases of successfully repositioned drugs can be linked to

serendipity, such as the classic example of sildenafil which is

used to treat erectile dysfunction but was originally developed as

a cardiovascular drug [7]. However, systematic approaches have

recently been proposed. Most of these are based on the principle

that shared properties between compounds could hint at similar

efficacy or commonality in their mode of action (MoA). Success-

ful strategies based on this assumption have been devised and

published in different areas of computational drug discovery:

from chemoinformatics [8] and structural bioinformatics [9] to

text mining and meta-data analyses [10] and, recently, genome-

wide association studies [11]. Many of these strategies benefit

from recent advances in data integration and systems biology

[12] and among them a new trend has emerged over the past few

years that is based solely on the analysis of gene expression data

[13].

The traditional ‘central dogma’ of molecular biology is the

principle of genes encoding mRNA that is translated into proteins.

This defines a biological information flow that, moving through

levels of increasing complexity and emerging properties, links the

underlying genetic make-up of the cell to its clinicopathological

state [13]. In such a context, transcriptional profiling enables the

capture of a multidimensional view of this complexity at an

intermediate level, reflecting genomic and environmental effects.

So far in computational drug discovery, drug response and

disease phenotypes have been correlated with underlying patho-

logical processes through ‘back-tracking’ approaches that can infer

primary causes of transcriptional changes but require the integra-

tion of heterogeneous data sources and a priori known signalling

and regulatory models [14–16]. Transcriptional profiles have also

been used as a single data layer to dissect drug MoA through

reverse-engineering techniques [17]. By contrast, recent studies

suggest that purely data-driven approaches making use of gene

expression data alone are well suited to identifying new drug

repositioning opportunities. The leading idea is that comparing

the expression profile of a cell before and after exposure can

quantitatively assess the changes brought about by active com-

pounds on the transcriptional programme. The corresponding

signature of differential gene expression (SDE) can be considered

as the summary of the compound’s effect. Furthermore, a drug-

induced SDE can then be compared with a disease-associated SDE

similarly obtained through differential expression analysis of dis-

eased versus healthy conditions. If they are sufficiently negatively

correlated (i.e. the genes upregulated in the disease SDE are down-

regulated in the drug SDE and vice versa) then it is reasonable to

hypothesise that the effect of the drug on transcription is opposite

to the effect of the disease (Fig. 1a). As a consequence, the drug

might be able to revert the disease SDE and hence the disease

phenotype itself [18–20]. Alternatively, from a shared SDE it can be

hypothesised that two drugs could share a therapeutic application,

regardless of the similarity in their chemical structure and that

they impinge on different intracellular targets or pathways [21–24]

(Fig. 1b).

Despite the relative simplicity of these ideas, recent applications

have shown that they could serve as the basis for identifying drug

repositioning opportunities in different therapeutic areas to treat

heterogeneous diseases from cancer [25,26] to Alzheimer’s disease

[24] and Crohn’s disease [27].
In the following sections we examine how gene transcription

profiles have been analysed in single case studies and we will

describe several publicly available resources; finally we discuss

challenges and future directions.

Matching gene expression signatures to ‘connect’
phenotypes
Pioneering studies have shown that collections of gene sets (i.e.

groups of genes sharing a common biological function, chromo-

somal location or regulation) can be used to interpret and extract

biological insights from genome-wide expression profiles, by using

parametric [28] or non-parametric statistical methods [29].

A genetic signature is defined by associating a gene set with a

specific pattern of expression [30]. Gene expression profiling has

been widely used as phenotype proxies [31], to build phenotype

taxonomies [30,32], for systematic functional discovery [33] and

for classification and/or cataloguing purposes [30,34]. Most impor-

tantly, gene expression signatures have been effective in recover-

ing ‘connections’ between genes, drugs and diseases involving (or

involved in) the same biological process, by combining a large

collection of gene expression data following drug treatment with a

pattern-matching method [35]. A seminal example of this is given

by the Connectivity Map (cMap) [18,35], which is the first large

public database of genome-wide gene expression profiles from five

different human cancer cell lines treated with more than 1000

bioactive small molecules.

The aim of the cMap project was to generate a ‘map’ that can be

searched for ‘connections’ between gene expression profiles asso-

ciated with disease states and those following treatment with a

large set of existing drugs. To query this map, the authors devised a

pattern-matching tool based on Gene Set Enrichment Analysis

(GSEA) [29] through which these connections can be inferred and

statistically assessed.

The effectiveness of this method for in silico drug discovery and

drug repositioning has been demonstrated already by its very first

applications [36,37], and it highlights the potential of gene tran-

scription profiling to serve as the common language to link

chemistry, biology and the clinic, by inferring genome-wide simi-

larities or differences [35]. Numerous studies have been published

using the cMap dataset and the cMap tool, with different aims (a

comprehensive list is provided on the cMap website). This under-

scores the power of gene expression profiles and gene signatures in

characterising biological states and acting as a surrogate pheno-

type, despite the difficulty in interpreting the meaning of pre-

dicted associations, let alone the precise part played by individual

genes in these signatures [31]. Subsequent achievements have

been to characterise the whole landscape of human gene expres-

sion [38], to establish large repositories of transcriptional data

[39,40] and to make publically available a large amount of gene

expression data that could be mined to compose drug and disease

signatures (Fig. 2). Moreover, the robustness of these signatures

has been shown across tissue types and experiments [41] and,

during the past two years, the use of transcriptional data for drug

repositioning has emerged as a useful and effective strategy

[13,42], bringing about a new dawn for the vast quantities of

DNA microarray data already in the public domain.

Although numerous approaches for in silico drug repositioning

based on gene expression data have been published [19,20,22,24,
www.drugdiscoverytoday.com 351
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FIGURE 1

Signature reversion (a) and guilt-by-association (b) approaches in gene-expression-based drug repositioning. In (a) the aim is to identify a drug where the effect

on transcription is opposite to a disease signature. In (b) drugs eliciting similar gene expression signatures are sought and hypothesised to share a common mode
of action. Many publicly available repositories can be queried to generate drug and disease signatures that can be compared to each other and integrated with

newly generated experimental data (c).
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25,27,36,37,43,44], all of them are methodologically similar and

make use of the cMap SDEs as a reference database of drug responses

in combination with signature-matching strategies. The majority of

these methods can be subdivided into two main classes (features of

which are summarised in Fig. 1). Methods in the first class aim to

identify novel ‘drug–disease’ connection, whereas those in the

second class aim to infer ‘drug–drug’ connections. In both cases

gene expression profiles are used to summarise drug responses and

disease states; and comparison between the two are based on the

following simple but powerful assumptions:

(i) If an SDE summarising the response to a given approved drug

is sufficiently negatively correlated to the SDE characterising

a disease state, then that drug might be able to ‘revert’ the

disease signature, hence the drug might be able to treat the

disease phenotype. If already approved for other uses, the

drug could be repositioned to treat that disease (Fig. 1a).
352 www.drugdiscoverytoday.com
(ii) If two drugs elicit similar SDEs, even if acting on different

intracellular targets, they could share a common MoA. In this

case, the first drug could be repositioned to treat conditions

for which the second drug has already been approved, or vice

versa (Fig. 1b).

In the following section we will review case studies for methods

in both classes.

Reverting phenotype signatures to revert phenotypes
In this section we review methods based on the assumption that a

drug that can revert a disease SDE might revert the disease phe-

notype itself. Building on this idea, several successful studies

(methodologically similar to each other) identified new drugs

for hepatocellular carcinoma [26], and were able to show the

efficacy of vorinostat (currently used to treat cutaneous T-cell

lymphoma) in treating gastric cancer [43] and also to predict
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FIGURE 2

Rate of growth of ArrayExpress data in terms of experiments (i.e. user

submission). This trend is set to increase further in the future, as new high-

throughput sequencing-based transcriptomic applications result in the

generation of huge amounts of data.
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several candidate therapeutics for cancer in a systematic manner

[20,25].

Owing to their robust experimental validation and the meth-

odological similarity with other cited works, here we concentrate

on two representative case studies. The first is presented in a

publication by Dudley et al. [27]. As a first step, the authors

assembled an SDE for inflammatory bowel disease (IBD), which

is a chronic inflammatory gastrointestinal disorder for which only

few safe and effective drugs exist, from public gene expression data

[40]. Then they mined the cMap dataset to identify drugs that had

SDEs that opposed those of IBD. They then developed an algo-

rithm to generate a ‘therapeutic score’ for each of the drugs in the

cMap, applying a significance threshold value to determine when a

drug SDE was opposite to the disease SDE. Among the top-ranked

therapeutic predictions, the authors found not only the corticos-

teroid prednisolone (for which the efficacy in treating IBD has

already been established and therefore defined as a positive con-

trol) but also, interestingly, a second candidate topiramate, an

anticonvulsant drug approved for epilepsy, never linked before to

IBD, which had a predicted therapeutic score higher than that of

prednisolone. The authors used a trinitrobenzenesulfonic (TNBS)

acid induced rodent model of IBD to validate their prediction in

vivo. They showed that topiramate treatment improved damage in

colon tissue which was one of the most severe symptoms of the

induced phenotype. They therefore suggested that, given its safety

profile, topiramate could indeed be repositioned to treat IBD in

humans.

In a similar study, Kunkel et al. [45] generated SDEs of skeletal

muscle atrophy, a condition currently lacking pharmacological

therapy, by chronic fasting in human patients and mouse models.

They used the resulting two SDEs to search the cMap database and

both their queries returned ursolic acid as the only compound with

an SDE opposite to that of the disease state. The authors went on to
verify experimentally that ursolic acid reduced muscle atrophy

and stimulated muscle hypertrophy in mice. They identified the

MoA to be enhancement of skeletal muscle insulin/insulin-like

growth factor-1 (IGF-1) signalling and inhibition of atrophy-asso-

ciated skeletal muscle mRNA expression. Moreover, they observed

additional effects on the characteristics of muscle following treat-

ment with ursolic acid, including reductions in adiposity, fasting

blood glucose, plasma cholesterol and certain triglycerides. These

findings suggest a potential use of ursolic acid in muscle atrophy

and other metabolic myopathies. With respect to the study by

Dudley et al. [27], the methodological difference is that here the

authors used a partial SDE composed only of genes with significant

differential expression in skeletal muscle atrophy, rather than

using a genome-wide SDE. Moreover, the authors used the cMap

query tool for matching these partial SDEs to compounds rather

than designing their own therapeutic score.

In the remainder of this section we describe how the signature

reversion strategy has been used successfully to predict synergistic

drug combinations when matching drug SDEs with SDEs charac-

terising biological states other than diseases, thus highlighting the

generality of such a method.

Motivated by the aim of reducing drug resistance of a cancer in a

pharmacological way, Wei et al. successfully identified rapamycin

as a modulator of glucocorticoid resistance in acute lymphoblastic

leukaemia [46]. As in the previous cases, the first step was to

identify an SDE representing a biological state to be ‘reverted’

by a drug. However, rather than using an SDE derived from a

generic disease state, the authors derived a gene expression sig-

nature that differentiated acute lymphoblastic leukaemia samples

sensitive to glucocorticoids from glucocorticoid-resistant samples,

hence generating a drug resistance SDE rather than the SDE of a

disease. Furthermore, the authors searched the cMap dataset for

drugs with an SDE matching the signature they computed in an

opposite way, identifying several potential active compounds. The

top ranked drug in this list was rapamycin. Further analysis found

that rapamycin elicits a sensitising action to glucocorticoids by

acting on the antiapoptotic factor MCL1 (induced myeloid leu-

kaemia cell differentiation protein).

In a similar study, Hassane et al. identified drugs that enhanced

the antileukaemic effect of partenolide, a drug effective at redu-

cing the survival and leukemogenic activity of primary human

acute myeloid leukaemia stem cells [47]. However, partenolide

induces cellular protective responses that reduce its cytotoxicity.

As the starting point the authors selected a previously published

SDE of response to partenolide. With this signature they queried

the cMap database and they identified compounds acting along

the phosphatidylinositol-3-kinase and mammalian target of rapa-

mycin (mTOR) pathways among those eliciting an SDE similar to

that of partenolide. Finally, they verified that treating acute mye-

loid leukaemia cells with a combination of partenolide and phos-

phatidylinositol-3-kinase/mTOR inhibitors was more effective

than treating with partenolide alone at decreasing the viability

of cells and tumour burden in vitro and in murine xenotransplan-

tation models.

Taken together, these studies clearly show the potential of

‘signature reversion’ in identifying new uses for existing drugs

as well as to predict novel chemosensitising effect and synergistic

drug combinations.
www.drugdiscoverytoday.com 353
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Mining similarity of transcriptional responses to drugs to identify
a shared MoA
In contrast to the examples in the previous section, here we review

approaches based on the assumption that if two drugs elicit similar

transcriptional responses then they could share a MoA and hence

could be applied to the same pathological condition.

Inferring drug target binding by comparing the molecular simi-

larity of sets of candidate drug compounds has been a traditional

approach in drug discovery. This is ligand-based drug design and

has been most often applied when structural information regard-

ing the target proteins and their binding sites are absent. Candi-

date drug compounds known to inhibit the same target protein

can be compared using their chemophoric (interaction) patterns.

However, only when the 3D geometries of their interaction pat-

terns match can a pharmacophore (the complementary set of

binding interactions) be inferred representing the possible shared

binding site of the target protein. Comparisons of interaction

geometries can be seen in the literature reporting QSAR and

comparative molecular field analysis (CoMFA) studies of two or

more drug compounds that share a common target or equivalent

binding sites in homologous proteins [48]. Conversely, a compar-

ison of binding sites known to be targeted by one set of inhibitors

and drugs can be used to infer equivalent binding sites in new

targets. Consequentially, the target of a new drug can, in principle,

be deduced by looking at the targets of the drugs most similar to it.

This ‘guilt-by-association’ principle has been successfully applied

to identify new targets for existing drugs [8], by defining the

corresponding set of ligands for a large number of known targets

and then computing chemical similarities between drugs and ligand

sets. In addition to structural similarity, the same principle has been

applied to exploit other kinds of drug similarity in MoA discovery

and repositioning in structural bioinformatics [9] where proteins

with similar binding sites are targeted by the same drug; text mining

[10], where two drugs sharing a semantic concept are assumed to

share a therapeutic application; recently, ‘modulatory profiling’

[23], measuring changes in efficacy of lethal compounds when used

in combination with a second cell-death-modulating agent (here

drugs with similar modulatory profiles could have the same MoA);

finally, as mentioned above, gene expression data, where two drugs

elicit a similar SDE and could have a common MoA even if they act

on different intracellular targets [22].

Based on the premise of shared genome-wide molecular activity,

Iorio et al. [22] systematically compared all the cMap drugs in a pair-

wise fashion, rather than searching for drugs eliciting an SDE similar

or opposite to an input signature. By doing this they identified a

large number of drug–drug ‘associations’ based on the extent of

similarity between the corresponding SDEs. By making use of a

novel similarity score, they constructed a network representation in

which each node is a drug and each edge (connection) indicates a

significant similarity between the SDEs of the connected nodes.

They divided the drug network into groups of densely intercon-

nected nodes termed ‘communities’, containing drugs eliciting

similar SDEs. Communities were strikingly populated by drugs with

similar known MoAs or sharing a therapeutic application.

The authors demonstrated the power of their method to identify

the MoA of novel drugs by analysing their neighbouring commu-

nities once they were integrated in the network. In a similar way,

they showed how the drug network could be used to infer new
354 www.drugdiscoverytoday.com
applications for already existing drugs by searching subnetworks

surrounding a drug with a desired MoA for other compounds never

linked before to that MoA. By doing this, they were able to predict

and experimentally verify that fasudil, a safe Rho-kinase inhibitor

approved in Japan to reverse blood vessel obstructions after

ischemic stroke, can enhance cellular autophagy [21], a metabolic

process implicated in several neurodegenerative disorders.

A related method was proposed by Hu and Agarwal [24], who

inferred a drug–disease network in which two nodes were con-

nected by an edge if the corresponding SDEs were significantly

similar (in the case of drug–drug connections) or significantly

negatively correlated (in the case of drug–disease connections).

To achieve this, the authors integrated the SDE of the cMap drugs

with a large number of disease SDEs assembled by mining the Gene

Expression Omnibus (GEO) repository [40]. Connections repre-

senting anticorrelations were predictive of new indications for

existing drugs, such as the potential use of some antimalarial

drugs for Crohn’s disease, and the possible repositioning of several

existing drugs as therapeutic options for Huntington’s disease.

This approach can be seen as a precursor hybrid method, mixing

together the two types of approaches of disease signature reversion

and guilt-by-association. Moreover, the authors hypothesise that

drug side effects could be predicted by the analysis of similarity

between drug and disease SDEs.

In conclusion, the results presented show how large collections

of gene expression data following drug treatment could be

exploited through a guilt-by-association approach with the aim

of identifying drug repositioning opportunities.

Resources for computational expression-based drug
repositioning
Several resources support computational drug repositioning based

on transcriptional data and the functional characterisation of gene

sets and signatures. Some freely available tools and database are

listed in Table 1.

ArrayExpress [39], GEO [40] and the cMap [18,35] are large public

repositories of gene expression data from where disease and drug-

response signatures can be assembled. DAVID [49], MsigDB [29] and

GeneSigDB [50] are useful tools for functionally characterising large

gene lists by using pre-defined functional terms, or pre-defined gene

signatures representing different biological entities and processes

from public repositories. These signatures can also be used to

characterise with regard to function large sets of differentially

expressed genes from microarray studies through non-parametric

statistical methods that can also provide complementary informa-

tion, such as the GSEA tool [29] or Expression Analysis System

Explorer (EASE) and regulatory motif analysis [51,52].

The cMap query tool has two extensions: sscMap [53,54] and the

MoA by network analysis (MANTRA) tool [22]. sscMAP is a free-to-

download java implementation of the cMap algorithm bundled

with the reference dataset, enabling the integration of user-defined

data. MANTRA makes use of a post-processed version of the cMap

dataset, where compounds are catalogued into a drug similarity

network. In this network two drugs are connected if they elicit a

similar transcriptional response in human cell lines. With MANTRA

users can integrate a drug under investigation into the network and

deduct its MoA by analysing the surrounding subnetwork. More-

over, it is possible to identify drug repositioning opportunities by
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TABLE 1

Publicly available resources to derive, compare and functionally characterise gene expression signatures

Resource Short description Minable for partial
and genome-wide
signatures of drug
responses and
disease states

Tool for signature
matching and
classification of
microarray data

Functional
characterisation
of gene sets/
signatures

Oriented to
drug-discovery
and repositioning

Website

ArrayExpress Public repositories of gene expression data U http://www.ebi.ac.uk/arrayexpress/

Gene Expression
Omnibus – GEO

http://www.ncbi.nlm.nih.gov/geo/

Database for
Annotation,
Visualization
and Integrated
Discovery – DAVID

Functional annotation tools to associate

biological meaning to list of genes through

analysis of over-represented terms

U http://david.abcc.ncifcrf.gov/

Gene Expression
Atlas

Subset of ArrayExpress archive, servicing

queries for condition-specific gene expression

patterns

U U http://www.ebi.ac.uk/gxa/

Molecular Signature
Database – MsigDB

Collections of annotated gene signatures

from different sources

U U http://www.broadinstitute.org/

gsea/msigdb

Gene Signature
Database –
GeneSigDB

http://compbio.dfci.harvard.edu/

genesigdb/

Gene Set Enrichment
Analysis – GSEA

Tool able to determine if an a priori defined

gene signature shows statistically significant,

concordant differences between two

biological states

U U http://www.broadinstitute.org/gsea

ProfileChaser Tools to search the GEO repository for

experiments whose differential expression

looks similar or opposite to a gene expression

signature or a query experiment

U U http://profilechaser.stanford.edu/

MicroArray Rank
Query – MarQ

http://marq.dacya.ucm.es/

Connectivity
Map – cMap

Large collection of gene expression data

following drug treatment that can be queried

with an integrated pattern-matching tool,

based on GSEA, to find drugs eliciting a

response similar or opposite to a given gene

signature

U U U http://www.broadinstitute.org/cmap/

Statistically
significant
connections’
map – sscMap

Java implementation of the cMap tool

bundled with the corresponding dataset and

making it extendable with adding custom

collections of reference profiles

U U http://purl.oclc.org/NET/sscMap

Mode of Action
by NeTwoRk
Analysis –
MANTRA

Tool for the analysis of the mode of action of

novel drugs and the identification of drug

repositioning opportunities, based on

network theory and GSEA and making use of

a post-processed version of the cMap

database

U U U http://mantra.tigem.it

Drug versus Disease – DvD Computational pipeline for comparing

disease and drug-response gene expression

signatures from publicly available resources

U U U www.ebi.ac.uk/saezrodriguez/dvd
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searching the neighbourhood of a ‘seed’ compound with a desired

MoA for ‘safe’ compounds never linked before to that MoA.

Several tools are freely available for mining gene expression data

repositories based on similarity with an input signature in a similar

manner to cMap. ProfileChaser [55] searches microarray repositories

based on genome-wide patterns of differential expression, and

MARQ [56] mines GEO for experiments that generate a differential

expression profile that is similar or anti-correlated to an input gene

expression signature. Finally, DvD is a recently developed tool

providing a pipeline for the comparison of drug and disease gene

expression profiles from public microarray repositories.

Challenges of signature-matching methods
A potential major problem affecting the methods described here is

the challenge of integrating independent microarray studies.

Microarrays do not measure gene expression in absolute units.

As a consequence, an improper handling of multiple gene expres-

sion profiles obtained in different experimental settings would

capture similarities in these settings rather than in the represented

biological states (a phenomenon known as the ‘batch effect’ [57]).

By contrast, cells in different pathological conditions or with

different genomic backgrounds respond very differently to the

same drug treatment. Consequently, classic microarray analysis

approaches might not produce optimal results, because they tend

to discriminate gene expression profiles on the basis of the experi-

mental settings in which they have been produced rather than on

the basis of the stimuli they are responding to (for example a drug

treatment).

In most of the methods we describe in this review, these

problems are partially addressed by making use of non-parametric

statistics [29], genome-wide ranked lists of genes [18] and ‘con-

sensual responses’ to drugs [22] rather than classic similarity

metrics applied to individual profiles of expression values or

fold-change-derived significance scores. However, a potential

drawback of these techniques is that they might dilute cell-specific

‘gene expression signals’ by pooling together the transcriptional

response to the same drug but from different experimental settings

(i.e. different cell lines, dosages or observation times). These

problems have been tackled by designing ad hoc similarity scores

[58] and genome-wide metrics [44,59,60].

RNA-seq technology might overcome many of these limitations,

because it can detect amounts of RNA over a wider dynamic range.

In the long run, RNA-seq could replace microarrays for SDE analysis;

meanwhile use of microarray data remains attractive, being not only

a simpler and more cost-effective technology but also one with a vast

collection of already publicly available data.

Concluding remarks
We have reviewed approaches using microarray data to assist in the

elucidation of compound MoA with the specific goal of identifying
356 www.drugdiscoverytoday.com
new potential applications for existing drugs. A significant number

of published results show that microarray technology provides a

unique opportunity to identify repositionable drugs by exploiting

the vast amount of existing publicly available data where the

potential has not yet been fully capitalised.

The methods we described do not consider mechanistic aspects,

but simply use transcriptional signatures as readouts from the

‘black-box’ of cellular mechanisms. Therefore, they cannot pro-

vide any information about cell signalling pathways where a

deregulation can result in an observed expression signature.

It could be argued that as long as the drug works the mechanism

is a secondary consideration. But at the same time, it is reasonable

to expect that additional insight into a MoA for a given drug can

be obtained by integrating expression data with knowledge of

(and ideally data from) the systems in which the drugs operate,

known regulatory relationships between genes and signalling

pathway maps.

The challenge for the future will be to take current analyses to a

higher level, integrating signatures and mechanistic insights

inferred by other recently developed approaches. This will require

repositories of comprehensive gene expression data for disease

states and compound effects, and integration with prior knowl-

edge of cellular networks on which drugs operate, and further

development of computational methods to translate this data into

effective medicines.

So far, recent results encouragingly illustrate that computational

approaches using public gene expression microarray data can be

successfully employed to infer new potential drug therapies. We

argue that this can (and probably will) be further exploited in the

near future.
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