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Freezing behavior is commonly used as a measure of associative fear memory. It
can be measured by a trained observer, but this task is time-consuming and subject
to variation. Commercially available software packages can also be used to quantify
freezing; however, they can be expensive and usually require various parameters to be
adjusted by the researcher, leading to additional work and variability in results. With this in
mind, we developed Phobos, a freely available, self-calibrating software that measures
freezing in a set of videos using a brief manual quantification performed by the user
to automatically adjust parameters. To optimize the software, we used four different
video sets with different features in order to determine the most relevant parameters, the
amount of videos needed for calibration and the minimum criteria to consider it reliable.
The results of four different users were compared in order to test intra- and interobserver
variability in manual and automated freezing scores. Our results suggest that Phobos
can be an inexpensive, simple and reliable tool for measurement of fear-related behavior,
with intra- and interuser variability similar to that obtained with manual scoring.
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INTRODUCTION

The pairing of a conditioned stimulus (CS, e.g., context) with an aversive unconditioned stimulus
(US, e.g., electric shock) produces an association between stimuli that leads to fear conditioning,
a phenomenon that is widely used to study memory in laboratory animals (Fendt and Fanselow,
1999). Fear conditioning in rodents is typically measured by freezing behavior in response to the
CS, a response defined as the suppression of all movements, except respiratory and cardiac ones.

Freezing is easily quantified through visual examination by researchers with minimal
training, either by direct observation or by analysis of video recordings. Although the
method is considered reliable, issues such as subjectivity, interobserver variability and
labor-intensiveness have led to the development of various automated methods to quantify
freezing behavior, either based on physical setups (e.g., photobeam detectors, pressure
sensors; Valentinuzzi et al., 1998; Nielsen and Crnic, 2002) or video analysis (Shoji et al.,
2014). In a systematic review of the rodent fear conditioning literature in 2013 (Carneiro
et al., 2018), 56.6% of studies used an automated system to assess freezing behavior
(Table 1), mostly through the use of video-based systems. Of these automated tools,
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TABLE 1 | Quantification of freezing assessment methods in the rodent fear
conditioning literature.

Method of freezing assessment (n = 122)

Automated 69 (56.6%)
Software (n = 25)

VideoFreeze 11 (15.9%)
AnyMaze 4 (5.8%)
Other 10 (14.5%)

Recording system (n = 35)
FreezeFrame 22 (31.9%)
FreezeScan 7 (10.1%)
Other 6 (8.7%)

Unspecified automated method 9 (13.1%)
Manual 42 (34.4%)
Not specified 11 (9.0%)

We analyzed data from a previous systematic review (Carneiro et al., 2018) and obtained
the overall percentage of automated freezing assessment among articles using the
task published in 2013. The software subheading includes software that operate on
standard video files, while recording systems are methods requiring both software and
an apparatus or hardware to operate.

79.7% were commercial systems, and only 2.9% were
personalized or freely-available tools.

Nevertheless, automated scoring methods have their
disadvantages. Studies have shown that some systems have
detection problems (e.g., poor signal-to-noise ratio) that render
them incapable of making precise measurements (Richmond
et al., 1998; Anagnostaras et al., 2000). In addition, most
systems request parameter inputs from the researcher in order
to calibrate the program. In EthoVision 3.1, for instance, one
must choose the immobility threshold, image filters, frame
rate and detection method (Pham et al., 2009). This large
number of parameters means that a reasonable amount of time
and adjustment is required to set up the system in a specific
laboratory. Finally, most systems have a high financial cost for
acquisition and maintenance, putting them out of reach of many
research groups, especially in developing countries.

Another issue is that some currently available systems have
not been well validated in the literature, or have shown limited
correlation with human measurements. One study, for example,
showed that even with a good correlation between a photobeam-
based system and human observer, automated measurements
were almost always higher than those obtained by manual
scoring (Valentinuzzi et al., 1998). Moreover, some studies
describing automated systems do not compare them to other
methods (Richmond et al., 1998), while others use a single set
of videos to analyze performance, with no mention of how
different recording conditions can affect freezing measurements
(Anagnostaras et al., 2010; Shoji et al., 2014).

In the current study, we present Phobos, a freely available
software developed in Matlab that is capable of automatically
setting the optimal parameters for analyzing a given set of
videos, based on a single 2-min manual measurement by the
user. We show that the procedure is sufficient to achieve good
performance for video sets recorded under most conditions,
and that intra- and interobserver variability using the software
is similar to that obtained manually. The software is made
freely accessible both as Matlab code and as a standalone

Windows application under a BSD-3 license, and can be an
inexpensive, useful and time-saving tool for laboratories studying
fear conditioning.

METHODS

Software Description
Code for the software was written in MATLAB 2017
(MathWorks) and is provided as supplementary material
along with the user manual. Code can either be run onMATLAB
or as a standalone program, both available under a BSD-3 license
at https://github.com/Felippe-espinelli/Phobos). For contact
regarding the software, an e-mail address has been setup at
phobos.freezing@gmail.com.

The video analysis pipeline performed by the software is
described in Figure 1. The program analyzes video files in
.avi format by converting frames to binary images with black
and white pixels using Otsu’s method (Otsu, 1979). Suggested
minimum requirements for videos are a native resolution of
384 × 288 pixels and a frame rate of 5 frames/s, as the software
has not been tested below those levels. The above mentioned
resolution is for the whole video; however, as the crop image
step reduces the amount of pixels used for analysis, a larger
crop area is recommended when close to the minimum. Each
pair of consecutive frames is compared, and the number of
non-overlapping pixels between both frames is calculated. When
this number is below a given threshold, the animal is considered
to be freezing.

For calibration, a reference video is chosen to be scored
manually by the user using the software interface. The user is
asked to press a button each time the animal freezes to start
quantification of freezing time, and to press it again to stop
it. For each video, an output file is created containing the
timestamp for every frame in which the observer judged the
rodent to be freezing. A warning message appears if freezing
scores for manual quantification represent less than 10% or
more than 90% of the total video time, as both situations can
compromise calibration.

The data is analyzed in blocks of 20 s, and freezing time is
calculated for each of these bins. The same video is then analyzed
automatically by the software using various combinations of
two parameters (freezing threshold and minimum freezing
time), and the results for each 20-s block are systematically
compared with the experimenter’s manual freezing score for
the corresponding epoch. Methods for determining parameters,
calibration duration and validation criteria will be detailed in the
software validation section.

The 10 parameter combinations leading to the highest
correlation between manual and automatic scoring for 20-s
epoch freezing times (measured in Pearson’s r) are initially
chosen, and a linear fit for each one is generated. Among these,
the software then selects the five combinations of parameters
with the slopes closest to 1, and after that, the one with the
intercept closest to 0, in order to avoid choosing a combination
of parameters with good correlation and poor linear fit for
absolute freezing values. For each reference video, a MAT file
containing the best parameters is created and can be used as
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FIGURE 1 | Pipeline for automated video analysis. Initially, the user manually quantifies a video to be used as the basis for calibration (top row). After this, the
system calibrates two parameters (freezing threshold and minimum freezing time) to achieve the best possible correlation in the calibration video and uses these for
automated video analysis. In this step, two adjacent frames of a video are converted into black and white images and compared to each other. The difference
between both—i.e., the total amount of non-overlapping pixels, shown in white, is used as a measure of movement that will be counted as freezing behavior when it
is (a) beneath the freezing threshold and (b) above the minimum freezing time. The next pair of consecutive frames is then compared, in order to produce a freezing
estimate for the whole video or for specific epochs within it. After quantification of the last video, the user sets the time bins in which freezing values will be displayed
and exports results to an .xls file.

a calibration reference for use in other videos recorded under
similar conditions.

Validation
Video Sets
Videos for testing the software were obtained from three different
laboratories recording rodent fear conditioning experiments
using different systems. These videos had been recorded for
distinct studies and had been previously reviewed and approved
by the animal ethics committees of their respective institutions.
Table 2 shows video features considered relevant for freezing
detection, such as frame rate, contrast between animal and
environment, presence of mirror artifacts (i.e., reflections
caused by out of focus recording and reflective surfaces); and
recording angle used during the experiments. All videos had
a duration of 120 s and were converted to .avi as a standard
input format.

Freezing behavior was scored by four different human
observers in each video using the software. Experimenters used
the same software interface used for calibration, in which they
were asked to press a button to record the start of freezing
behavior, and to press it again to signal its cessation. For each
observer, a MAT file with the beginning and end of each freezing

epoch was created to be accessed by the software during the
parameter adjusting and validation phases.

Parameter Selection
To validate the software, we first tested which parameters
improved the correlation with a human observer when adjusted
by automatic calibration. The tested parameters were: (a) the
freezing threshold, defined as the quantity of non-overlapping
pixels between adjacent frames below which the animal was
considered to be freezing; (b) the use of separate thresholds
to begin and end the recording of freezing epochs; and (c)
the minimum freezing time for an epoch, defined as the
minimum amount of frames in which the score needed to remain
below threshold to be counted. Thresholds was varied between
100 and 6,000 pixels with steps of 100, while minimum freezing
time varied between 0 and 2 s with steps of 0.25. For these
validation steps, we used all videos from each set to calibrate
the parameters.

For parameter selection, we correlated the total freezing time
recorded by the software under each parameter combination
with the experimenter’s manual freezing score for each 2-min
video using Pearson’s r. Correlation between automated and
manual scores was performed with optimization of each
parameter (e.g., choosing the parameter yielding the best
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TABLE 2 | Video set features.

Set Animals n Frame rate Recording angle Contrast Mirror artifact

1 Swiss mice 13 30 Horizontal Good No
2 Swiss mice 15 30 Horizontal Medium Yes
3 Lister Hooded rats 14 25 Vertical Medium No
4 Wistar rats 12 24 Diagonal Poor No

The four video sets used to evaluate the software are classified by animal species and strain, frame rate (in frames/s), contrast between the animals and the environment, presence of
a mirror artifact (i.e., duplication and/or blurring of the image due to a reflective surface between the animal and the camera) and recording angle used during the experiments.

correlation) and without it (e.g., using a default value—namely,
500 pixels for freezing thresholds and 0 s for minimum freezing
time) in order to assess their importance (Figures 2–4). To
compare correlation coefficients obtained in the presence or
absence of each parameter, we used Fisher’s transformations
to transform r-values into z scores, followed by a z-test
(Diedenhofen and Musch, 2015). Linear regression was used
to determine slope and intercept values between manual and
automatic scores. For each video set, we also compared slope and
intercept between the linear regressions obtained in the presence
or absence of each parameter using ANCOVA (intercept
comparisons were only performed when there was no significant
difference between slopes).

Calibration Requirements
We then studied the amount of videos needed to provide
reliable calibration and defined criteria to establish whether a
video could be reliably used to calibrate the system. For this,
we examined the correlation between manual and automatic
scoring using all possible combinations of 1, 2 or 3 videos of a
set for calibration, yielding a total of 2, 4 or 6 min of video time
to be analyzed in this step, respectively. Thus, calibration was
performed based on either 6, 12 or 18 20-s blocks for correlation
with manual scoring, in order to analyze whether this led to an
improvement (Figure 5). A one-way ANOVA with Tukey’s post
hoc test was used to compare the r-values obtained with each
approach (Figure 5).

FIGURE 2 | Effects of varying freezing threshold on software performance. Correlations of automated freezing measurements (y axis) using a fixed (red) or variable
(blue) threshold with those measured by a human observer (manual freezing, x axis) for the four video sets. Each point represents the total freezing time measured in
a 2-min video. Each subpanel shows the values for Pearson’s coefficient (r), slope (β) and corresponding p-value for each correlation. Comparisons between
correlations, slopes and intercepts are as follows: (A) r-value, p = 0.03; slope, p = 0.002; (B) r-value, p = 0.86; slope, p = 0.56; intercept, p < 0.0001; (C) r-value,
p = 1; slope, p = 1; intercept, p = 1; (D) r-value, p = 0.09; slope, p = 0.25; intercept, p < 0.0001.
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FIGURE 3 | Effects of using a single or dual threshold on software performance. Correlations of automated freezing measurements using a single variable threshold
(red) or two variable thresholds (blue; y axis) with those measured by a human observer (manual freezing, x axis) for the four video sets. Each point represents the
total freezing time measured in a 2-min video. Each figure shows the values for Pearson’s coefficient (r), slope (β) and corresponding p-value for each correlation.
Comparisons between correlations, slopes and intercepts are as follows: (A) r-value, p = 1; slope, p = 1; intercept, p = 1; (B) r-value, p = 0.82; slope, p = 0.87;
intercept, p = 0.02; (C) r-value, p = 0.92; slope, p = 0.41; intercept, p < 0.0001; (D) r-value, p = 0.39; slope, p = 0.003.

To analyze whether a specific video could be used as a
reliable template for calibration, we tested the effect of using
different minimum thresholds for r and slope values at the
calibration step—i.e., on a single 2-min video—on performance
of the software on the rest of the video set. For this, we build
receiver operating characteristic (ROC) curves to predict whether
calibration using a specific video would yield an r-value of at
least 0.6 between automated and manual scoring in the whole
video set, using either the r-value or the slope (β) of the
calibration video as a predictor. Values for r and slope leading
to optimal sensitivity and sensitivity were selected for further
analysis. We then investigated the sensitivity and specificity of
these parameters to predict correlation values other than 0.6 in
the whole set (Figure 6).

Interuser Variation
Finally, we studied the impact of the software on interuser
variability. For this purpose, we used calibrations performed
by four different users, using the first video to reach
minimum criteria for all experimenters in each set, thus
obtaining four different parameter files for the same video.
A correlation matrix was then built to compare manual
scores from the four observers and automatic scores using
each of the four calibrations among themselves (Figure 7).

To analyze the impact of different sources of variability,
we used one-way ANOVA with Tukey’s post hoc test to
compare r-values for correlations between: (a) manual scores
by different users; (b) automated scores based on calibrations
by different users; (c) manual and automated scores using
the user’s own calibration; and (d) manual and automated
scores using another user’s calibration. We also investigated
whether the video used for calibration influenced interuser
variability by performing linear regressions between the
automatic scores of two observers using the same video or
randomly chosen videos passing minimum criteria (Figure 8).
We used Fisher’s transformation followed by a z-test to compare
the correlation coefficients obtained in each group. Linear
regression was used to determine slope and intercept values
for the three groups, followed by an ANCOVA for comparison
of slopes.

Statistical Analysis
Significance was set at α = 0.05, with data presented as
mean ± SEM. IBM SPSS 21 (ROC curve), Matlab 2017 (Fisher
Z transformation and Z-test) and Graphpad Prism 7 (linear
regression, one-way ANOVA, Tukey’s post hoc, correlation
matrix and ANCOVA) were used for the analysis.
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FIGURE 4 | Effect of a minimum freezing time on software performance. Correlation of automated freezing measurements using a fixed minimum (red) or variable
minimum freezing duration (blue; y axis) with those measured by a human observer (manual freezing, x axis) for the four video sets. Each point represents the total
freezing time measured in a 2-min video. Each figure shows the values for Pearson’s coefficient (r), slope (β) and corresponding p-value for each correlation.
Comparisons between correlations, slopes and intercepts are as follows: (A) r-value, p = 0.91; slope, p = 0.81; intercept, p = 0.43; (B) r-value, p = 0.81; slope,
p = 0.76; intercept, p = 0.0009; (C) r-value, p = 0.35; slope, p = 0.08; intercept, p < 0.0001; (D) r-value, p = 0.78; slope, p = 0.87; intercept, p = 0.28.

RESULTS

Effect of Different Parameters on
Correlations Between Automatic and
Manual Freezing Scores
Variable vs. Fixed Threshold
To test whether the use of a variable threshold results in
better automated freezing scores than a fixed threshold, we
correlated manual freezing scores for the four video sets with
those obtained using: (a) a fixed threshold of 500 pixels
varying between frames for freezing detection; or (b) a variable
threshold ranging from 100 to 6,000 pixels with steps of
100, in which the best parameter was selected based on
correlations between manual and automatic freezing detection
(see ‘‘Methods’’ section).

We found a difference between the r-values with both
approaches in set 1 (r = 0.99 with variable threshold vs. 0.9 with
fixed threshold, p = 0.03), but not in sets 2 (p = 0.86) or 3
(p = 1); in the later, the chosen threshold was the same as
the fixed one (Figure 2). Set 4 had a large but non-significant
increase in r-value with variable threshold (0.7 vs. 0.08, p = 0.09).

There were significant differences between slopes in set 1
(1.03 vs. 0.65, p = 0.0017) and between intercepts in two
sets (6.66 vs. 57.76, set 2, p < 0.0001; 103.9 vs. 12.51, set 4,
p < 0.0001), leading to an improvement in the similarity of
absolute values with manual freezing scores in sets 1 and 2. In
set 4, in which the quality of video recording was poor, neither
approach was able to provide meaningful correlations between
both scores.

Single vs. Dual Threshold
While the use of a variable threshold improved the correlation
and linear fit of the software when compared with a fixed
threshold, other parameters could be added in order to optimize
calibration. We first tested a dual threshold, in which different
movement levels are used to start and end the counting of
freezing behavior. While there was no difference between both
approaches in their correlation with manual scores (Figure 3),
they led to significantly different slopes for set 4 (0.43 with
dual threshold vs. 0.12 with single threshold, p = 0.003) and
different intercepts for sets 2 (29.3 vs. 6.7, p = 0.019) and
3 (11.2 vs. 51.6, p < 0.0001). Nevertheless, there was no
clear improvement in accuracy (as in the case of set 2, the
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FIGURE 5 | Number of videos used for calibration and software performance. Line histograms of correlation values obtained for the four video sets after performing
calibration using different combinations of one (red), two (blue) or three (green) videos (2, 4 or 6 min of video time, respectively). (A) Set 1: n = 13 (2 min), 78 (4 min) or
286 (6 min). One-way ANOVA, p = 0.11; Tukey’s post hoc, 2 min vs. 4 min, p = 0.94; 2 min vs. 6 min, p = 0.46; 4 min vs. 6 min, p = 0.15. (B) Set 2: n = 15 (2 min),
105 (4 min) or 455 (6 min). One-way ANOVA, p = 0.44; Tukey’s post hoc, 2 min vs. 4 min, p = 0.99; 2 min vs. 6 min, p = 0.88; 4 min vs. 6 min, p = 0.44. (C) Set 3:
n = 14 (2 min), 91 (4 min) or 364 (6 min). One-way ANOVA, p = 0.011; Tukey’s post hoc, 2 min vs. 4 min, p = 0.76; 2 min vs. 6 min, p = 0.85; 4 min vs. 6 min,
p = 0.008. (D) Set 4: n = 12 (2 min), 66 (4 min) or 220 (6 min). One-way ANOVA, p = 0.77; Tukey’s post hoc, 2 min vs. 4 min, p = 0.76; 2 min vs. 6 min, p = 0.83;
4 min vs. 6 min, p = 0.94.

correspondence of absolute values was actually better with the
single threshold approach). Moreover, the use of a second
threshold led to a significant increase in processing time
(Supplementary Figure S1), which led us to opt for the single
threshold method.

Fixed vs. Variable Minimum Freezing Time
The third parameter varied was the minimum duration for a
freezing epoch to be counted, comparing the use of a variable
minimum freezing time against a fixed one. There was no
significant difference between correlations or slopes obtained
using both approaches in any of the video sets (Figure 4), but
r-values were equal or greater when minimum freezing times
were used in the four sets, with a non-significant improvement
in the slope of set 3 (0.77 with variable minimum vs. 0.48 with
fixed minimum, p = 0.08). Once more, there was a difference
in the intercepts of sets 2 (40.9 vs. 6.7, p = 0.0009) and
3 (1.8 vs. 51.6, p < 0.0001), with an improvement in the
correspondence of absolute values in set 3 and a worsening
in set 2. As varying the minimum freezing time did not

add as much processing time as the dual-threshold approach
(Supplementary Figure S1), we chose to include this parameter
in software calibration.

A Single 2-Min Video Is Sufficient for
Calibration
The next step was to define the amount of videos that had to be
manually scored to provide reliable calibration. To analyze this, a
combination of one, two or three 2-min videos (corresponding to
2, 4 or 6 min of video time) was used to calibrate the two variable
parameters (variable threshold and freezing time) on the basis
of the best fit between manual and automatic calibration. The
chosen parameters were then used to automatically score freezing
behavior in the remaining videos.

Figure 5 shows the frequency distribution of r-values for
each set after calibration with 2, 4 or 6 min of video time using
different videos or video combinations. Using more videos to
calibrate the software did not appreciably change the frequency
distribution of correlation values. An ANOVA used to compare
the r-values among the three approaches in each set detected
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FIGURE 6 | Evaluation of minimum criteria for valid videos. (A) Receiver operating characteristic (ROC) curve used for estimating accuracy, sensitivity and specificity
of different r-values (blue line) and slopes (green line) at calibration to predict a correlation with r > 0.6 for the whole video set. Optimal sensitivity and specificity
values to detect valid videos were 0.73 and 0.64 for r > 0.963 and 0.70 and 0.71 for β > 0.84. (B) Line graph depicting sensitivity (y axis, blue line) and specificity (y
axis, orange line) of the chosen validation criteria (r > 0.963 and β > 0.84) to predict different minimum values of r in the whole video set (x axis).

FIGURE 7 | Intra- and interuser variability for manual and automated scoring. Heat maps show correlation matrices between manual freezing measurements of four
experimenters (M1–M4) and automated assessment based on each user’s calibration (A1–A4) for the four video sets. (Right columns) Distribution of r-values for
manual vs. manual interobserver correlations (MxM, n = 12); automated vs. automated interuser correlations (AxA, n = 12); manual vs. automated intra-user
correlations [MxA (Intra), n = 4] and manual vs. automated interuser correlations MxA (Inter), n = 12). (A) Set 1. One-way ANOVA, p = 0.0064; (B) one-way ANOVA,
p < 0.0001; (C) one-way ANOVA, p = 0.0072; (D) one-way ANOVA, p < 0.0001. For statistical comparisons between specific groups, see Supplementary
Table S1.

significant differences only in set 3 (p = 0.011). However, Tukey’s
post hoc comparisons only showed a difference between the
4- and 6-min groups (4 min vs. 6 min, p = 0.008). We thus judged

that the use of additional videos did not lead to a meaningful
improvement in calibration and that a single manually scored
2-min video was enough for selecting parameters.
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FIGURE 8 | Interuser correlations for different measurements. Correlation between two independent experimenters’ freezing measurements using manual
quantification (red), automated quantification using the same video (blue) or different videos passing calibration criteria (green). Comparisons between correlation
coefficients are as follows: (A) MxM vs. auto (same video), p = 0.30; MxM vs. auto (different video), p = 0.44; auto (same video) vs. auto (different video), p = 0.07;
(B) MxM vs. auto (same video), p = 0.38; MxM vs. auto (different video), p = 0.78; auto (same video) vs. auto (different video), p = 0.55; (C) MxM vs. auto (same
video), p = 0.27; MxM vs. auto (different video), p = 0.27; auto (same video) vs. auto (different video), p = 1; (D) MxM vs. auto (same video), p = 0.08; MxM vs. auto
(different video), p = 0.0005; auto (same video) vs. auto (different video), p = 0.08.

Defining Automatic Criteria to Validate
Calibration
Although adding more videos did not improve calibration, the
variability within each group in Figure 5 shows that the specific
video (or video combination) used for calibration can have
a large impact on software performance. This is predictable,
as videos with very low or high freezing levels, for example,
might not provide enough data for adequate calibration. Thus,
calibration using a single video does not always provide the best
parameters to quantify a whole set. Nevertheless, it is reasonable
to assume that this is less likely to happen if correlation and
slope values are high for the calibration video; thus, validating
calibration on the basis of this criteria might help in choosing an
adequate video.

To establish minimum criteria to validate a video as a
calibration template, we asked what r or slope values obtained
in calibration could be used as thresholds to predict an
r-value of at least 0.6 in the whole video set to which the
calibration video belonged. For this, we built ROC curves to
calculate the thresholds for correlation coefficients and slope
values that provided optimal sensitivity and specificity values
to detect valid videos in the four sets. The optimal thresholds

for r-values and slope in the calibration step were 0.963 and
0.84, respectively (Figure 6A), which provided sensitivity and
specificity values of 0.78 and 0.615, respectively. These thresholds
were subsequently used as criteria to define calibration as valid
for analysis, and incorporated in the software in order to
inform users whether calibration was deemed adequate. The
sensitivity of this combination of r and slope to predict different
outcomes (e.g., different minimum r-values for the whole set
of videos to which the calibration video belongs) is shown
in Figure 6B.

Effects of Automated Scoring on Intra- and
Interuser Variability
To evaluate the impact of using automated scoring on the intra-
and interuser variability of freezing measurements, we had four
independent observers manually score the four video sets. We
then scored the same videos automatically based on calibrations
performed by each of the observers, using the first video that
provided valid calibration for all users within each video set. A
correlation matrix was then built between the four manual scores
and the automatic scores obtained with the four calibrations
(Figure 7, left columns).
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All correlations in set 1 were highly significant (p < 0.0001),
with r-values above 0.93. Interuser agreement was similar when
using manual and automatic scores (Figure 7A, right column,
MxM vs. AxA; p = 0.72, Tukey’s test). Agreement between
manual and automatic scores was also similar whether automatic
scoring was calibrated by the same user that performed manual
counting or a different one [Figure 7A, MxA (intra) vs. MxA
(inter); p = 0.98, Tukey’s test], although slightly lower than
interuser agreements within the same category (i.e., MxM,
p = 0.006; AxA, p = 0.08). This suggests that, for high-quality
videos, manual and automatic scoring provide similarly high
interuser agreement.

For sets 2 and 3, agreement was also high among observers
using either manual or automated scoring, with r-values above
0.90 (p < 0.0001 for all cases). Correlations between automatic
and manual scoring were high in set 3 (Figure 7C, left column,
r = 0.72–0.93, p < 0.0001 for all cases), but not as good in
set 2 (Figure 7B, left column, r = 0.62–0.78, p < 0.02 for
all cases). In set 4 (Figure 7D, left column), there was no
significant correlation between manual and automated scoring
in any case (p > 0.1 in all cases), with some negative r-
values in the correlation matrix. Interuser agreement after
automated calibration was also poor in some cases, showing that
automatic scoring is heavily dependent on video quality, even
after optimal calibration.

Figure 8 shows that interuser correlations between the
automated scores of two observers were better when the
same videos were used for calibration (blue lines) than when
different videos were used (green lines), even when both
videos passed calibration criteria. Nevertheless, even when
calibration was performed with different videos, correlations
were still high for all sets. Thus, no significant difference
was found between r-values, with the exception of set 4,
in which video quality was markedly lower than in the
other ones. An ANCOVA for comparing slopes revealed no
significant difference between the regression lines obtained for
manual × manual, automated × automated (same video) and
automated × automated (different videos) correlations between
these observers (Figure 8A, p = 0.19; Figure 8B, p = 0.63;
Figure 8C, p = 0.76; Figure 8D, p = 0.73).

Choosing different videos for calibration also led to
variability within a single observer’s automatic measurements
(Supplementary Figure S2), although this was minor in set
1, with r > 0.86 for correlations involving all but one of the
calibration videos that passed minimum criteria. For other sets,
the number of videos reaching minimum calibration criteria was
insufficient to adequately perform this analysis.

User Interface Testing
After the main software features were established and intra-
and interuser variability was determined, the user interface
went through two rounds of beta testing. A first round
involved four users, who ran the software on the first version
of the Matlab code and suggested features to be added to
the user interface. Stopwatches for manual quantification,
sliders to set the start and finish time for each video and
progress bars for processing steps were added at this point.

After this, a second round of testing involved two of these
users and an additional researcher who had no previous
contact with the software was used to detect bugs in the
system—including both the MATLAB code and compiled
version—using different hardware and operational systems.
Further options for the output file were also added at
this step.

DISCUSSION

We have developed a freely-available, self-calibrating software
to automatically score rodent freezing behavior during fear
conditioning protocols using .avi video files. Our system shows
good performance using a combination of movement threshold
and minimum freezing time duration as variable parameters set
by the system on the basis of manual calibration using a single
2-min video.

Existing software to assess freezing behavior use parameters
similar to those tested in our study, as well as others such
as object intensity and frame rate (Pham et al., 2009; Shoji
et al., 2014). While we did not test all parameters used in
these software packages, the inclusion of independent thresholds
for initiating and ending freezing epochs did not significantly
improve performance in our study. As our results show good
agreement between automated andmanual scoring with only two
parameters, the use of several variables in freezing measurement
systems might not be necessary and could be a complicating
factor if the user needs to set them up manually.

Several studies have described video-analyzing systems with
good performance in freezing detection (Marchand et al.,
2003; Kopec et al., 2007; Shoji et al., 2014). However, to
our knowledge, only one study analyzed how different video
conditions could influence performance (Meuth et al., 2013).
Our results show that performance of our software is heavily
dependent on video quality. Since there is no standardization of
video recording protocols between laboratories, this is an issue
that should be taken into consideration when evaluating this type
of software.

To avoid these issues, some recommendations include using
a high contrast between animal and background (e.g., white
animal in a dark background), avoiding diagonal angles to record
the experiment and using the same recording system for all
videos in an experiment. Strains of rodents with more than
one color and/or rodents markings will affect the number of
contrasting pixels during binary conversion; nevertheless, the
software was robust to detect freezing performance accurately
in these cases (e.g., set 3, using Lister Hooded rats). The
method was also able to accurately assess freezing with frame
rates as low as 5 frames/s, and with resolutions as low as
384 × 288 (although we note that video cropping can lower
the number of pixels that can actually be used by the software).
We would not advise using rates below that due to lack
of testing.

By measuring software performance against manual
observation during the calibration step, our system also works to
ensure that video quality is adequate for freezing measurement.
This is an important advantage, as even with calibration, there
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are conditions that lead to poor system performance (as shown
for Set 4 in our case), demonstrating that video quality is an
important concern for automated freezing measurement. The
use of a minimal threshold for validating calibration thus
allows the user to detect low-quality video sets that might be
inappropriate for automated assessment.

A limitation of our automated calibration approach is that
the method is not able to accurately set parameters if an animal
presents very low or high freezing percentage in the calibration
video, as this reduces the amount of freezing and non-freezing
epochs available for correlation. Nevertheless, users are warned
by the software to choose another video if this is the case. The
criteria for valid calibration also helps to detect this issue, as
videos leading to poor calibration due to inadequate freezing time
are less likely to reach validation criteria.

Another limitation of the software is that it is currently not
able to detect active forms of fear responses, such as darting
(Gruene et al., 2015). Such active responses can compete with
freezing behavior, reducing the total amount of freezing time
in spite of a robust fear memory. Nevertheless, this limitation
is shared by any method that bases the assessment of fear on
freezing quantification, including manual observation. Future
releases of the code could add the option to detect sudden
increases in movement as well, which could be useful to assess
other types of fear responses.

Automatic assessment of freezing behavior should ideally
provide results with good correlation between manual
and automatic scores, as well as low interuser variability
(Anagnostaras et al., 2000). Our software was robust in providing
reliable results when high-quality videos were used, even when
calibration was performed by observers with different training
experiences. Nevertheless, the manual component involved in
calibration leads to some variation between users, although
this was shown to be roughly equivalent to that observed with
manual scoring for videos with good quality.

Although the use of manual calibration may seem like
a step back from fully automated analysis, it serves to
streamline a process of parameter adjustment that inevitably
happens—though usually in a more cumbersome, trial-and-error
basis—for any freezing detection software. Thus, even though
the use of stringent calibration criteria may lead to the need
to quantify several videos until proper calibration is achieved,
we feel that the process ultimately saves time for researchers,
besides helping to ensure that freezing assessment is accurate.
Moreover, if recording conditions are kept similar from one
experiment to another, the end user can opt to use a previously
generated calibration file, thus skipping the manual step for
later experiments.

Finally, whereas the majority of the systems available are
expensive, our program was developed to be freely available
as an open-source code. This approach benefits laboratories
with low financial budget which cannot afford commercial
software or hardware such as photobeams (Valentinuzzi et al.,
1998) or force transducer detection systems (Fitch et al., 2002).
Moreover, even though our code still runs on proprietary
software, we have compiled a standalone application for end
users with no access to MATLAB and shared the source code

under an open-source license. We thus hope that Phobos will
remain accessible and open for further improvement by any
user, contributing to the study of learning and memory in
rodents worldwide.
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