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Reading a word involves processing its visual form, 
associating it with spoken sounds, and processing its 
overall meaning. Consequently, learning to read alters 
a variety of brain systems, including the visual, auditory, 
and language regions (Dehaene, Cohen, Morais, & 
Kolinsky, 2015). In particular, reading has a profound 
influence on the visual regions. It leads to the formation 
of the visual word-form area (VWFA) in the left occipi-
totemporal sulcus; the VWFA is selectively activated by 
words of familiar scripts and by intact words over 
scrambled controls, and activation levels in this region 
predict reading fluency (Dehaene et  al., 2015). But 
reading also causes widespread changes throughout 
the visual cortex, as shown by greater activation for 
intact words relative to scrambled controls (Dehaene 
& Cohen, 2011; Dehaene et al., 2010; Lochy et al., 2018; 
Szwed et al., 2011) as well as for familiar over unfamil-
iar scripts (Bai, Shi, Jiang, He, & Weng, 2011; Baker 
et al., 2007; Krafnick et al., 2016; Szwed, Qiao, Jobert, 
Dehaene, & Cohen, 2014).

Despite these insights, several fundamental questions 
remain regarding how reading affects letter and word 
representations. Does reading alter single-letter repre-
sentations? Does it alter word representations beyond 
the effect on single letters? These questions have been 
difficult to answer for two reasons. First, letter repre-
sentations with and without reading expertise are dif-
ficult to characterize because many Western languages 
use the same script, making it difficult to find subjects 
fluent in distinct scripts without introducing confound-
ing factors such as phonological mapping, writing sys-
tems, and literacy (Dehaene et  al., 2015). Indian 
languages offer a unique opportunity to investigate 
these issues because of their diverse alphabetic scripts 
with shared phonological mapping and writing systems 
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Abstract
Reading causes widespread changes in the brain, but its effect on visual word representations is unknown. Learning to 
read may facilitate visual processing by forming specialized detectors for longer strings or by making word responses 
more predictable from single letters—that is, by increasing compositionality. We provided evidence for the latter 
hypothesis using experiments that compared nonoverlapping groups of readers of two Indian languages (Telugu 
and Malayalam). Readers showed increased single-letter discrimination and decreased letter interactions for bigrams 
during visual search. Importantly, these interactions predicted subjects’ overall reading fluency. In a separate brain-
imaging experiment, we observed increased compositionality in readers, whereby responses to bigrams were more 
predictable from single letters. This effect was specific to the anterior lateral occipital region, where activations best 
matched behavior. Thus, learning to read facilitates visual processing by increasing the compositionality of visual word 
representations.
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(Nag, 2017). This makes it possible for researchers to 
compare subjects proficient in reading distinct scripts 
while holding constant other confounding factors.

Second, to characterize changes in word representa-
tions, it is critical to establish a quantitative model to 
relate word responses to letter responses. According to 
an influential account, reading facilitates visual process-
ing through the formation of specialized local combina-
tion detectors (Dehaene, Cohen, Sigman, & Vinckier, 
2005). These combination detectors respond to fre-
quently occurring bigrams (e.g., “TH”) and longer 
strings. Evidence in favor of this account comes from 
the increased activation of the VWFA as letter strings 
become orthographically similar to real words (Binder, 
Medler, Westbury, Liebenthal, & Buchanan, 2006; Lochy 
et al., 2018; Szwed et al., 2011; Vinckier et al., 2007). 
However, these results are based on comparing letter 
strings equated for mean letter frequency. These matched 
letter strings may contain letters of disparate frequencies 
or medium frequencies at different positions, which 
could elicit different responses simply because of letter-
frequency and position effects (Scaltritti, Dufau, & 
Grainger, 2018). Thus, local combination detectors must 
be invoked only if responses to bigrams cannot be 
explained using the constituent letters.

An alternative account is that reading might increase 
compositionality (i.e., make bigrams and longer strings 
more predictable from single letters). These two accounts 
make opposite predictions as to how the response to a 
bigram relates to the constituent letters: If reading leads 
to the formation of local combination detectors, the 
response to a bigram will be less predictable from the 
individual letters. If reading leads to increased compo-
sitionality, the response will be more predictable. We 
evaluated these predictions using a combination of 
behavioral and neuroimaging experiments.

Method

All subjects had normal or corrected-to-normal vision 
and gave written informed consent to the experimental 
protocols, which were approved by the Indian Institute 
of Science Institutional Human Ethics Committee. Sub-
jects had similar educational status: They were all 
undergraduate or graduate students at the Indian Insti-
tute of Science. All subjects were fluent in English and 
were fluent in reading either Telugu or Malayalam (but 
not both).

Fluency test

Subjects were asked to perform a brief fluency test 
along with every experiment. In this test, a passage of 
text was shown to the subject in his or her known script 

(Telugu or Malayalam). In both languages, this passage 
described how the head of an Indian village introduced 
computers to the village and employed software profes-
sionals to train residents. This passage was prepared 
by translating the same English passage into both lan-
guages. Subjects were asked to silently read the passage 
on a computer screen and press a button after they 
finished reading it. After this, a dialogue box appeared, 
and subjects were asked to summarize the passage in 
English. This summary was reviewed off-line by the 
first author to confirm that the subjects indeed compre-
hended the passage. The time taken by subjects for the 
button press was taken as a measure of reading fluency. 
All but 2 subjects from Experiment 3 participated in the 
fluency test. A minority of the subjects (n = 4) declared 
afterward that they had read the passage multiple times 
to memorize it, so their data were excluded from sub-
sequent fluency analyses.

Experiment 1 (single letters)

A total of 39 subjects (28 males; age: M = 25 years,  
SD = 4; 19 Telugu, 20 Malayalam) participated in this 
experiment. Here and in all visual search experiments, 
we chose this sample size because previous studies 
from our group have obtained highly consistent data 
using similar sample sizes (Pramod & Arun, 2016). We 
did not use any stopping criterion. The stimuli consisted 
of 36 single letters each from the Telugu and Malayalam 
languages (examples are shown in Fig. 1; see Section 
S1 in the Supplemental Material available online). The 
font Nirmala UI was used because it has uniform stroke 
width. Subjects performed a baseline motor-response 
task and an oddball visual search task.

In the baseline task, a circle appeared on the left or 
right of the screen, and subjects had to indicate the side 
on which the circle appeared by pressing a key (“Z” 
for left, “M” for right). The average response time (RT) 
across 20 trials was taken as a measure of baseline 
motor speed (depicted in Fig. 2b). In the visual search 
task, each trial began with a fixation cross for 500 ms, 
followed by a 4 × 4 search array that contained one 
oddball target and 15 identical distractors (Fig. 2a). The 
exact position of each item was jittered on each trial 
according to a uniform distribution with a range of 
±0.25° in the vertical and horizontal directions. This 
was done to prevent alignment cues from influencing 
search. The vertical dimension of all letters subtended 
2° of visual angle on the screen, and the longer dimen-
sion varied depending on the letter. A vertical red line 
divided the screen into two halves. All stimuli were 
presented using custom scripts written in MATLAB (The 
MathWorks, Natick, MA) running the Psychophysics 
Toolbox (Brainard, 1997).
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Subjects were instructed to locate the target as 
quickly and as accurately as possible and to respond 
using a key press (“Z” for left, and “M” for right). The 
trial timed out after 10 s. All stimuli were presented in 
white against a black background. In all, subjects com-
pleted two search trials corresponding to all 36C2 pairs 
of letters in each language, which amounted to 2,520 
correct trials (36C2 pairs × 2 languages × 2 repetitions). 
Incorrect or missed trials appeared randomly later in the 
task. Only correct responses were analyzed. Any response 
exceeding 5 s was removed from analysis provided such 
a response occurred in less than 15% of the subjects. This 
step improved data consistency overall. We obtained 
qualitatively similar results without this step.

Experiment 2 (bigrams)

A total of 16 subjects (10 males; age: M = 24 years,  
SD = 2; 8 Telugu, 8 Malayalam) participated in this 
experiment. The stimuli consisted of 25 bigrams each 
from Telugu and Malayalam, created using all possible 
combinations of five single letters (shown in Section 
S1). The single letters were chosen such that the full 
stimulus set contained a few frequent bigrams in each 
language. In all, subjects performed searches corre-
sponding to all possible pairs of the 25 bigrams, which 
amounted to 1,200 correct trials (25C2 searches × 2 
languages × 2 repetitions). All other details of the pro-
cedure were identical to those in Experiment 1.

Search RTs were averaged across repetitions and sub-
jects to obtain a composite measure that we then con-
verted to a dissimilarity measure (1/RT), as in our 
previous studies. This resulted in a total of 300 pairwise 
dissimilarities (25C2 = 300) between all possible pairs of 
bigrams. Using the approach reported in our previous 
study (Pramod & Arun, 2016), we modeled the pairwise 

dissimilarity between two bigrams, AB and CD, as a 
linear sum of pairwise dissimilarities between single let-
ters at various locations. Specifically,

d c( , ) ,AB CD C C X X W WAC BD AD BC AB CD= + + + + + +

where CAC and CBD represent the distances between 
letters at corresponding locations in the two bigrams, 
XAD and XBC represent the distances between letters at 
opposite locations in the two bigrams, WAB and WCD 
represent distances between letters within each of the 
two bigrams, and c is a constant term.

This part-sum model is extremely general in that it 
assumes no systematic relation between single-letter 
distances at corresponding locations in a bigram, across 
locations in a bigram, or indeed within a given bigram 
(referred to henceforth as “corresponding, across, and 
within terms”). It works because a given letter pair 
occurs repeatedly across bigram pairs (e.g., the pair AC 
is present at corresponding locations in the bigram 
pairs AB-CD, AD-CE, and EA-DC). Because there are 5 
unique single letters, there are 10 single-letter distances 
(5C2 = 10) for each term type (corresponding, across, 
within), which amounts to a total of 31 parameters (10 
of each type × 3 types + 1 constant). Because there are 
300 dissimilarity measurements and only 31 parameters, 
the model parameters can be uniquely estimated from 
the data. When the above model equation is written 
down for all 300 pairwise dissimilarities, the set of simul-
taneous equations can be written as y = Xb, where y is 
a 300 × 1 vector containing the observed dissimilarities; 
X is a 300 × 31 matrix with 0, 1, or 2 as entries (depend-
ing on the absence, presence, or repetition of a particu-
lar letter pair at corresponding locations, across 
locations, or within the two bigrams of a given pair); 
and b is a 31 × 1 vector of unknowns. We estimated the 
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Malayalam Letters
Telugu Letters
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Fig. 1.  Malayalam and Telugu scripts. The Malayalam and Telugu languages are spoken in 
geographically distinct regions in India, highlighted on the map. The scripts have distinct 
letter shapes but share many phonemes (indicated above each letter). Only 16 example let-
ters are shown here from each language; Telugu has 60 letters, and Malayalam has 53 letters. 
The full set of stimuli is shown in Section S1 in the Supplemental Material available online. 
Map courtesy of Free Vector Maps (https://freevectormaps.com/).

https://freevectormaps.com/
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model parameters using standard linear regression (the 
regress function in MATLAB).

Experiment 3 (functional MRI)

A total of 35 subjects (31 males; age: M = 25 years,  
SD = 3; 17 Telugu, 18 Malayalam) participated in func-
tional localizer runs (n = 2) and event-related runs  
(n = 8) that were randomly interleaved. An anatomical 
scan was also included for each subject at the begin-
ning. We chose this sample size because it was similar 

to that used in previous studies of reading (Baker et al., 
2007), and we did not use any stopping criterion.

In the functional localizer runs, subjects viewed 16-s 
blocks of scrambled words (in Telugu, Malayalam, and 
English), objects, and scrambled objects while perform-
ing a one-back task throughout. In each block, 14 
stimuli were randomly selected from a pool of images. 
The Telugu pool comprised 8 two-letter and 38 three-
letter words, and the Malayalam pool comprised 12 
two-letter and 38 three-letter words. The English pool 
comprised 36 four-letter words and 45 five-letter words. 
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Fig. 2.  Example search array and results from Experiment 1. An example single-letter search array using Telugu 
letters is shown in (a). Average search time (b) is shown for readers and nonreaders of Telugu and Malayalam 
letters. The baseline response time is also shown for each group of subjects. Error bars depict standard errors of 
the mean across subjects, and asterisks indicate statistically significant differences between groups (p < .00005, 
sign-rank test across pairs). Pairwise search dissimilarity is shown separately for 630 pairs of (c) Telugu letters 
and (d) Malayalam letters, plotted for readers and nonreaders. Each point represents one search pair; an example 
easy and hard search pair are shown. The dotted line is the y = x line, and the solid line is the best-fitting line to 
the data. Asterisks indicate that the correlations were significant (p < .00005).
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Telugu and Malayalam letters are typically wider than 
English letters; thus, we used longer English words so 
that the overall width of the image was roughly equal 
for all three languages. Each word was divided into 
grids—8 × 4 for Indian languages and 8 × 3 for English—
and scrambled words were creating by randomly shuf-
fling the grid. The objects pool comprised 80 human-made 
objects. Scrambled objects were created by scrambling 
the phase of the Fourier-transformed images and then 
reconstructing the phase-scrambled image using the 
inverse Fourier transform.

All images were presented against a black back-
ground. Each block consisted of a total of 16 stimuli 
presented for 0.8 s with a 0.2-s blank interval, among 
which two randomly chosen stimuli were repeated. 
Each block ended with a fixation cross presented for 4 s 
against a blank screen. Thus, each block lasted 20 s. 
The size of the object images was about 4.5° along the 
longer dimension, whereas the vertical size of the word 
stimuli was 2.5°, as in the event-related runs. There 
were six repetitions of each block across two runs, and 
each run lasted for 370 s. Stimuli were presented using 
custom MATLAB scripts written with the Psychophysics 
Toolbox.

In the event-related runs, the stimuli consisted of 10 
single letters and 24 bigrams each in Telugu and 
Malayalam, for a total of 68 stimuli. The height of the 
stimuli were equated to subtend 2.5° of visual angle, 
with longer dimensions that were scaled accordingly 
to preserve the aspect ratio. The bigrams were chosen 
so that each letter appeared at least four times; both 
high- and low-frequency bigrams were used, and the 
mean bigram dissimilarities were similar across the two 
languages (see Section S1 for all stimuli). On each trial, 
the stimulus was presented at the center of the screen 
with a black background for 300 ms, followed by a 
blank screen with a fixation cross for 3.7 s. In each run, 
all stimuli were presented once. Subjects were instructed 
to maintain fixation on the cross and perform a one-
back task (i.e., to press a button whenever an image 
appeared twice in sequence). Each run contained eight 
trials with only a fixation cross in order to jitter the 
interstimulus interval, and eight randomly chosen 
images were repeated in a given run. Each run lasted 
368 s, and there were eight runs in all, yielding eight 
repeats per stimulus. 

Data acquisition.  Subjects viewed images projected on 
a screen through a mirror placed above their eyes. Func-
tional MRI (fMRI) data were acquired using a 32-channel 
head coil on a 3T Skyra (Siemens, Mumbai, India) at the 
HealthCare Global Hospital, Bengaluru. Functional scans 
were performed using a T2*-weighted gradient-echo-
planar imaging sequence with the following parameters: 

repetition time (TR) = 2 s, echo time (TE) = 28 ms, flip 
angle = 79°, voxel size = 3 × 3 × 3 mm3, field of view = 
192 × 192 mm2, and 33 axial-oblique slices for whole-
brain coverage. Anatomical scans were performed using 
T1-weighted images with the following parameters: TR = 
2.30 s, TE = 1.99 ms, flip angle = 9°, voxel size = 1 × 1 × 
1 mm3, field of view = 256 × 256 × 176 mm3.

Data preprocessing.  The raw fMRI data were prepro-
cessed using Statistical Parametric Mapping (SPM) software 
(Version 12; Welcome Center for Human Neuroimaging; 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 
Raw images were realigned, slice-time corrected, coregis-
tered to the anatomical image, segmented, and normal-
ized to the Montreal Neurological Institute (MNI) 305 
anatomical template. Repeating the key analyses with voxel 
activations estimated from individual subjects yielded qual-
itatively similar results. Smoothing was performed only on 
the functional localizer blocks using a Gaussian kernel with 
a full-width half maximum of 5 mm. Default SPM parame-
ters were used, and voxel size after normalization was 
kept at 3 × 3 × 3 mm3. The data were further processed 
using GLMdenoise (Version 1.4; Kay, Rokem, Winawer, 
Dougherty, & Wandell, 2013). GLMdenoise improves the 
signal-to-noise ratio in the data by regressing out the 
noise estimated from task-unrelated voxels. The denoised 
time-series data were modeled using generalized linear 
modeling in SPM after removing low-frequency drift 
using a high-pass filter with a cutoff of 128 s. In the main 
experiment, the activity of each voxel was modeled using 
83 regressors (68 stimuli + 1 fixation + 6 motion regres-
sors + 8 runs). In the localizer block, each voxel was 
modeled using 15 regressors (6 stimuli + 1 fixation +  
6 motion regressors + 2 runs).

Regions of interest.  All regions of interest (ROIs) were 
defined using the data from functional localizer blocks 
together with anatomical considerations. Early visual 
areas (V1–V4) were defined as the regions that responded 
more to scrambled objects compared with fixation. The 
regions identified were further parceled into V1 to V3 
and V4 using anatomical masks from the SPM Anatomy 
Toolbox (Eickhoff et al., 2005). We grouped V1 to V3 into 
a single ROI because we observed qualitatively similar 
differences in activations for known and unknown 
scripts. Lateral occipital cortex was defined as the voxels 
that responded to objects more than scrambled objects 
but were restricted using anatomical masks (inferior tem-
poral gyrus, inferior occipital gyrus, and middle occipital 
gyrus) created from tissue probability map labels avail-
able in SPM12. The VWFA was defined as a contiguous 
region in the occipitotemporal sulcus that responded 
more to known words (Telugu or Malayalam) compared 
with scrambled words. The temporal gyrus was defined 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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as voxels in the temporal gyrus (both superior and medial 
portions, as well as Wernicke’s area) that responded more 
to known words (Telugu or Malayalam) compared with 
scrambled words. For each contrast, a voxel-level thresh-
old of p < .001 (uncorrected) or cluster-level threshold of 
p < .05 (family-wise-error corrected) was used to define 
contiguous regions. However, for 6 subjects, the VWFA 
could not be identified, and therefore a lower threshold 
of p > .05 (uncorrected; the lowest-threshold p value 
used was .2) was used until we observed a contiguous 
cluster of at least 40 voxels in left occipitotemporal sulcus. 
The lateral occipital and VWFA voxels were further 
restricted to the top 200 and top 20 significant voxels, 
respectively (according to the t value in the functional 
contrast). We obtained similar results with other choices of 
voxel selection. Finally, all results were visualized on the 
cortical surface using the MATLAB program BSPMVIEW 
(http://www.bobspunt.com/bspmview/). A summary of 
the typical locations and numbers of voxels in each ROI is 
given in Section S7 in the Supplemental Material.

Neural similarity in fMRI.  For each ROI, the dissimi-
larity between each pair of stimuli was computed as 1 – r, 
where r is the Spearman correlation coefficient between 
the activity patterns evoked across voxels by the two 
stimuli. The dissimilarities were z scored and then aver-
aged across subjects.

Voxel population model.  For each bigram, we mod-
eled the response of a population of voxels as a linear 
combination of the response of the voxels to individual 
letters. For example, if there were 100 voxels in a given 
ROI, then for each bigram, its response was modeled as 
y = Xb, where y is 100 × 1 vector of beta (activation) val-
ues across voxels for that bigram, X is a 100 × 3 matrix, 
where the first two columns correspond to the beta val-
ues for the corresponding voxels for the two constituent 
letters of the bigram, and the third column is a vector of 
1s corresponding to a constant term, and b is a 3 × 1 vec-
tor of unknown weights that corresponds to the summa-
tion weights.

To evaluate model fit, we calculated the correlation 
between the observed and predicted response for each 
voxel. This procedure prevents the model fit from being 
biased by overall activation-level differences between 
voxels. The correlation coefficients were averaged across 
all bigrams to obtain an average model correlation for 
that ROI in a given subject. The model fit was compared 
between readers and nonreaders using paired-sample  
t tests across subject-wise model correlations.

Behavioral dissimilarity for fMRI bigrams.  We esti-
mated the behavioral dissimilarities for the bigrams used in 
this experiment with a reduced part-sum model. Recall 

that the part-sum model estimates separate letter dissimi-
larities for corresponding, across, and within terms, but the 
estimated terms were all correlated with the single-letter 
dissimilarities. We therefore modified the part-sum model 
to a highly reduced model in which single-letter dissimi-
larities from Experiment 1 combined linearly as follows:

d d d d d

d d

( , )

,

AB  CD

constant

AC BD AD BC

AB CD

= × +[ ] + × +[ ] +
× +[ ] +

α β

γ

where dAC, dBD, dAD, dBC, dAB, and dCD are pairwise single-
letter dissimilarities observed in Experiment 1 and α, β, 
and γ are unknown scaling terms for letter relations at 
corresponding locations, across locations, and within 
bigrams. Thus, this model had only four free parameters 
that could be estimated again using linear regression. To 
predict the behavioral dissimilarities between the big-
rams used in the fMRI experiment, we first estimated the 
parameters of this reduced model from the bigram 
searches in Experiment 2 and then used these parame-
ters, together with the single-letter dissimilarities from 
Experiment 1, to generate the predicted dissimilarities 
for all pairs of bigrams used in Experiment 3. This was 
then compared with the neural similarity calculated 
above. We confirmed the validity of this approach by 
comparing these predicted dissimilarities with search 
dissimilarities directly estimated in an additional experi-
ment (see Section S7 of the Supplemental Material).

Results

We compared letter and word representations in distinct 
groups of readers that had similar educational levels 
and fluency in either of two Indian languages (Telugu 
and Malayalam). These languages have distinctive 
scripts with many shared phonemes and highly similar 
writing systems (Fig. 1). We selected visually distinct 
letters with identical pronunciations from both lan-
guages (see Section S1). This design not only eliminates 
confounding factors due to phonology, writing systems, 
or literacy but also isolates the effect of reading exper-
tise from intrinsic shape differences across the two 
scripts.

Experiment 1 (single letters)

We first investigated whether reading expertise modu-
lates single-letter representations. We recruited 39 read-
ers to perform an oddball visual search task involving 
Telugu letters and Malayalam letters (see Fig. S1 in the 
Supplemental Material). An example search array using 
Telugu letters is shown in Figure 2a. Subjects were 
equally accurate on searches involving known and 

http://www.bobspunt.com/bspmview/
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unknown scripts (mean accuracy: 99% for known 
scripts, 98% for unknown scripts). However, they were 
faster for searches involving letters of known scripts 
(Fig. 2b). To compare letter representations, we used 
the reciprocal of search time as a measure of dissimilar-
ity between letters (Arun, 2012). This can be interpreted 
as the underlying salience signal that accumulates dur-
ing visual search (Sunder & Arun, 2016); it combines 
linearly across object attributes (Pramod & Arun, 2014, 
2016), search types (Vighneshvel & Arun, 2013), and 
even top-down influences (Sunder & Arun, 2016).

For each language, we plotted the pairwise dissimi-
larity for readers against that of nonreaders across all 
letter pairs. This revealed a strong positive correlation 
for both Telugu letters (Fig. 2c) and Malayalam letters 
(Fig. 2d). These correlations were close to the consis-
tency of the responses within each group (correlation 
between dissimilarities in odd- and even-numbered 
subjects: r = .83, 95% CI = [.8, .85], and r = .87, 95%  
CI = [.85, .89], for readers and nonreaders of Telugu;  
r = .83, 95% CI = [.80, .85], and r = .87, 95% CI = [.85, 
.89], respectively, for readers and nonreaders of 
Malayalam; all correlations: p < .00005). Reading exper-
tise also resulted in increased dissimilarity for more 
similar letters, as shown by a negative correlation 
between baseline letter dissimilarity (as measured in 
nonreaders) and the increase in dissimilarity for readers 
over nonreaders (r = –.43, 95% CI = [–.36, –.49] for 
Telugu; r = –.49, 95% CI = [–.43, –.55] for Malayalam; 
both correlations: p < .00005). These subtle alterations 
did not affect the global arrangement of letters in per-
ceptual space (see Section S2 in the Supplemental Mate-
rial). Letters that co-occurred in a bigram showed 
greater similarity in readers (see Section S2), and their 
sounds were perceived as more similar (see Section S3 
in the Supplemental Material). In sum, reading subtly 
altered letter representations through increased dis-
crimination of similar letters.

Experiment 2 (bigrams)

Next, we set out to characterize how reading expertise 
affects the representations of longer strings. Subjects 
performed oddball visual search involving bigrams of 
either familiar or unfamiliar scripts (Fig. 3a). Readers 
were again faster to discriminate bigrams of known 
scripts over bigrams of unknown scripts (Fig. 3b). Once 
again, reading had a subtle effect on bigram representa-
tions, as evidenced by a strong correlation between 
bigram dissimilarities of readers and nonreaders (r = 
.80, 95% CI = [.76, .84] for Telugu; r = .83, 95% CI = 
[.79, .86] for Malayalam; p < .00005). These subtle altera-
tions did not result in qualitative changes in the overall 
perceptual representation (see Section S4 in the Supple-
mental Material). However, the critical question remained: 

Are these changes driven solely by the increased dis-
crimination of single letters? Or are there additional 
emergent properties that make readers better able to 
distinguish bigrams?

Can bigram dissimilarities be predicted from let-
ters?.  To address these issues, we drew on our finding 
that dissimilarities between object parts combine linearly 
in visual search (Pramod & Arun, 2016). Specifically, the 
net dissimilarity between two bigrams AB and CD is 
given as a linear sum of part relations at corresponding 
locations, part relations at opposite locations, and part 
relations within each bigram (Fig. 3c; also see the Method 
section). Given many pairwise dissimilarities between 
bigrams, this part-sum model attempts to recover the 
underlying letter–letter relations that accurately predict 
this data. The model works because a given letter pair, 
say AC, can be found at corresponding locations across 
multiple bigram pairs (e.g., AB–CD, AD–CE, BA–DC), 
allowing us to recover its contribution to the overall dis-
similarity whenever A and C are present at matched loca-
tions in two bigrams. Likewise, the pair AC is present in 
many bigram pairs at opposite locations (e.g., AB–DC, 
AD–EC) and within bigrams (e.g., AC–BD, AC–DE), 
which allows us to recover its contribution to the net dis-
similarity when it occurs at opposite locations in two big-
rams or, likewise, within bigrams. This model, based on 
1/RT or search dissimilarity, outperformed other models 
with fewer parameters, as well as models based on reac-
tion time (see Section S4).

This model yielded excellent predictions of the data. 
It yielded a significant positive correlation between the 
observed and predicted bigram dissimilarities for Telugu 
readers tested on bigrams of their script (Fig. 3d). 
Because model coefficients represent dissimilarities 
between single letters, we first asked whether they were 
consistent with each other. This was indeed the case: 
We found a significant correlation between correspond-
ing terms and across terms (r = .81, 95% CI = [.38, .95], 
p = .004) and a negative correlation between corre-
sponding terms and within terms that approached sig-
nificance (r = –.62, 95% CI = [–.89, .02], p = .06). The 
negative sign of within terms represents an effect akin 
to distractor heterogeneity in visual search (Pramod & 
Arun, 2016; Vighneshvel & Arun, 2013): When the let-
ters in a target bigram are similar to each other, the 
search for that bigram among distractors is more effi-
cient. All three types of terms contributed to the overall 
model fit (see Section S4). The corresponding terms 
were correlated with the single-letter dissimilarities 
observed in Experiment 1 (r = .83, 95% CI = [.41, .96], 
p = .003).

If reading expertise leads to the formation of special-
ized detectors for letter combinations, the part-sum 
model should be unable to predict searches involving 
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high-frequency bigrams because it encodes single-letter 
dissimilarities but not bigram frequency. Note that the 
model can account for letter-frequency effects because 
it estimates the underlying single-letter dissimilarity, 
which in turn could depend on letter frequency. We 
observed no qualitative difference between model fits 
for high-frequency bigram pairs compared with low-
frequency bigram pairs (Fig. 3d). A statistical compari-
son of the residual error between low- and high-frequency 
pairs revealed no significant difference (average model 
residual error: 0.07 for 91 low-frequency pairs, 0.08 for 
55 high-frequency pairs; p = .96, rank-sum test). We 
observed similar patterns for readers of Malayalam let-
ters (model correlation = .91, p < .0005; average residual 
error: 0.08 for 45 low-frequency pairs, 0.07 for 105 
high-frequency pairs; p = .06).

Differences between readers and nonreaders.  The 
part-sum model yielded excellent fits to the observed 
bigram dissimilarities for both readers and nonreaders 
(model correlations for readers and nonreaders: r = .89, 
95% CI = [.87, .91], and r = .90, 95% CI = [.87, .92], for 
Telugu; r = .91, 95% CI = [.89, .93], and r = .92, 95% CI = 
[.91, .94], for Malayalam; p < .00005). If model predictions 
are equally good for readers and nonreaders, then what 
makes readers faster than nonreaders? We compared the 
strength of corresponding, across, and within model 
coefficients for readers and nonreaders for Telugu big-
rams (Fig. 3e) and Malayalam bigrams (Fig. 3f). Model 
coefficients for corresponding and across locations were 
both positive, which means that dissimilar letters at these 
locations in the two bigrams led to larger net dissimilar-
ity. For both languages, the within-bigram terms were 
systematically smaller in magnitude for readers compared 
with nonreaders (Figs. 3f and 3g). We note that the part-
sum model directly estimated the underlying single-letter 
dissimilarities, so any simple change in single-letter dis-
similarity would have affected all model terms and not 
specifically the within-bigram interactions. These reduced 
within-bigram interactions for readers thus represent an 
effect that was above that expected from increased single-
letter dissimilarities.

This reduced magnitude for readers resulted in larger 
dissimilarities and, consequently, easy searches. To con-
firm that this was indeed the case, we calculated the 
correlation between the observed difference in RTs 
between readers and nonreaders and asked whether 
this could be explained by the difference in the respec-
tive part-sum model predictions for each group. This 
analysis revealed a positive and statistically significant 
correlation (r = .59, 95% CI = [.51, .66] for Telugu big-
rams and r = .55, 95% CI = [.47, .62] for Malayalam 
bigrams; p < .00005).

We also confirmed that the first letter in the bigram 
was more salient than the second, consistent with the 
first-letter advantage observed in letter-recognition 
tasks (see Section S4). If reading does indeed reduce 
letter interactions within a bigram, then it should have 
no effect on bigrams with identical letters because the 
within-bigram dissimilarity is zero by definition. 
Therefore, we predicted that the dissimilarity between 
repeated-letter bigrams (e.g., AA and BB) should not 
be different for readers and nonreaders. In contrast, 
the dissimilarity between the transposed bigrams AB 
and BA should be strongly influenced by reading 
expertise because the within-bigram terms are non-
zero whereas the across-location terms are zero. Thus, 
the part-sum model predicts that readers should be 
faster than nonreaders on transposed letter searches 
(AB-BA) but not repeated letter searches (AA-BB), 
even though both types of searches differ in two 
letters.

This was indeed the case: Readers were faster than 
nonreaders on transposed-bigram searches (Fig. 3g). 
However, they were equally fast for repeated-letter 
searches (Fig. 3g). The lack of effect for repeated-letter 
searches was not a floor effect, because there were 
many easier searches for both readers and nonreaders 
(shortest average search time for readers and nonread-
ers: 0.90 s and 0.89 s for Telugu letters; 0.79 s and 0.80 s 
for Malayalam letters). Thus, reading expertise pro-
duced increased discrimination of letter transpositions 
compared with repeated letters, and this effect was due 
to decreased letter–letter interactions within a bigram. 
We also tested subjects on visual search for trigrams in 
a separate experiment. Here, too, the part-sum model 
yielded excellent fits, with reduced within-trigram letter 
interactions for readers compared with nonreaders (see 
Section S5 in the Supplemental Material).

Can bigram interactions predict reading fluency?.  
If within-bigram letter interactions are smaller for readers 
than for nonreaders, could these interactions predict 
reading fluency? To investigate this, we estimated model 
parameters using the pairwise bigram dissimilarity from 
each subject across experiments and asked if they pre-
dicted reading fluency. To be sure that the contribution of 
each term was independent of the others, we performed 
a partial-correlation analysis. This revealed a significant 
partial correlation for within-bigram interactions and the 
constant term, but not for the others (Fig. 3h; see also 
Section S6 in the Supplemental Material). In other words, 
subjects with weaker within-bigram interactions were 
faster at reading. Likewise, subjects with faster motor 
responses (i.e., larger constant term) were also faster at 
reading. Combining these factors yielded a better model 
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fit than each factor achieved separately, suggesting that 
they exert distinct influences on reading (Fig. 3h; see also 
Section S6).

Experiment 3 (functional MRI)

Brain imaging of single letters and bigrams.  So 
far, we have shown that reading subtly altered letter rep-
resentations by making similar letters more discriminable 
and by reducing interactions between letters within a 
bigram. However, these results were based on compar-
ing visual search for pairs of bigrams; the suggestion that 
interactions decreased within a bigram was only an indi-
rect inference. In Experiment 3, we measured brain acti-
vations for single letters and bigrams and sought to relate 
bigram responses to single-letter responses.

On the basis of the existing literature, we defined a 
number of ROIs as potential loci for differences in 
visual processing between readers and nonreaders. We 
defined early visual areas (V1–V3), mid-level areas (V4), 
and high-level visual areas (the lateral occipital region). 
These are regions where previous studies have reported 
differences for readers and nonreaders (Baker et  al., 
2007; Szwed et al., 2014). We then defined the VWFA, 
which shows greater activations for words compared 
with scrambled words and objects (Dehaene et  al., 
2015). Finally, we selected a broad region spanning 
both the superior and medial temporal gyrus, which 
also showed greater activations to known compared 
with unknown scripts, and which is known to be part 
of the reading network (Friederici & Gierhan, 2013). 
We complemented these ROI-based analyses with 
whole-brain searchlight analyses to provide an unbi-
ased overview of the observed differences. All ROIs 
were defined using a combination of anatomical con-
siderations and functional localizers (see the Method 
section). A representative subject brain with these ROIs 
is shown in Figure 4a. We also performed equivalent 
searchlight analyses to complement all ROI analyses 
(see Section S7). In the main experiment, subjects 
viewed single letters and bigrams while performing a 
one-back task, which we used to obtain single-image 
activations for further analysis.

Do known and unknown scripts elicit differential 
activations?.  We first compared overall activation levels 
in each ROI between readers and nonreaders. This is an 
important question because any systematic difference 
would reveal which brain regions are influenced by read-
ing expertise. For each subject, we calculated the aver-
age activation across all voxels and across all stimuli 
within each script (known and unknown). We compared 

subject-wise activation levels between known and 
unknown scripts (Figs. 4b–4f).

For early visual areas (V1–V3), we observed opposite 
effects for known and unknown scripts for Telugu and 
Malayalam readers, suggesting that Malayalam letters 
activate early visual areas more than Telugu letters for 
both readers and nonreaders. Indeed, comparing the 
activations for the two languages across all subjects, we 
obtained a statistically significant difference (average 
activations of V1–V3: 0.61 for Telugu, 0.47 for Malay-
alam; p < .00005 using a Wilcoxon signed-rank test on 
subject-wise activations). This difference, however, was 
highly significant in Malayalam readers (p < .0005) but 
not in Telugu readers (p = .09).

The larger activation of early visual cortex for Malay-
alam might be due to the larger size of Malayalam let-
ters compared with Telugu letters (total letter area, 
measured using the number of nonzero pixels: 0.08 ± 
.02 for Telugu and 0.11 ± .02 for Malayalam; p = .0017, 
rank-sum test across single letters). To investigate 
whether responses to single letters were driven by low-
level image properties, we calculated for each subject 
the correlation between the average activation of each 
ROI and the ink area across single letters. The average 
correlation with ink area was significantly different from 
zero only in V1 to V3 but not in any other ROI (across 
subjects: mean r = .2, SEM = .04, p < .00001, one-sample 
t test for V1–V3; mean r = .06, SEM = .04, p = .16 for 
V4; mean r = –.02, SEM = .06, p = .69 for lateral occipital 
complex; mean r = .04, SEM = .05, p = .44 for VWFA; 
and mean r = –.01, SEM = .05, p = .79 for temporal 
gyrus). We conclude that responses in early visual 
areas, but not other ROIs, were driven by low-level 
properties of letter shape. This is consistent with the 
known properties of early visual cortex.

We proceeded to compare activations for known and 
unknown scripts in other visual areas. We observed 
identical trends in V4, VWFA, and temporal gyrus: 
Known scripts consistently elicited greater activations 
in readers of both languages (Figs. 4c–4e). A searchlight 
analysis confirmed these trends but additionally 
revealed that this trend was evident in a nearly continu-
ous swath of cortex along the ventral surface from V4 
to the VWFA, as well as in several regions around the 
temporal gyrus (see Section S7).

We observed an opposite pattern of activations in 
the lateral occipital region. Here, known scripts elicited 
weaker activation compared with unknown scripts for 
both languages (Fig. 4f). A searchlight analysis revealed 
that this was true on the dorsal portion of the occipi-
totemporal cortex, as well as in parietal regions (see 
Section S7). Reading expertise thus leads to widespread 
changes specifically in high-level visual areas but with 
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opposite effects in the lateral occipital region compared 
with V4 and the VWFA.

We performed two additional analyses using overall 
activation levels. First, there were differences in overall 
activation with bigram frequency for Telugu but not 
Malayalam readers, but this effect was abolished on 
factoring out letter-frequency effects (see Section S7). 
Second, we observed a positive correlation between 
mean VWFA activation levels and reading fluency across 
subjects (see Section S7), consistent with other studies 
(Dehaene et al., 2015).

Neural correlates of behavior.  Because there were 
systematic effects of reading on bigrams and single letters 
in visual search (Experiments 1 and 2), we sought to find 
the underlying neural representations in the brain. We 
therefore compared pairwise bigram dissimilarities in 
behavior with corresponding neural dissimilarities in each 
ROI. Specifically, for each ROI in a given subject, we cal-
culated the neural dissimilarity between pairs of images 
using the correlation distance between the voxel activa-
tions of the two images (1 – r) and averaged this dissimi-
larity across subjects. In this manner, we calculated average 
pairwise neural dissimilarities for all pairs of stimuli in 
each ROI (for the dissimilarity matrices, see Section S7). 
We estimated the pairwise behavioral dissimilarities for the 
bigrams used in fMRI. We then asked how well these pair-
wise dissimilarities matched behavior for known scripts 
and unknown scripts. The results revealed two interesting 
patterns. First, neural dissimilarities in a number of areas 
were significantly correlated with behavior for both known 
and unknown scripts (Fig. 4g). However, the best match 
with behavior for known scripts was in the lateral occipital 
region, whereas for unknown scripts it was in V1 to V3. A 
searchlight analysis confirmed these trends (see Section 
S7): Dissimilarities for known bigrams best matched with 
neural dissimilarities in occipitotemporal cortex centered 
around the lateral occipital region, but also with the activa-
tion of parietal and motor regions. In contrast, the dissimi-
larities for unknown bigrams best matched the neural 
dissimilarities in early visual areas. Thus, perception of 
known scripts was driven by neural activations in higher 
visual areas, whereas perception of unknown scripts was 
driven by neural activations in lower visual areas.

Does reading alter the compositionality of bigram 
representations?.  We next turned to the critical ques-
tion of whether reading alters the compositionality of 
bigram representations. If reading reduces interactions 
between letters, the responses to bigrams should be more 
predictable from single letters in readers compared with 
nonreaders. By contrast, if reading leads to the formation 
of specialized bigram detectors, the responses to bigrams 
should be less predictable from single letters in readers. 
Distinguishing between these possibilities would require 

a model that predicts bigram responses using single-
letter responses.

We devised a model to predict the response of a 
population of voxels to a given bigram using a linear 
sum of the population response to each individual letter 
in the bigram (Fig. 5a). This resulted in a separate 
population model for each bigram. This approach 
allowed the model to estimate the average composi-
tionality across a population of correlated voxels and 
overcome the inherent noise in individual voxels. To 
evaluate model fits, we compiled model predictions for 
each voxel across bigrams and compared the predic-
tions with the observed activations. This approach pre-
vents the model fits from being biased by voxels with 
large activation levels. We obtained similar results on 
fitting a separate model to each voxel. We compared 
the average model fit for each subject in a given ROI 
for known and unknown scripts. We obtained compa-
rable model fits for known and unknown scripts in most 
ROIs (Fig. 5b). The sole exception was the lateral occip-
ital region, where bigrams of known scripts were better 
predicted by single-letter responses compared with 
bigrams of unknown scripts (Fig. 5b). A searchlight 
analysis revealed that this effect was localized to the 
anterior portion of the left lateral occipital region and 
to the right fusiform gyrus (see Section S7). Since these 
regions were identified using their higher model fit for 
known scripts, any direct comparison of model perfor-
mance would constitute double dipping. To avoid this 
circularity, we performed a split-half analysis. We identi-
fied the anterior portion of the lateral occipital region 
using odd-numbered subjects and compared the model 
fits in even-numbered subjects, and vice versa. This 
revealed significantly larger model fits in the anterior 
lateral occipital region for known, compared with 
unknown, scripts for Telugu and Malayalam, separately 
as well as in both languages combined (Fig. 5c). We 
obtained similar results in the right fusiform gyrus (see 
Section S7).

The increased compositionality for bigrams in object-
selective cortex could be an incidental artifact of having 
stronger signal levels overall, which could increase the 
explainable variance and therefore model performance. 
However, this is unlikely because known scripts evoke 
weaker activity in the lateral occipital region, which 
should have led to weaker, not stronger, model predic-
tions. We conclude that reading increases the compo-
sitionality of bigram representations specifically in 
object-selective cortex.

Discussion

We investigated the effect of reading expertise on letter 
representations by comparing Telugu and Malayalam 
readers using a combination of behavior and brain 
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imaging. In behavior, subjects discriminated letters of 
their known script better than letters of unknown 
scripts. This is consistent with the increased discrimina-
tion of familiar targets observed for natural objects in 
visual search (Mruczek & Sheinberg, 2005). We found 
that the net dissimilarity between strings (bigrams and 
trigrams) can be accurately predicted using pairwise 
dissimilarities between letters in the two strings. This 
is consistent with our previous study in which we 
reported this result for objects (Pramod & Arun, 2016). 

This model was able to predict virtually all the explain-
able variation in the search data for both readers and 
nonreaders. Importantly, these changes in visual pro-
cessing directly predicted reading fluency in readers.

If reading expertise led to the formation of special-
ized bigram or trigram detectors, our models, based 
only on single-letter responses, would have shown 
worse performance for known scripts than for unknown 
scripts and for frequent than for infrequent bigrams. 
We found no such effects. Thus, bigram detectors, even 
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if present, did not contribute substantively to the 
observed effects. Importantly, we were able to precisely 
quantify the effect of reading on word representations 
by analyzing how model parameters varied between 
readers and nonreaders. Our main finding was that 
reading expertise made single letters more discrim-
inable and reduced interactions between letters in a 
string. Our model accounted for both letter similarity 
and letter interactions, thereby providing a framework 
to compare effects of letter substitution and transposi-
tion, both widely used as measures of orthographic 
processing (Dehaene et  al., 2015; Grainger, Dufau, 
Montant, Ziegler, & Fagot, 2012; Ziegler et al., 2013). 
Further, the reduced interactions may work at multiple 
scales: Conjoined words are easier to parse when they 
are frequent than when they are infrequent (e.g., 
“readingdifficulty” is easier to parse than “heliumchro-
mate”). We propose that visual search using letter 
strings can be a natural and objective way to study how 
reading alters visual representations.

Our brain-imaging experiment (Experiment 3) fur-
ther elucidated the neural basis of word representa-
tions. Our main finding is that the anterior ventral 
portion of the lateral occipital region is a likely locus 
for the effects observed in behavior. We draw this con-
clusion because (a) the neural representation of big-
rams in the lateral occipital region matched best with 
behavior for readers, and (b) bigram responses were 
better predicted from single letters for known scripts 
specifically in the lateral occipital region but not in 
other regions. The former finding is interesting because 
it suggests that reading shifts the neural basis of behav-
ior from lower to higher visual areas. The latter finding 
is interesting because it indicates that reading makes 
visual processing more efficient by making words easier 
to parse into letters. The increased compositionality 
might result from familiarity with individual letters or 
with letter combinations. These possibilities will require 
careful testing. Our findings are congruent with previ-
ous reports showing that reading-related plasticity 
occurs both at the level of single letters (Szwed et al., 
2011; Vinckier et al., 2007) and at the level of words 
(Glezer, Jiang, & Riesenhuber, 2009; Glezer, Kim, Rule, 
Jiang, & Riesenhuber, 2015; Riesenhuber & Glezer, 
2017). Importantly, our findings elucidate the nature 
of the plasticity that might occur at the word level, 
suggesting that it reduces interactions between letters, 
making word responses more compositional.

That the lateral occipital region could play a role in 
reading is consistent with evidence that alexia also 
induces general visual-processing deficits (Behrmann, 
Nelson, & Sekuler, 1998; Roberts, Lambon Ralph, & 
Woollams, 2010; Starrfelt, Habekost, & Gerlach, 2010) 
and often involves damage to regions posterior to the 
VWFA (Barton, 2011; Seghier et  al., 2012). It is also 

possible that compositionality increases in other areas, 
such as the VWFA, but the increase is undetectable 
because these areas have far fewer voxels and therefore 
weaker statistical power. A conclusive demonstration 
that the anterior ventral lateral occipital region partici-
pates in reading would require perturbing its activity 
during reading tasks.

We also found a widespread effect of reading exper-
tise across many high-level visual regions, in keeping 
with the existing literature (Dehaene et al., 2010; Szwed 
et al., 2014; Szwed, Ventura, Querido, Cohen, & Dehaene, 
2012). But unlike in previous studies, we compared 
readers of closely related Indian languages (i.e., with 
distinct orthographies and shared phonemes) who had 
similar educational levels. This enabled us to establish 
that these effects were truly due to reading expertise 
and not to letter shapes or other confounding factors. 
We found opposite trends in different visual areas: In 
V4 and along the occipitotemporal sulcus up to the 
VWFA, we found greater activation to known scripts. 
This is consistent with the effects of learning observed 
in these regions (Clarke, Pell, Ranganath, & Tyler, 2016; 
Folstein, Palmeri, Van Gulick, & Gauthier, 2015; Skeide 
et  al., 2017). In the occipitotemporal regions in and 
around the lateral occipital region, we observed greater 
activation for unknown scripts. This is consistent with 
the increased response to novel stimuli in the homolo-
gous region in the monkey, the inferior temporal cortex 
(Meyer, Walker, Cho, & Olson, 2014; Mruczek & 
Sheinberg, 2007). Whether these effects are specific to 
reading scripts or are a more general effect of familiarity 
in these regions can be resolved by comparing activa-
tions for familiar objects and scripts after accounting 
for differences in visual experience. Likewise, these 
effects could also arise from different effects of atten-
tion on these regions, although such attentional effects 
have never been proposed or reported. Distinguishing 
familiarity effects from attentional effects will require 
careful independent control of task difficulty, attention, 
and familiarity.

Our observations both confirm and extend our 
understanding of the VWFA in several ways. First, we 
consistently localized the VWFA for both Indian lan-
guages and observed no difference in its anatomical 
location across language (see Section S7). This is con-
sistent with other studies in which the VWFA was 
observed at similar locations for multiple languages 
(Bai et  al., 2011; Krafnick et  al., 2016; Szwed et  al., 
2014). Second, we found a positive correlation between 
VWFA activation levels and fluency (Dehaene et  al., 
2015). Third, neural dissimilarity in the VWFA was sig-
nificantly correlated with behavioral dissimilarity in 
readers but not in nonreaders (Fig. 4g). There have 
been surprisingly few studies on this point: Only one 
study has shown VWFA representations to be correlated 
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with subjective visual dissimilarity (Rothlein & Rapp, 
2014), but this could be due to explicit letter reading 
by subjects. Our measure of behavioral dissimilarity 
(visual search) did not require explicit reading and was 
similar for readers and nonreaders. Thus, this finding 
suggests that the VWFA receives letter-shape informa-
tion for only known scripts. Finally, we observed con-
cordant effects in the VWFA with both the lateral 
occipital and temporal gyrus regions, consistent with 
its status as an intermediate region between the visual 
and auditory processing of language (Dehaene et al., 
2015; Friederici & Gierhan, 2013).

Our central finding that reading makes word 
responses more compositional raises the intriguing 
question of how compositionality could benefit reading. 
Here, we drew on previous work on the motor system 
suggesting that viewing multiple movement targets 
enables parallel planning (Bhutani, Sengupta, Basu, 
Prabhu, & Murthy, 2017; Cisek & Kalaska, 2010; McSorley, 
Gilchrist, & McCloy, 2019; Wu et al., 2013). Similarly, 
simultaneous viewing of a string of letters in a word 
might enable the parallel programming of the associated 
sounds, thereby enabling efficient reading.
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