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Abstract: Alprazolam is effective as an anxiolytic and in the adjunct treatment of depression. In this study, 
the effects of calcium channel antagonists on the antidepressant action of alprazolam and imipramine were 
investigated. A forced swimming maze was used to study behavioral despair in albino mice. Mice were 
divided into nine groups (n = 7 per group). One group received a single dose of 1% Tween 80; two groups 
each received a single dose of the antidepressant alone (alprazolam or imipramine); two groups each 
received a single dose of the calcium channel blocker (nifedipine or verapamil); four groups each received a 
single dose of the calcium channel blocker followed by a single dose of the antidepressant (with same doses 
used for either in the previous four groups). Drug administration was performed concurrently on the nine 
groups. Our data confirmed the antidepressant action of alprazolam and imipramine. Both nifedipine and 
verapamil produced a significant antidepressant effect (delay the onset of immobility) when administered 
separately. Verapamil augmented the antidepressant effects of alprazolam and imipramine (additive 
antidepressant effect). This may be due to the possibility that verapamil might have antidepressant-like effect 
through different mechanism. Nifedipine and imipramine combined led to a delay in the onset of immobility 
greater than their single use but less than the sum of their independent administration. This may be due to the 
fact that nifedipine on its own might act as an antidepressant but blocks one imipramine mechanism that 
depends on L-type calcium channel activation. Combining nifedipine with alprazolam produced additional 
antidepressant effects, which indicates that they exert antidepressant effects through different mechanisms. 
 
Introduction 

Alprazolam is an anxiolytic agent used primarily 
for short-term relief of mild to moderate anxiety 
and nervous tension.  It is effective in the 
treatment of depression and panic attacks. It has a 
high affinity for the GABA benzodiazepine receptor 
complex [1], and it is a full agonist for the GABAA 
receptor [2]. Imipramine is a better tricyclic 
antidepressant than all other drugs in its category 
[3]. It prevents the reuptake of noradrenaline (NA) 
and 5-hydroxytryptamine (5-HT) at nerve terminals 
[4].  

Calcium antagonists have been shown to affect 
many different physiological processes, in 
particular neurotransmitter release. Nifedipine 
mainly affects the heart and smooth muscle, 
causing inhibition of calcium entry associated with 
depolarization. Nifedipine is relatively smooth 
muscle selective and acts as a vasodilator [1]. It is 
a highly specific antagonist of the L-type channel 
blocks [5]. Verapamil is relatively cardioselective 
with an antidysrhythmic action. Verapamil is 
effective in the treatment of hypertension and 
angina [1]. Verapamil enhanced the 
antidepressant action of alprazolam (6); Verapamil 
as an inhibitor of the CYP 450 3A4 (7) may affect 
the imipramine (8) and alprazolam action, that are 
considered as substrates for CYP 450 3A4 (7)  

The forced swim test (FST) [9] is used as a 
rodent model of depression. The mouse FST 
model has been widely used in screening 
antidepressants because it is simple and has been 
reported to be reliable across laboratories. The 
mouse model is more sensitive than the rat model 
because it produces fewer false positives [10]. The 
FST is specific enough to discriminate between 
antidepressants, neuroleptics and anxiolytics [11]. 

It is based on the observation that when an animal 
is forced to swim in a situation from which there is 
no escape, it will first go through a period of 
vigorous activity and then cease to move, other 
than trying to keep its head above water. 
Immobility indicates a state of despair in which the 
mouse has learned that escape is impossible. 

FST immobility is reduced by different 
treatments known to be effective in depression 
[12, 13]. There is a significant correlation between 
the potency of antidepressants in the FST and in 
clinical settings, but such a correlation has not 
been demonstrated in any other animal model of 
depression [12, 14]. In this model the circadian 
time cycle did not alter the duration of immobility 
of mice [15].  

Behavioral despair is mediated by central 
catecholamines. Drugs that increase central 
transmission of dopamine or NA decrease 
immobility, whereas agents having the opposite 
effect increase immobility. The advantage of the 
mouse FST model is that it can readily test the 
possible mechanisms of antidepressant action by 
using specific agonists/antagonists. By 
augmenting or blocking antidepressant activity 
with agonist/antagonist receptor ligands, it is 
possible to detect which receptor is involved in the 
antidepressant effect [16].  

In this study we used behavior despair models 
for mental depression to investigate the effect of 
the calcium channel blockers, nifedipine and 
verapamil, on the antidepressant action of 
alprazolam and imipramine. These two calcium 
channel blockers are used in the treatment of 
physical illnesses that may be concurrent with 
depression. Understanding the interaction 
between antidepressants and calcium channel 
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blockers could indicate whether there is a need to 
modify antidepressant doses when coadministered 
with calcium channel blockers.  

 
Materials and methods 

Albino mice (25 - 40 g) were used. Groups of 
mice were housed in separate cages. The animals 
were housed at room temperature (20–25°C) and 
a 12-h dark/light cycle. Alprazolam was supplied 
by Upjohn Co. Ltd, Egypt, Imipramine by Novartis, 
AG, Switzerland, Nifedipine by Bayer, AG, 
Germany, and Verapamil by Weimer Phara Gmbh, 
Germany. 

Because alprazolam is not freely soluble in 
saline, all the drugs were dissolved in 1% Tween 
80 in distilled water [17]; they were injected 
intraperitoneally. Imipramine was given at 10 
mg/kg and alprazolam at 5 mg/kg [18 and our 
unpublished results]. The doses of calcium 
channel blockers were chosen from previous 
studies [18-21].  

Mice were divided into nine groups (n = 7 per 
group). One group received a single dose of 
5ml/kg of 1% Tween 80; two groups each received 
a single dose of the antidepressant alone 
(alprazolam, 5mg/kg; imipramine, 10mg/kg); two 
groups each received a single dose of the calcium 
channel blocker (nifedipine, 5mg/kg; verapamil, 
10mg/kg); four groups each received a single dose 
of the calcium channel blocker followed by a single 
dose of the antidepressant (with same doses used 
for either in the previous four groups). Drug 
administration was performed concurrently on the 
nine groups. For all groups, the time of onset of 
immobility was measured 60 min after drug 
administration.  

We used a behavioral model of immobility first 
postulated by Porsolt [22] and Porsolt et al. and 
named the behavioral despair model [23]. In this 
model, mice are forced to swim in a restricted 
space from which there is no escape. Following an 
initial period of vigorous activity, the mice adopt a 
characteristic immobile posture with no further 
attempt to escape, and this reflects a state of 
despair or lowered mood. Mice were forced to 
swim for four minutes in a vertical glass cylinder 
(height=27 cm, diameter=16.5 cm) containing 
fresh tap water at 27°C and a depth of 15 cm [24]. 
Mice were forced to swim only once. 

 
Statistical analysis 

SPSS 8 software was used to determine 
whether the observed data were normally 
distributed using Kolmogrov Smirnov maximum 
deviation test for goodness of fit. If the data were 
normally distributed, one-way ANOVA was 
applied, followed by Post Hoc test to compare 

between groups. If the data were not normally 
distributed, groups were compared using Mann-
Whitney two samples (non–matched) U test. The 
difference was considered to be significant at p ≤ 
0.05. 

 
Results 
Effects of nifedipine on the onset of immobility 

Administration of imipramine, alprazolam, or 
nifedipine separately produced a significant delay 
in the onset of immobility compared to the control 
group. The combined administration of alprazolam 
and nifedipine produced a significant delay in the 
onset of immobility compared to either alprazolam 
treated mice or the control group. The effect of 
imipramine on the onset of immobility (delay) was 
potentiated by the administration of nifedipine 
(Table 1). 
Table 1: Effects of nifedipine on the onset of immobility by 
alprazolam and imipramine using the behavior despair model 
of depression. The values are expressed as mean ± S.E.M. a: 
p ≤ 0.05 compared to control group treated with Tween 80-
treated. b: p ≤ 0.05 compared to group treated with alprazolam 
+ nifedipine. c: p ≤ 0.05  compared to group treated with 
imipramine + nifedipine. 

Treatment (n = 7) Onset of 
immobility (sec) 

Tween 80 40.5 ± 0.99 

Alprazolam 

(5 mg/kg) 

59.8 ± 1.16 

a, b 

Alprazolam (5mg/kg) + 
Nifedipine (5 mg/kg) 

72.1 ± 1.18 

a 

Imipramine 

(10 mg/kg) 

77.1 ± 0.83 

a,  c 

Imipramine (10 mg/kg) + 
Nifedipine (5 mg/kg) 

83.4 ± 1.04 

a 

Nifedipine (5 mg/kg) 60.1 ± 1.48 

a, b,  c 
 

Effects of verapamil on the onset of immobility 
Administration of verapamil, alprazolam or 

imipramine produced a significant delay in the 
onset of immobility compared to the control group. 
Coadministration of verapamil augmented the 
effects of imipramine. Similarly, coadministration 
of verapamil augmented the effects of alprazolam. 
Our findings demonstrate that verapamil 
significantly delays the onset of immobility 
produced by alprazolam (Table 2).  

 
Discussion  
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It has been suggested that calcium channel 
inhibitors may have antidepressant properties, and 
that calcium may play an important role in affective 
disorders [25]. Voltage-dependent calcium channel 
antagonists have been reported to produce 
antidepressant-like effects in rodents [26-28]. 
Interruption of the Ca2+-calmodulin-NOS-guanylyl 
cyclase subcellular signaling pathway at any point 
produces antidepressant-like effects [26].  
Table 2:  Effects of verapamil on the onset of immobility 
produced by alprazolam or imipramine using the behavior 
despair model of depression. The values are expressed as 
mean ± S.E.M. a: p ≤ 0.05 compared to control group treated 
with Tween 80-treated. b: p ≤ 0.05 compared to group treated 
with alprazolam + verapamil. c: p ≤ 0.05  compared to the 
group treated with imipramine + verapamil. 

Treatment (n = 7) Onset of immobility (sec) 

Tween 80 40.5 ± 0.99 

Alprazolam 

(5 mg/kg) 

59.8 ± 1.16 

a, b  

Alprazolam (5 
mg/kg)+ Verapamil 

(10 mg/kg) 

82.8 ± 0.73 

a 

Imipramine 

(10 mg/kg) 

77.1 ± 0.83 

a,  c 

Imipramine (10 
mg/kg) +Verapamil 

(10 mg/kg) 

93.5 ± 1.13 

a 

Verapamil 

(10 mg/Kg) 

57.4 ± 0.61 

a, b, c 
 
In our study, nifedipine delayed the onset of 

immobility in the forced swimming maze. This 
antidepressant action could have been mediated 
by 5-HT1A activation [29], whereby nifedipine 
reduced 5-HT uptake [30].  This would lead to an 
increase in the cytosolic calcium activity via 5-HT2 
receptors [31]. Serotonin may activate calcium 
influx through calcium channels by activation of 5-
HT receptors, which are insensitive to nifedipine 
[32], in neuronal cells. The increase in calcium 
influx is through 5-HT3 receptors [31, 33], the 5-
HT3 receptor being a ligand-gated ion channel 
activated by the neurotransmitter serotonin. 
Receptors of this subtype have been localized to 
several regions of the brain, they appear to be 
involved in many neuronal functions [34], and to 
mediate antidepressant effects [35].  In glial cells, 
the increase in intracellular calcium is through 5-
HT2 receptors [31]. It has been suggested that the 
pharmacology of L-type Ca2+-channel blockers 
overlaps with that of 5-HT2 receptor antagonists 
[36].  

Nifedipine may produce an antidepressant 
action through GABAA activation [37], which leads 
to the release of NA that produces an 
antidepressant effect [38]. This may be GABA 
acting on second inhibitory interneurons (as in 
direct and indirect pathways of extrapyramidal 
systems). Nifedipine may also produce its 
antidepressant effect by increasing the release of 
intracellular calcium through GABAA receptors 
[37] and NA [39, 40]. The central antidepressant 
effect of nifedipine may be mediated through an 
interaction, with novel modulatory sites on GABAA 
receptors, that is not through picrotoxin, flumazenil 
or Zn+2 sites [37].   

Nifedipine may exert an antidepressant action 
by decreasing the ability of vesicles to re-uptake 
NA [41]. Nifedipine may block calcium uptake 
through potential operated (K+) channels or 
through receptor operated (5-HT) channels [42]. 

Moreover, verapamil showed an antidepressant-
like effect as it delayed the onset of immobility in 
the swimming maze. Studies have shown that 
verapamil modulates the action of antidepressant 
drugs that downregulate β adrenergic systems 
[43]. It has a similar final effect as β blockers, and 
shares this effect with antidepressant drugs [44]. 
Working on different types of calcium entry, 
verapamil blocks the prejunctional α2 receptors, 
which leads to an increase in NA release [45-48]. 
Verapamil may have direct catecholamine-
releasing effects, as it interacts with 
catecholamine storage vesicles in a way that 
reduces their ability to take up and store 
catecholamine, and thereby   increasing NA 
release from sympathetic nerves [41]. Verapamil 
has no effect on NA-induced increase in calcium 
influx, which means that there are verapamil-
sensitive and verapamil-insensitive calcium 
channels [49]. Verapamil enhances ATP response 
[50], which is released along with NA from the 
motor nerves; ATP may indeed be a co-transmitter 
[51, 52]. Allgaier et al. suggested that ATP 
induces NA release from sympathetic neurons via 
its action on a subclass of the nicotinic 
cholinoceptor, because this effect was blocked by 
nicotinic receptor antagonists [53]. NA produces 
depolarization by decreasing the membrane 
permeability to K+ ions. It also increases calcium 
influx to the cells via calcium channel-activated NA 
receptors and potential-dependent slow calcium-
channels activated by NA-induced membrane 
depolarization [54]. NA stimulates calcium chloride 
conductance, leading to opening of voltage-gated 
calcium channels [55].  

Verapamil inhibits 5-HT uptake by a mechanism 
that does not involve alteration in calcium fluxes 
(56), which leads to enhancement of 5-HT release 
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[57]; verapamil produces competitive inhibition of a 
5-HT carrier and inhibits Na+-dependent uptake of 
5-HT [58, 59], which is competitively inhibited by 
imipramine [59]. It also facilitates the release of 
large amounts of K+-induced 5-HT in the 
hippocampus synaptosomatic sites. The release is 
dose dependent and mediated by presynaptic 
receptors.  This increase in endogenous 5-HT is 
independent of the presence of external calcium 
[60]. Serotonin activates 5-HT1A receptors to 
produce an antidepressant effect [61].  It also 
activates 5-HT3 presynaptic receptors, inducing 
calcium influx [62, 63], which triggers the release 
of calcium from intracellular stores and leads to 
increased calcium in both the cytoplasm and 
nucleus [63]. Activating 5-HT3 postsynaptic 
receptors induces depolarization [62]. Thus both 
mechanisms would result in an antidepressant 
action.  

Serotonin may regulate GABA 
neurotransmission through 5-HT3 receptors [64]. It 
also increases chloride channel activity by acting 
on the 5-HT1C receptor [65, 66]. It has been 
suggested that the increased [Ca2+]i activates 
chloride channels (Cl), causing an efflux of chloride 
and subsequent depolarization of the cell 
membrane; this leads to the opening of voltage-
gated calcium channels [67,68]. Cl- currents can 
be activated separately by Ca2+ release from 
intracellular stores (in response to external 
application of caffeine or NA) and by Ca2+ influx 
through voltage-dependent Ca2+ channels [69]. 
Activation of Cl- channels by Ca2+ release 
produces a membrane depolarization that is 
required for an enhanced opening of voltage-
dependent Ca2+ channels in response to 
noradrenaline in venous smooth muscle [70]. It 
was concluded that extracellular chloride is 
essential for contraction in afferent arterioles after 
activation of voltage-dependent calcium channels 
[71]. 

Verapamil cannot modify calcium-dependent 
fractions of GABA release induced by high K+ 
depolarization [72]. Presynaptic action of Zn in the 
hippocampus increases the release of GABA in 
the synaptic cleft. This Zn effect is not affected by 
verapamil. Zinc enhances GABA release by 
potentiating AMPA/Kaiate receptors in the 
hippocampus region, followed by a decrease in 
presynaptic glutamate release. Zinc is considered 
an inhibitory neuromodulator of glutamate [73]. 
The NMDA receptor gates two inhibitory sites for 
zinc, one is voltage dependent (74) and the other 
is not (74-76). The γ-amino butyric acid released 
from striatal slices is calcium-independent. 
Calcium channels may play two roles in the 
regulation of depolarization-induced GABA 

release. First, they permit depolarization-induced 
influx of calcium, which then promotes GABA 
release. Second, they influence GABA release 
through a mechanism that does not involve 
external calcium. It has been proposed that 
calcium channels serve to permit an influx of Na+, 
which in turn promotes calcium-independent 
GABA release through an influence on the high 
affinity GABA transport system [77]. Blockage of 
choline uptake may play a role in the 
antidepressant-like effect of verapamil [78].   

Alprazolam may produce antidepressant effects 
independently of benzodiazepine receptors, 
through the GABA–ergic mechanism.  Flumazenil 
did not antagonize the antidepressant effects of 
alprazolam or imipramine, while these effects 
were blocked by picrotoxin [79]. Enhanced 5-HT 
release in the hippocampus, exhibited by the 
atypical benzodiazepine, alprazolam, but not by 
the typical benzodiazepine, diazepam, may 
underlie the antidepressant activity of alprazolam 
[80]. It has been suggested that some of the 
neuronal stabilizing effects of benzodiazepine 
receptors may be mediated by the regulation of 
Ca2+ conductance, as benzodiazepine binding 
sites regulate voltage-sensitive Ca2+ channels in 
brain membranes [81]. Benzodiazepines and 
calcium channel inhibitors cause significant 
inhibition of adenosine transport; hence, this 
potentiates adenosine action at the concentration 
required to induce effects through occupation of 
their respective, specific high-affinity sites [82]. 
Benzodiazepine (clonazepam, flunitrazepam, and 
diazepam) binding sites regulate voltage-sensitive 
Ca2+ channels in brain membranes, and it has 
been suggested that some of the neuronal 
stabilizing effects of benzodiazepine receptors 
may be mediated by the regulation of Ca2+ 
conductance [81]. Diazepam had no effect on the 
immobility time in the swimming maze, but 
antagonized the antidepressant effect of 
imipramine [83]. This means that both alprazolam 
and imipramine produce antidepressant effects 
through voltage-sensitive Ca2+ channels. 
Benzodiazepines act as Ca2+-channel antagonists 
[84]; this antagonism may not be related to their 
antidepressant action [85, 86]. 

Imipramine can inhibit presynaptic reuptake of 
the biogenic amines, serotonin, and NA to 
produce an antidepressant action [87-89]. 
Imipramine may produce this antidepressant 
action through a GABA–ergic mechanism, causing 
release of catecholamines [79]. Imipramine may 
increase calcium release from intracellular stores 
[90] by increasing NA concentrations through 
inhibiting its uptake by pre-synaptic sites [87], 
through GABAA receptor activation.  This may 
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lead to increased calcium influx through voltage-
gated calcium channels, which ultimately depend 
on the chloride transport system [91], or by 
depolarization due to an increase in the external 
potassium concentrations. It was suspected that 
this might lead to calcium influx through voltage 
activated calcium channels [92]. However, 
nifedipine does not affect calcium channel 
mediation of initial response to NA [93]. Nifedipine 
blocks L-type calcium channels activation which is 
due GABAA receptor activation-mediated 
depolarization [94, 95], which may not play a role 
in the antidepressant action.  GABAA receptor 
activation increases the release of calcium from 
the internal stores [95]. Imipramine produces an 
inhibition of the peak threshold calcium current, 
which probably decreases the maximum available 
calcium conductance [96]. It was suggested that 
imipramine acts by interfering with the influx of 
extracellular calcium, through both the receptor-
operated and voltage-gated calcium channels, but 
does not affect the release of calcium from 
intracellular storage sites [97, 98].  

In the present study we showed that verapamil 
has an antidepressant-like effect in the mouse 
swimming maze model. Treatment with verapamil 
combined with alprazolam or imipramine produces 
an additive antidepressant effect, possibly 
because verapamil has an antidepressant-like 
effect, but the mechanism is not understood yet.  

Either imipramine or nifedipine produced a delay 
in the onset of immobility of 75% and 81%, 
respectively, compared to the control. Combining 
nifedipine with imipramine led to a delay of 73% in 
the onset of immobility compared to the control; 
which is less than the additive effect. This 
observation could be explained by the fact that 
nifedipine has its own antidepressant action 
mechanism but also blocks the imipramine 
mechanism that depends on L-type calcium 
channel activation. 

This study showed that nifedipine possesses 
antidepressant properties. Combining nifedipine 
with alprazolam produced an additive 
antidepressant effect, indicating that different 
mechanisms were involved.  
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