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Abstract

Gene-based transcriptome analysis, such as differential expression analysis, can identify the key factors causing disease production,
cell differentiation and other biological processes. However, this is not enough because basic life activities are mainly driven by
the interactions between genes. Although there have been already many differential network inference methods for identifying
the differential gene interactions, currently, most studies still only use the information of nodes in the network for downstream
analyses. To investigate the insight into differential gene interactions, we should perform interaction-based transcriptome analysis
(IBTA) instead of gene-based analysis after obtaining the differential networks. In this paper, we illustrated a workflow of IBTA by
developing a Co-hub Differential Network inference (CDN) algorithm, and a novel interaction-based metric, pivot APC2. We confirmed
the superior performance of CDN through simulation experiments compared with other popular differential network inference
algorithms. Furthermore, three case studies are given using colorectal cancer, COVID-19 and triple-negative breast cancer datasets
to demonstrate the ability of our interaction-based analytical process to uncover causative mechanisms.
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Introduction
Transcriptome analysis techniques based on gene expression
are well studied, especially differential expression analysis [1–
4]. However, traditional differential expression analysis has
encountered a bottleneck. Differential expression analysis usually
focuses on testing whether the summary statistics (e.g. mean
and variance) of the distributions are equal in two groups of
samples [5]. However, this kind of significance test is not enough
to identify differences between groups with high intra-group
heterogeneity [6]. Furthermore, life activities are mainly driven
by the interactions between genes. For a pair of interacted genes,
their co-expression pattern may change drastically, while the
expression distributions of each gene in the two groups are
the same [7–9]. Therefore, it is important to investigate the
relationship or interaction between genes.

A natural model for studying interactions between genes is the
graphical model, which considers genes as nodes and interactions
between genes as edges, and together these nodes and edges form
a graph [10–12]. We therefore expect to know which interactions
vary between the two groups of samples. The graph constructed
by these differential interactions is called a differential network.
There have been many studies on differential network inference
methods. For example, the fused graphical lasso (FGL) proposed

by Danaher et al. [13] introduced a similarity penalty based on
the Gaussian graphical lasso model; Mohan et al. [14] proposed
PNJGL by adding a symmetric decomposition constraint of the
differential part based on FGL, making it more likely to infer a
differential network with a hub structure; D-trace obtained the
differential network directly as a variable in the optimization
model, which can reduce the variable dimensions [15]; NetDiff
used variational inference for the inference of Gaussian graphical
models [16]. However, all the above methods are designed for
analyzing data from a single source. With the rapid development
of sequencing technology, there is an increasing amount of multi-
source data, such as single-cell data from multiple individuals [17,
18]. Fortunately, several differential network inference algorithms
have been developed for multiple sources. For example, SIMULE
focuses more on inferring the common network shared by mul-
tiple sources [19]; pDNA is a multi-source differential network
inference method that considers a priori pathway constraint [20];
TDJGL assumes the existence of the shared common interactions
of differential networks across multiple sources [21]; JEGN sup-
poses that the networks from multiple sources have both the
same shared common network structures and similar idiosyn-
cratic network structures [22]. However, all these methods have a
common problem, that is, they do not consider the heterogeneity
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Figure 1. The workflow of IBTA. (A) The overall workflow of transcriptome analysis based on differential interactions. (B) The details about calculating
gene score w. Lk is the P-value list of source k, and L is the integrated P-value list. (C) The diagram of calculating pivot APC2. Given expression values of
two groups about gene 1 and gene 2, we calculate APC2 for each group separately and select one which has a smaller median as the pivot group. Then,
we use the PCs of the pivot group to recalculate the pseudo expression values of this interaction in both two groups.

among genes. Different genes inherently have different levels
of importance in the networks; therefore, in the models, genes
should not be equally treated [23].

Even with differential networks, currently, most studies still
only use the information of nodes in the network for downstream
analyses, e.g. selecting and analyzing the genes by the degree
of nodes. Few methods are available to perform transcriptome
analysis directly at the level of interactions. This is mainly because
at the level of genes, each gene has an expression value for each
sample, which can be used in downstream analyses and visu-
alization. However, at the level of interactions, each interaction
usually has only one signed weight (e.g. Pearson’s correlation
coefficients) for a group of samples, rather than a value for each
sample. Therefore, it becomes a challenge to design a scientifically
sound transcriptome analysis method from the perspective of the
interactions.

To address these issues, we first developed an algorithm that
combines both differential gene expression analysis and differ-
ential network inference, called the Co-hub Differential Network
inference (CDN) method. Then a metric at the level of interactions,
pivot APC2 (pAPC2), was designed to measure the contribution of
each sample to the differential interaction. Based on these tools,
we proposed an interaction-based transcriptome analysis (IBTA)
workflow. Specifically, CDN can use expression data from multiple
sources, or individuals, to infer differential networks with com-
mon hub genes, and pAPC2 can assign pseudo-expression values
of each interaction to each sample based on the contribution of
the sample to this interaction. The source code and the demo of
the workflow are accessible at https://github.com/Wu-Lab/IBTA.

Materials and methods
Workflow
Downstream analysis of differential network inference is usually
vague and difficult to be performed systematically. In this
study, we present a novel approach to conduct a systematical
interaction-based transcriptome analysis. The overall workflow
is illustrated in Figure 1. Given the gene expression matrices from
K sources (e.g. single-cell sequencing samples per individual,
bulk sequencing samples per subtype of disease or subgroup of
individuals with similar clinical phenotypes) under two different
conditions with the shared genes of interest, Xk1 = (

xk1
ij

)
nk1×d

and

Xk2 = (
xk2

ij

)
nk2×d

, k = 1, 2., . . . , K, where d is the number of genes,

and nk1 and nk2 are the number of samples from group (condition)
1 and group (condition) 2, respectively. We first compute the
gene weights based on differential expression analysis (DEA).
Combining these weights, we apply the CDN method to infer
the differential networks, �k = (

δk
ij

)
d×d

, k = 1, . . . , K, of different

sources and gain the average differential network � =
∑

k �k

K

for downstream analysis. We then calculate the pAPC2 of each
interaction of interest in � and obtain the pAPC2 matrices of two
groups: Y1 = (

y1
ij

)
n1×q

and Y2 = (
y2

ij

)
n2×q

, where n1 = ∑K
k=1 nk1, n2 =

∑K
k=1 nk2, and q is the number of the candidate interactions of

interest. Finally, we use pAPC2 matrices as the features of gene
interactions, to conduct downstream analyses such as dimension
reduction, finding interaction markers, survival analysis, enrich-
ment analysis and so on, which reveal many valuable insights
beyond the transcriptome analysis at the level of single gene.

https://github.com/Wu-Lab/IBTA
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Co-hub differential network inference method
Given Xk1, Xk2, k = 1, 2., . . . , K, CDN aims to infer the differential
networks �k, where �k

ij = 0 indicates that there is no change
from group 1 to group 2 in the source k regarding the interaction
between gene i and gene j. Under the assumption that Xk1 and
Xk2 follow the multivariate Gaussian distribution, we infer �k =
�k1 − �k2 using Gaussian graphical models, which can measure
the conditional independence between genes [12]. Specifically, the
model is as follows:

min
�k1,�k2∈Sd++

∑K

k=1

[
−L

(
�k1, �k2

)
+ λ1

(∥∥∥�k1
∥∥∥

1
+

∥∥∥�k2
∥∥∥

1

)]

+λ2

∑d

j=1
wj

∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎣

(
�11 − �12

)
j(

�21 − �22
)

j

...(
�K1 − �K2

)
j

⎤
⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣
2

,

where L
(
�k1, �k2

) = [ − nk1 log det
(
�k1

) + nk1trace
(
�k1Sk1

) − nk2

log det
(
�k2

)+nk2trace
(
�k2Sk2

)]
is the joint log-likelihood function,

and Sk1, Sk2 are the sample covariance matrices of the centered
expression matrices, Xk1, Xk2, respectively. �k1, �k2 are called pre-
cision matrices and taken as the variables of our optimization
model.

∥∥�
∥∥

1 = ∑
i,j

∣∣�ij

∣∣ is the l1-norm which is the sum of the

absolute values of the matrix elements.
∣∣v∣∣

2 =
√∑

j v2
j is the l2 vec-

tor norm, and
(
�

)
j is the jth column of matrix �. Sd++ represents

the symmetric positive definite matrix space. �kc
ij = 0 means gene

i and gene j are conditionally independent in group c of source
k, given all information of else genes. Therefore, the position of
nonzero elements in � corresponds to the edge distribution in the
network.

The first penalty, λ1
(∥∥�k1

∥∥
1 + ∥∥�k2

∥∥
1

)
, is the sparsity penalty

which encourages the networks of group 1 and group 2 to be
sparse. The second penalty is the similarity penalty, which encour-
ages the same gene to have a similar neighborhood structure
in the differential networks of multiple sources by group lasso.
λ1, λ2 are two hyperparameters in this model. The bigger λ1 is,
the sparser �k1 and �k2 are. The bigger λ2 is, the more similar
�k = �k1 − �k2, k = 1, 2., . . . , K are. wj is the DEA weight of gene
j calculated based on P-values of differential expression analysis
across K groups. In this study, we use R package ‘EMDomics’ to cal-
culate p-values, which measures the overall difference between
the distributions of a gene’s expression in two groups [24]. Specif-
ically, wj is a normalized integrated p-value score. For each gene
j, we first calculate DEA p-values for two groups in each source
and then obtain the minimum of these p-values across K sources,
denoted as p∗

j . Finally, we utilize softmax to reweight the p-values

of all genes, i.e. wj = d e
p∗
j

∑
j e

p∗
j
, which can make the mean of

{
wj

}
j=1,..,d

be d (Figure 1B). The smaller wj is, the more differential the gene
j is expressed in two groups, as a result, gene j is penalized less to
encourage it to have more interactions in differential networks.

Following PNJGL [14], we introduce the symmetric decomposi-
tion of �k1−�k2 = Vk+(

Vk
)T

. This kind of decomposition combined
with group lasso encourages the differential networks to generate
more hub genes, which interact with many other genes. It is more
fit for the realistic situation since there exist many hub genes
(such as housekeeping genes) in the real biological networks.
With stacking penalties from several sources, the second penalty
can encourage the co-hub structure in multi-source differential
networks. Now, the CDN model can be rewritten as follows:

min
�k1,�k2∈Sd++ ,Vk

∑K

k=1

[
−L

(
�k1, �k2

)
+ λ1

(∥∥∥�k1
∥∥∥

1
+

∥∥∥�k2
∥∥∥

1

)]

+λ2

∑d

j=1
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⎡
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V1
j

V2
j

...
VK

j

⎤
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s.t.�k1 − �k2 = Vk +
(
Vk

)T
, k = 1, . . . , K.

We use a variant of ADMM without fixed penalty parameter
method [25] to solve this optimization problem. The details of the
algorithms are shown in supplementary materials.

Pivot APC2
To exploit and analyze the results of differential network infer-
ence, we use APC2 [23] to measure the contribution of each
sample to each interaction. APC2 is the absolute value of the
2nd principal component calculated by applying the Principal
Component Analysis (PCA) to the expression data of two genes.
PCA identifies a set of directions (technically, a linear subspace)
that maximizes the variance of the data. It turns out that this is
identical to minimizing the projection distance in a least-squares
sense by finding a linear subspace. In our case, the linear subspace
is a straight line, i.e. the 1st principal component (PC1), because
our data is two-dimensional (gene1 against gene2). At this point,
this line represents the trend of co-expression throughout the
major cell population and the distance from one cell to this line
(APC2) represents the deviation of this cell from the trend of
major cell population. The original APC2 is defined for analyzing
a single group of samples and is not suitable for the problem in
this study. Therefore, we extend it to pivot APC2 for two groups of
samples. We first separately calculate APC2 for cells from group
1 and group 2 and then select a pivot group to determine the
final APC2 values (Figure 1C). Specifically, given a gene interac-
tion j whose two genes are j1, j2 and their expression matrices,(
X1{

j1,j2
})

n1×2

,
(
X2{

j1,j2
})

n2×2

of group 1 and group 2 centered on
(
0, 0

)
,

where nc is the cell number of group c = 1, 2. Suppose that
Xc{

j1,j2
} = Vc�cUT

c is the singular value decomposition. The APC2

value of the interaction j in cell i from group c is zc
ij = ∣∣(�cUT

c

)
i2

∣∣,
and the median APC2 value of group c is mc

j = mediani
(
zc

ij

)
. The

group c∗ = argminc

(
mc

j

)
is selected as the pivot group for the

interaction j (Figure 1C). We then calculate the final APC2 values
using the pivot eigen matrix UT

c∗ , and obtain the pivot APC2 value
of the interaction j for cell i from group c, yc

ij = ∣∣(�cUT
c∗

)
i2

∣∣. We can

use the pivot APC2 Yc = (
yc

ij

)
nc×q

as the features of interactions

to perform downstream analysis, where q is the number of the
candidate interactions. For example, we can determine whether
there is a significant difference between two groups of cells by
comparing the distributions of pAPC2 in different groups of cells.

Simulation experiments
To exam the performance of the new network inference method
CDN, we compared it with several differential network inference
methods, including single-source methods: FGL, PNJGL, D-trace
and NetDiff [13–16], and multi-source methods: SIMULE, pDNA,
TDJGL and JEGN [19–22] and also a simplified version of CDN
without DEA weights

{
wj

}
, called unweighted CDN (CDN_u). For

fair comparison, we selected the best parameters of each method
by grid search.
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Figure 2. Performance comparison of differential network inference methods. (A) The variation of AUPR along the dropout rate parameter dr ∈{
0, 0.2, 0.4, 0.6

}
for different combinations of other data parameters. (B) The variation of AUPR along the source number parameter K ∈ {

3, 4, 5, 6, 7
}
.

(C) The overall AUPR boxplot which compares different underlying network structures. Red is BA network and green is ER network. (D) The overall
relative performance of each combination of data parameters, 1 is the best, 0 is the worst.

We compared these methods by generating synthetic expres-
sion data from multi-Gaussian distribution on both Barabási–
Albert (BA) and Erdős–Rényi (ER) network models [26, 27]. Many
biological networks such as gene regulatory networks and pro-
tein–protein interaction networks have the well-known property
of scale-free (i.e. a small number of genes have most of the
interactions, while most genes have only a small number of
interactions), which is often modeled using the BA network. On
the opposite, ER network is the representative model of general
random networks, in which the edges are connected indepen-
dently (i.e. the emergence of edges does not depend on the degrees
of nodes). We set nk1 = nk2 = n ∈ {

10, 25, 50
}
, k = 1, . . . , K and

d = 50. Here, nkc, c = 1, 2 is the number of samples in group
c, source k. d is the number of genes. The difficulty of network
inference is proportion to d/n. If n � d, the real network structure
can be recovered completely in theory. Therefore, we only need
to fix d and vary n to generate datasets of different difficulty
and complexity for testing the performance of different methods.
Considering the computational time cost, we finally chose d = 50
and selected the cases with n ≤ d to simulate the challenging real-
world data as much as possible. Another three data parameters
are K, dr, rho. K ∈ {

3, 4, 5, 6, 7
}

is the number of sources; dr ∈{
0, 0.2, 0.4, 0.6

}
is the dropout rate of single-cell expressions; and

rho ∈ {
0.5, 0.7, 0.9

}
controls how many genes a hub gene has

interactions with. For example, rho = 0.5 means that a hub gene

is expected to have interactions with 50% of genes. The details of
the data generation are shown in supplementary materials.

The evaluation metric used in this part is the area under
the precision-recall curve (AUPR). Specifically, we normalized the

precision matrix as Pkc
ij =

⎧⎨
⎩

− �kc
ij√

�kc
ii �kc

jj

, i �= j

1, i = j
, k = 1, . . . , K, c = 1, 2,

which can measure the strength of partial correlations. We use
�k

true = Pk1
true −Pk2

true as label matrix, I{
�k

true �=0
} as the label, where I is

the indicator function. The score matrix �k = Pk1 − Pk2 is used to
calculate AUPR. Moreover, we calculate AUPR on positive values
and negative values separately to eliminate the effect of the sign.

Comparison results
We first conducted simulation experiments on Barabási–Albert
(BA) networks, which have a scale-free property. We fixed K = 5
and observed the variation of AUPR along the dropout rate
parameter dr ∈ {

0, 0.2, 0.4, 0.6
}

for different combinations of
other data parameters (Figure 2A). A lower n means a smaller
number of available samples; a higher dr means the poorer
sample quality; a lower rho implies lower significant differences
between the two states. All three of these situations mean that
the problem becomes more difficult. As expected, the AUPR
of all methods decreases as the dropout rate increases, the
sample size n decreases and the differential rate rho decreases.
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Figure 3. The IBTA results of the CRC dataset. (A) The UMAP visualization of 34,004 cells. (B) The cell annotation heatmap of 34,004 cells. The x-axis is
the cluster obtained using pAPC2 features, the y-axis is the cell type. The color exhibits the cell number proportion of each cell type in a cluster. If there
is only one cell type in a cluster, the proportion is 1. (C) The cell type annotation UMAP. (D) The top 5 interaction markers of each cell type. (E) The cell
number of different groups in each cell type. Red is the normal group and green is the cancer group.

All methods achieve the highest AUPR at the simplest setting
(n = 50, rho = 0.9, dr = 0) and the lowest AUPR at the most difficult
setting (n = 10, rho = 0.5, dr = 0.6). As expected, almost all the
multi-source methods (JEGN, TDJGL, CDN_u, CDN) outperform the
single-source methods (FGL, PNJGL, D-trace, NetDiff). Meanwhile,
the performance of the three methods (Dtrace, SIMULE, pDNA)
is relatively poor. D-trace and pDNA both regard the differential
network as a variable to solve directly rather than the subtraction
of the two precision networks in different groups. Therefore,
they miss the importance of the interactions in each group.
SIMULE assumes that different individuals from the same group
share a common network structure, and does not consider the
differences between individuals. CDN and CDN_u outperform
other methods in most cases, which suggests that the co-hub
assumption is reasonable. CDN significantly outperforms other
methods including CDN_u when d/n is relatively large. Because
in this case, algorithms based solely on network inference do not
have enough information to infer a reliable network. This result
also confirms the necessity and importance of combining the
information of differential expression analysis.

We then fixed dr = 0.6 and observed the variation of AUPR
along the source number parameter K ∈ {

3, 4, 5, 6, 7
}

(Figure 2B).
Almost, all the multi-source methods perform better as K
increases (pDNA, JEGN, TDJGL, CDN_u, CDN), while the single-
source methods maintain the performance as K increases. This
result indicates that multi-source methods can well utilize the
information shared among multiple sources. Naturally, if there
are more available sources for the same groups, the better
the inferred results. In all cases, CDN outperforms almost all
methods, especially when the hub structure is more significant.
In case n = 10, the AUPR increase of CDN along K is significantly
larger than other methods. This is because each source has
less valid information due to low n and high dr. Despite the
number of sources increases, the information shared among
sources is not sufficient to significantly improve the accuracy
of the results. However, by integrating the DEA weights, CDN
can amplify the information shared among sources, therefore,

increasing the performance of the algorithm. Except for CDN,
the AUPR increase of JEGN is also large in the case of n > 10,
while that of TDJGL is not significant. This is because TDJGL
assumes the differential networks share the common interactions
among sources, while JEGN does not. When K increases, although
the information of common interactions increases, the number
of common interactions decreases, which is unfavorable in the
assumptions for TDJGL.

Finally, we conduct all the experiments with the same set-
tings on Erdős–Rényi (ER) networks. Performance-wise, ER and
BA networks are very similar (Figure 2C). All the 10 methods
are non-significant (P-value> 0.05). This implies the topology of
the network does not affect the differential network inference
significantly. Figure 2D shows the overall relative performance
on both BA and ER networks under all combinations of data
parameter settings. The performance of the best method is 1, and
the worst is 0. Figure 2D again shows that almost all multi-source
methods outperform the single-source methods consistently and
CDN performs the best in seven out of nine circumstances.

Case study
Transcriptome analysis based on interactions is difficult because
of the lack of expression data from an interaction perspective. To
demonstrate how our IBTA workflow works, we conduct experi-
ments on three real datasets, colorectal cancer (CRC) dataset E-
MTAB-8410 [28] from ArrayExpress database, COVID-19 dataset
GSE145926 [29] and triple-negative breast cancer (TNBC) dataset
GSE161529 [30] from GEO database. All the datasets are processed
and available on the public websites. To improve the performance
of network inference, we further preprocessed three datasets
using the dropout imputation method ‘MAGIC’ [31]. We use the
CRC dataset to demonstrate the ability of our workflow to uncover
pathogenic mechanisms between cell types and the COVID-19
and TNBC datasets to reveal pathogenic mechanisms within cell
types, particularly those results that are virtually impossible to
obtain from the single gene perspective.
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Figure 4. The expression visualization of TNXB∼FGF7 and BMP4∼ITGB4 and corresponding genes. (A) the UMAP visualization TNXB∼FGF7 pAPC2 values.
(B) The UMAP visualization of TNXB and FGF7 expression values. (C) The joint distribution of TNXB and FGF7 expression values colored by cell types.
(D) The joint distribution of TNXB and FGF7 expression values colored by groups. (E) The UMAP visualization BMP4∼ITGB4 pAPC2 values. (F) The UMAP
visualization of BMP4 and ITGB4 expression values. (G) The joint distribution of BMP4 and ITGB4 expression values colored by cell types. (H) The joint
distribution of BMP4 and ITGB4 expression values colored by groups.

Colorectal cancer
We conducted our workflow on the CRC dataset with 34,004 cells,
of which 16,986 are from the tumor core, and 17,018 are from
the normal tissue adjacent to the neoplasm after quality control.
We first used the expression data as the input of CDN to infer
the average differential network, �. Then we extracted the top
500 interactions according to the absolute values in � as our
candidate gene interactions. Finally, we calculated pAPC2 on these
interactions and get a 34,004×500 pAPC2 matrix as our features
to perform downstream analyses.

In our analysis, these cells were divided into 10 clusters and
had clear boundaries using our pAPC2 features (Figure 3A). After
annotation using the R package SingleR [32] based on gene fea-
tures, the proportion of cell types in each cluster is shown in
Figure 3B. There is a high agreement between our clustering
results and cell annotations, i.e. the proportions of cell types
are very close to 1 in most clusters. It implies that the pAPC2
features retain considerable biological information. We annotated
the cluster as the cell type with the highest number of cells within
it (Figure 3C). We also calculated the top 5 interaction markers of
each cell type using the pAPC2 matrix (Figure 3D). Almost all inter-
action markers have a significant expression advantage in their
corresponding cell types, which once again verifies that pAPC2
has captured meaningful biological information. Meanwhile, we
observed that there exist some common genes in the interaction
markers, such as TNXB in smooth muscle cells and INHBA in
the fibroblasts, which implies they may act as hub regulators in
biological activities. The cell numbers of two groups in each cell
type are shown in Figure 3E. We observed two relatively pure cell
types, fibroblasts and smooth muscle cells. Fibroblasts are mostly
cancer cells, while smooth muscle cells are dominated by normal
cells. Next, we utilized two instances to illustrate a more thorough
investigation, TNXB∼FGF7 for fibroblasts and BMP4 ∼ ITGB4 for
smooth muscle cells (Figure 4).

For TNXB∼FGF7, the pAPC2 in fibroblasts is higher than in
other cell types, while neither of the single genes is highly
expressed (circled in Figure 4A,B). We further investigated the
joint distribution of TNXB and FGF7 expression (Figure 4C,D).
Figure 4C shows there is a relatively significant correlation
between TNBX and FGF7 expression in smooth muscle cells
(Pearson’s correlation = 0.6999), which are dominated by normal
cells. Meanwhile, this correlation is broken in fibroblasts

(Pearson’s correlation = 0.1901, circled in Figure 4C), which are
dominated by cancer cells. High expression of TNXB mRNA in
cancer is associated with a good survival prognosis [30], and
FGF7 is elevated in mucosal regions of cancer patients, supporting
its potential as a biomarker of regional oncogenesis [33]. At the
same time, studies have shown that TNC (the protein encoded by
TNXB) has a high affinity for many fibroblast growth factor (FGF)
families, including FGF7 [33]. Therefore, the interaction of TNXB
and FGF7 may be the reason that the high expression of FGF7 loses
most of its oncogenic effects, thus preventing cell carcinogenesis.

For BMP4 ∼ ITGB4, we can observe the pAPC2 in smooth muscle
cells is higher than in other areas (Figure 4E). BMP4 is also highly
expressed in smooth muscle cells, but both BMP4 and ITGB4 are
highly expressed in cluster 7 (epithelial cells). This implies that
neither gene can be a marker of smooth muscle cells. We further
investigated the joint distribution of BMP4 and ITGB4 expression
(Figure 4G,H). Figure 4G shows there is a relatively significant
correlation between BMP4 and ITGB4 expression in epithelial cells
(Pearson’s correlation = 0.8839), which are dominated by cancer
cells. Meanwhile, this correlation is broken in smooth muscle
cells (Pearson’s correlation = −0.078, circled in Figure 4H), which
are dominated by normal cells. BMP4 is universally upregulated
in human CRC cells and has been considered as a candidate
treatment strategy for CRC [34]. However, CRC appears to be
associated with more than just high expression of BMP4. ITGB4
has also been predicted as a diagnostic serum biomarker and
a potential therapeutic target for CRC [35, 36]. Combined with
Figure 4H, we think that breaking some interaction between these
two genes seems to play a role in suppressing CRC.

COVID-19
We next conducted experiments on the COVID-19 dataset using
our IBTA workflow. After annotation, the cell type composi-
tion is shown in Figure 5A, the most abundant of which are
macrophages. The disease group composition in each cell type
is also shown in Figure 5A. Considering both cell type abundance
and disease group ratios, we selected macrophages as our target
cell type to explore the differences between ‘severe’ and ‘health’
samples. To explore useful information which usually cannot be
obtained from the gene-based analysis, we first excluded genes
with adjusted t-test P-value ≤ 0.05, i.e. differential expressed
genes (DEGs), then selected the top 500 genes with the highest
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Figure 5. The IBTA results of the COVID-19 dataset. (A) The proportion of groups in each cell type. (B) The UMAP visualization of cells by gene expression
features. (C) The UMAP visualization of cells by pAPC2 features. The straight dashed line can separate two groups well. (D) The heatmap of the top 10
gene markers of each group (only 8 available). (E) The heatmap of the top 10 interaction markers of each group.

variance as candidate genes. We applied the CDN method and
calculated the pAPC2 matrix as the input features of downstream
analyses. The dimension of the pAPC2 matrix is 28,017 cells × 500
interactions. For comparison, we also conducted the gene-based
differential expression analysis.

The UMAP visualization of cells by gene features and pAPC2
features colored by the group are shown in Figures 5B, C,
respectively. Notably, the pAPC2 features can separate ‘severe’
and ‘health’ cells into two different half-planes by a straight
dashed line (Figure 5C), while we cannot find such a straight
line when using gene features (Figure 5B). This implies that
the pAPC2 features are more friendly for classification. We
further used the top 10 markers of each group as the features of
hierarchical clustering and conducted the heatmap visualization
(Figure 5D, E). We performed hierarchical clustering on both cell
levels and feature levels. After filtering out the DEGs, it is almost
impossible to find marker genes (only eight markers in Figure 5D),
while there retains a large amount of useful information in
the interaction markers based on pAPC2. The hierarchical
clustering results on interaction markers show that the markers
representing the same group are closer and the hierarchical
clustering results on cells show that the cells from the same
group are closer (Figure 5E), while these phenomena cannot be
observed in the heatmap based on gene features (Figure 5D). It
is interesting to note that there are some hub genes shared by
several interaction markers, such as COMT and SELPLG. COMT
has been identified as interacting with NSP7 proteins encoded in
the SARS-CoV-2 genome related to COVID-19 severity, prognosis
or outcome [37]. SELPLG, also called PSGL-1, has been reported
to impair the incorporation of SARS-CoV-2 spike (S) glycoproteins
into pseudo virions and may inhibit coronavirus replication [38].

Furthermore, an example COMT∼BLVRA is provided here to
highlight the capabilities of our framework. The UMAP, probability
density, box line plot and scatter plot of the interaction and its
genes are shown in Figure 6. As a marker of the severe group,
COMT∼BLVRA is significantly highly expressed on one side of
the dashed line (severe side), while both single genes are highly
expressed on two sides of the dashed line (Figure 6A). Also, both
the density plot and the box plot show that the pAPC2 value has
a significant difference between the two groups with a t-test P-
value smaller than 1e−16, but the P-values of genes are 0.570
(COMT) and 0.221 (BLVRA), i.e. not significant (Figure 6B and C).

This suggests that although the single genes are not differentially
expressed, their interactions may have changed significantly.
From the joint distribution (Figure 6D), we can see that in healthy
cells there is a strong correlation between COMT and BLVRA
expression (Pearson’s correlation = 0.903), while in severe cells this
correlation is broken (Pearson’s correlation = 0.450). The protein
encoded by BLVRA can catalyze the conversion of biliverdin (BLV)
to bilirubin (BR) in the presence of NADPH or NADH. Furthermore,
BLV can inhibit the binding of SARS-Cov-2 to immune serum [39].
Perhaps studying the relationship between COMT and BLVRA can
be helpful for revealing the pathogenesis of COVID-19 disease.

Breast cancer
We finally experiment on the TNBC dataset using our IBTA work-
flow. After annotation, the cell type composition is shown in
Figure 7A, the most abundant of which are epithelial cells. The
disease group composition in each cell type is also shown in
Figure 7A. We selected epithelial cells as our target cell type
to explore the differences between cancer and normal samples.
We screened genes the same as in the experiment on COVID-19
and finally obtained a pAPC2 matrix with a dimension of 22,998
cells × 500 interactions.

We obtained similar results as before in the UMAP visual-
ization (Figure 7B, C) as well as in the hierarchical clustering
(Figure 7D, E). Once again, the pAPC2-based UMAP can be sep-
arated by a straight dashed line. Similar markers and cells are
also closer to each other in the pAPC2 heatmap in the results of
hierarchical clustering. It is worth noting that we also observed
some hub genes, such as TYMP and SPP1. Capecitabine is a drug
that can treat breast cancer and works by blocking DNA, RNA and
protein synthesis and inhibiting cell division. At the same time, it
has been shown that TYMP expression correlates with the efficacy
of capecitabine in TNBC [40, 41]. SPP1, also called OPN, has been
reported as a potential biomarker for anti-EGFR therapy in TNBC
and the increased mutation of SPP1 in TNBC may also help for
tailoring treatment in TNBC [42, 43].

We further conducted survival analysis based on both APC2
and gene expression. Because there is no survival data in the
single-cell dataset, we here used bulk data of the GDC TCGA
BRCA project and acquired expression profiles and survival data
from the UCSC Xena platform [44]. Through the above analysis
by our IBTA workflow, we observed 248 significant interaction
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Figure 6. The expression visualization of COMT ∼ BLVRA and corresponding genes. (A) The UMAP visualization of COMT∼BLVRA pAPC2 values, COMT
and BLVRA expression values. (B) The distribution of COMT∼BLVRA pAPC2 values, COMT and BLVRA expression values. (C) The boxplot of COMT∼BLVRA
pAPC2 values, COMT and BLVRA expression values. (D) The joint distribution of COMT and BLVRA expression values colored by groups.

Figure 7. The IBTA results of the TNBC dataset. (A) The proportion of groups in each cell type. (B) The UMAP visualization of cells by gene features. (C)
The UMAP visualization of cells by pAPC2 features. The straight dashed line can separate two groups well. (D) The heatmap of the top 10 gene markers
of each group (only 17 available). (E) The heatmap of the top 10 interaction markers of each group.
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Figure 8. The survival analysis and DO analysis results of the TNBC dataset. (A) Kaplan–Meier survival curves of interaction TYMP∼SPP1. The x-axis is
time in days. The y-axis is survival probability. (B) Kaplan–Meier survival curves of SPP1. (C) Kaplan–Meier survival curves of TYMP. (D) The distribution
of the permutation test for interaction markers with significant survival analysis results. The red dashed line is the number of significant interactions
in our markers. (E) The DO enrichment analysis of genes appeared in our interaction markers. ‘Breast cancer’ appears in the first position.

markers. Therefore, we calculated APC2 of these 248 interactions
for all bulk samples. The top 33% of the samples with higher
APC2 were divided into the low correlation group, and the bottom
33% of the samples with lower APC2 were divided into the high
correlation group. We also conducted survival analysis based on
single gene expression of all candidate genes. For example, the
paired-gene survival analysis based on APC2 of TYMP∼SPP1 is
shown in Figure 8A, and the single-gene survival analysis based
on gene expression of TYMP and SPP1 is shown in Figure 8B and C,
respectively. The results showed that the expression level of SPP1
is significant for overall survival time (log-rank P-value = 0.028),
while TYMP is not significant (log-rank P-value = 0.216). But for
paired-gene survival analysis, APC2 of TYMP∼SPP1 is much more
significant (log-rank P-value = 0.005), which indicates we can eas-
ily find useful information from the interaction perspective. We
also examined the enrichment levels of significant interactions
and genes in our interaction markers. For the single-gene level,
there are 101 genes in 248 interaction markers, and 7 out of 101 are
significantly associated with patients’ overall survival time. The
P-value of the corrected chi-squared test is 0.04428. This means
that the genes presented in our interaction markers are strongly
associated with the significance level of survival analysis. For
the interaction level, 11 of 248 interactions are significant. We
conducted a permutation test by randomly selecting 248 inter-
actions from 500 candidate interactions and repeated 100 times.
The distribution of significant interaction numbers is shown in
Figure 8D, and the P-value (the probability of the significant inter-
action number greater than or equal to 11 in the permutation test)
is 0.0099. This implies that the interaction markers found by our
method are strongly associated with the significance level of the
paired-gene survival analysis. Finally, the disease ontology (DO)
[45] analysis shows the 101 genes in 248 interaction markers are
successfully enriched in the breast cancer term with an adjusted

P-value of 0.001, ranking first (Figure 8E). This underlines once
more how important IBTA is.

Conclusion and discussion
In this study, we proposed the CDN method for multi-source
differential network inference and compared it with other popular
differential network inference methods. The results of the simu-
lation experiments show the superiority of the new method. We
also proposed a novel metric, pivot APC2, which can assign values
to each sample for each interaction. The main contribution of this
paper is that we introduced the novel interaction-based transcrip-
tome analysis (IBTA) workflow. By transforming the gene expres-
sion data to pivot APC2, many standard approaches for gene-
based transcriptome analysis can be straightforwardly applied to
conduct interaction-based analysis.

As a simple and straightforward method, APC2 may be affected
by batch effect. It is worth noting that the global batch effect is
spread out over every gene, while APC2 is separately calculated on
each gene pair. The distance between batches is greatly reduced
if only two genes are considered; therefore, the influence of batch
effect is minor when calculating APC2 for most gene pairs. Of
course, if possible, it is better to utilize batch correction methods
to preprocess the data. Additionally, the way of APC2 to iden-
tify differential interactions is linear; however, the interactions
between gene expression are usually nonlinear. Therefore, a more
robust method capable of distinguishing gene co-expression pat-
terns is urgently needed.

Overall, this workflow allows researchers to explore the key
gene interactions in their datasets and obtain many meaningful
and important marker interactions. These markers may help
researchers design further experiments and perform validation
efficiently.
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Key Points

• IBTA is a transcriptome analysis framework based on
gene interactions that can re-explain transcriptome data
and reveal many valuables that single-gene analysis
methods cannot. It consists of two components: CDN
and pAPC2.

• CDN is a multi-source differential network inference
method. Extensive simulation experiments demon-
strated that CDNs are more capable of inferring dif-
ferential network structures with hubs from multi-
source data.

• pAPC2 is a novel metric for calculating the pseudo-
expression value of gene interactions. It can assign each
sample a pseudo-expression value according to the con-
tribution to the interaction.

• IBTA has shown strong analytical capabilities in the case
studies of all three datasets from the CRC, COVID-19 and
TNBC, both between and within cell types.
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