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Using a popular vertex-based model to describe a spatially disordered planar epithelial monolayer, we
examine the relationship between cell shape and mechanical stress at the cell and tissue level. Deriving
expressions for stress tensors starting from an energetic formulation of the model, we show that the
principal axes of stress for an individual cell align with the principal axes of shape, and we determine
the bulk effective tissue pressure when the monolayer is isotropic at the tissue level. Using simulations
for a monolayer that is not under peripheral stress, we fit parameters of the model to experimental data
for Xenopus embryonic tissue. The model predicts that mechanical interactions can generate mesoscopic
patterns within the monolayer that exhibit long-range correlations in cell shape. The model also suggests
that the orientation of mechanical and geometric cues for processes such as cell division are likely to
be strongly correlated in real epithelia. Some limitations of the model in capturing geometric features of
Xenopus epithelial cells are highlighted.

1. Introduction

Many essential aspects of cell behaviour are controlled, both directly and indirectly, by mechanical cues
(Huang & Ingber, 1999; Wozniak & Chen, 2009). For example, cell density and substrate adhesion
have been shown to affect cell proliferation (Huang & Ingber, 2000; Streichan et al., 2014), while cell
division orientation appears to be regulated by mechanical feedback (Théry & Bornens, 2006; Fink et al.,
2011; Minc et al., 2011; Wyatt et al., 2015). Many morphogenetic processes, such as gastrulation and
convergent extension (Martin et al., 2009), are mechanical processes inducing significant changes to the
stresses within the tissue (Lecuit & Lenne, 2007). However, despite its significance in development, the
mechanical state of tissues remains poorly characterized in comparison to some aspects of genetics and
biochemical signalling.

The geometric properties of cells are governed by cell adhesions and cytoskeletal mechanics (Kiehart
et al., 2000; Käfer et al., 2007), which in turn feed into global tissue dynamics (Shraiman, 2005;
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Martin et al., 2009; Guillot & Lecuit, 2013). The mechanical state of an individual cell is largely dependent
on its interaction with its neighbours and adhesion to the extracellular matrix. Experimental techniques
such as laser ablation (Hutson et al., 2003; Campinho et al., 2013; Mao et al., 2013) and atomic force
microscopy (AFM) (Hoh & Schoenenberger, 1994) have been used to characterize cell mechanics; laser
ablation reveals cell-level forces by making small slices in the tissue and observing the recoil velocity
of cells, while AFM attempts to deduce the local mechanical properties of a tissue by performing small
indentations using a mechanical cantilever. While revealing, such experimental techniques are invasive
and typically require modelling for the interpretation of measurements. Live fluorescent imaging com-
bined with high resolution microscopy offers alternative insights into developmental processes such as
gastrulation (Rauzi et al., 2008; Heller et al., 2016). Measurements of cell shape over time allows infer-
ence of mechanical stress (Chiou et al., 2012; Ishihara & Sugimura, 2012; Xu et al., 2015, 2016), based
on an underlying mathematical model. This non-invasive approach has led to significant growth in math-
ematical modelling of epithelial cell mechanics in 2D and 3D (Hilgenfeldt et al., 2008; Brodland et al.,
2010; Okuda et al., 2013; Hannezo et al., 2014; Collinet et al., 2015; Bielmeier et al., 2016; Sugimura
et al., 2016; Tetley et al., 2016). However without direct measurements of stress, mechanical predictions
taken from geometric data alone are only as good as the constitutive models from which the predictions
are derived.

Theoretical models of epithelial mechanics fall into a number of classes, including cellular Potts
(Graner & Glazier, 1992), cell-centre (Osborne et al., 2010), vertex-based (Nagai & Honda, 2001; Farhad-
ifar et al., 2007; Staple et al., 2010; Fletcher et al., 2014) and continuum models (Edwards & Chapman,
2007; Nelson et al., 2011). Vertex-based models exploit the polygonal shape commonly adopted by tight-
packed cells in a monolayer, characterizing the monolayer as a network of cell edges meeting (typically)
at trijunctions. Typically, vertices are assumed to move down gradients of a mechanical energy, often
subject to a viscous drag; the network topology changes intermittently as cells intercalate, divide or are
extruded. It is of interest to relate such cell-level models, describing cells as individual entities that can
evolve at discrete time intervals, to continuum models describing the smooth changes of a tissue in space
and time. Some progress has been made in upscaling spatially periodic cell distributions in 1D (Fozard
et al., 2010) and 2D (Murisic et al., 2015) using homogenization approaches, or by direct coarse-graining
(Ishihara et al., 2017). Simulations have revealed striking properties of more realistic disordered networks
in 2D (Staple et al., 2010; Bi et al., 2015), such as a rigidity transition characteristic of a glassy material.
Abundant imaging data makes parameter estimation feasible, allowing models to be tested quantitatively
and used to explore new biological hypotheses.

In this article, working in the framework of a popular vertex-based model describing a planar mono-
layer of mechanically (but not geometrically) identical cells, we derive expressions for the stress tensor
at the cell and tissue level, and use these results to understand the relationship between a cell’s shape and
its mechanical environment, showing that the principal axes of the cell’s stress and shape tensors align.
We parameter-fit simulations to images of Xenopus embryonic epithelia, using cell area over polygonal
classes as a measure. Of particular interest is the manner in which mechanical effects constrain the spatial
disorder that is intrinsic to epithelial monolayers, which we characterize using simulations, highlighting
the appearance of spatial patterns reminiscent of force chains in granular materials. We also discuss the
role of the stress acting on the monolayer’s periphery in determining the size and shape of cells.

2. Experiments

Experimental data were collected using tissue from the albino Xenopus laevis frog embryo. Animal cap
tissue was dissected from the embryo at stage 10 of development (early gastrula stage) and cultured
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Fig. 1. Experimental setup and data analysis. (a) Animal cap tissue was dissected from stage-10 Xenopus laevis embryos and
cultured on PDMS membrane. (b) Side-view confocal image of the animal cap (top:apical; bottom:basal), stained for microtubules
(red), beta-catenin (green) and DNA (blue). A mitotic spindle is visible in the centremost apical cell. The animal cap is a multi-
layered epithelial tissue; we analyse just the outer, apical, cell layer. (c) The apical cell layer of the animal cap tissue is imaged
live using confocal microscopy (green, GFP-α-tubulin; red, cherry-histone2B). (d) The cell edges are manually traced and cell
shapes are derived computationally, being polygonized using the positions of cell junctions. (e) Mean normalized area as a function
of polygonal class showing mean and one standard deviation, from experiments (solid and shaded) and simulation (dashed) with
parameters �, � as shown with Pext = 0. Cell areas were normalized relative to the mean of each experiment. (f) Circularity
as a function of polygonal class showing mean and one standard deviation, from experiments (solid and shaded) and simulation
(dashed) using the same parameters as in (e). (g) Proportions of total cells in each polygonal class in experiments (left bar) and
simulations (right bar). Error bars represent 95% confidence intervals calculated from bootstrapping the data. (Colour in online.)

on a 20 mm × 20 mm × 1 mm, fibronectin-coated, elastomeric PDMS substrate (Fig. 1a). The animal
cap tissue is a multi-layered (2–3 cells thick) epithelium (Fig. 1b), which maintains its in vivo structure
when cultured externally for the time period of our experiments (up to five hours). This system has the
advantage of closely resembling in vivo tissue whilst also giving the ability to control peripheral stress
on the tissue. For this work, a 0.5 mm uniaxial stretch was applied to the PDMS substrate, which ensured
that it did not buckle under gravity or the weight of the animal cap. This small stretch was found to have
no measurable effect on cell geometry (data not shown) and we therefore assume that there is negligible
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peripheral stress on the tissue. The apical cell layer of the animal cap tissue was imaged using a Leica
TCS SP5 AOBS upright confocal microscope (Fig. 1c) and cell boundaries were segmented manually
(Fig. 1d), representing each cell as a polygon with vertices coincident with those in images. The vast
majority of vertices were classifiable as trijunctions.

Letting a cell, α, have Zα vertices defining its boundary, we characterize the shape of the cell using
its area Ãα and shape tensor, S̃α , defined with respect to cell vertices as

Ãα =
Zα−1∑
i=0

1

2
ẑ · (R̃i

α × R̃i+1
α ), S̃α = 1

Zα

Zα−1∑
i=0

R̃i
α ⊗ R̃i

α , (2.1)

where R̃i
α is the vector running from the cell centroid to vertex i and ẑ is a unit vector pointing out

of the plane. S̃α has eigenvalues (λα1, λα2) with λα1 ≥ λα2 > 0. The eigenvector associated with the
larger (smaller) eigenvector defines the major (minor) principal axis of cell shape, the two axes being
orthogonal. The circularity parameter Cα = λα2/λα1 ∈ (0, 1] indicates how round a cell is.

The variation of cell area and circularity across an individual monolayer is illustrated in Fig. 1(e and
f), distributed across the cells’ polygonal class Zα (number of neighbours). The distribution of cell number
across polygonal class is shown in Fig. 1(g). The majority of cells have between 5 and 7 neighbours;
we observed no three-sided cells. The mean area per polygonal class across all experiments, normal-
ized to the mean of the population from each experiment, was A exp = {Ā exp

4 , Ā exp
5 , Ā exp

6 , Ā exp
7 , Ā exp

8+ } =
{0.59, 0.80, 1.03, 1.20, 1.60} (Fig. 1e). Ā exp

8+ represents the mean area of cells with 8 or more sides.
Similarly, the average circularity per polygonal class across all experiments, C̄ exp

i , was C exp = {0.56,
0.58, 0.58, 0.57, 0.53} (Fig. 1f). As explained below, we used A exp to fit parameters of the vertex-based
model (Fig. 1e).

3. The vertex-based model

In this section, we derive expressions for cell and tissue stress using the vertex-based model and describe
our simulation methodology. We explain relationships between cell stress and cell shape and discuss the
mechanical properties of the monolayer.

3.1 Geometry of the monolayer network

We represent an epithelial monolayer as a planar network of Nv vertices, labelled j = 1, . . . , Nv, connected
by straight edges and bounding Nc polygonal cells, labelled α = 1, . . . , Nc. The vector from the coordinate
origin to vertex j is given by R̃j(t̃); here tildes denote dimensional variables and t̃ is time. Quantities
specific to cell α are defined relative to its centroid R̃α . Cell α has Zα vertices labelled anticlockwise by
i = 0, 1, 2, . . . , Zα − 1 relative to R̃α . We define R̃i

α as the vector from the cell centroid to vertex i, such
that

∑Zα−1
i=0 R̃i

α = 0. Anticlockwise tangents are defined by t̃i
α = R̃i+1

α − R̃i
α , unit vectors along a cell

edge by t̂i
α and outward normals to edges by ñi

α = t̃i
α × ẑ. The length l̃i

α of an edge belonging to cell α

between vertices i and i + 1, and the cell perimeter L̃α , are given by

l̃i
α = (

t̃i
α · t̃i

α

)1/2
, L̃α =

Zα−1∑
i=0

l̃i
α . (3.1)

The cell area (assuming convex polygons), Ãα , and shape tensor, S̃α , are given by (2.1).
Vectors defined relative to a cell centroid are labelled by a greek subscript, α; vertices belonging to

the cell have latin superscripts, i, i.e. R̃i
α . Vectors without a greek subscript are defined relative to the
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Fig. 2. Representation of disordered cell geometry. Cell α has its centroid at Rα relative to a fixed origin, O . The position of vertex
i of cell α is given equivalently via Ri

α , relative to the centroid, or Rj , relative to O . For a vertex (trijunction) at Rj , there exist three
vectors, Ri

α , Ri′
α′ , Ri′′

α′′ for cells, α, α′, α′′, pointing to the same vertex. Cell properties, such as area and tangents along edges, are
defined relative to the cell centroid. (Colour in online.)

coordinate origin, and have unique latin superscripts, j i.e. R̃j. The matrix capturing the mapping from
the vertex labels, j, to the vertex labels, i, within every cell, α, is defined as

cij
α =

{
1 if ∃ j′ ∈ {1, . . . , Nv} | R̃j − R̃j′ = ±(R̃i

α − R̃i+1
α )

0 otherwise,
(3.2)

such that, for an internal vertex,
∑Nv

j=1 cij
αR̃j = R̃α + R̃i

α . For trijunctions, there will exist α, α′, α′′ for

respective i, i′, i′′ such that cij
α = ci′j

α′ = ci′′j
α′′ = 1, for a given j. A visual representation of this geometric

arrangement is given in Fig. 2.

3.2 Cellular forces and energies

We adopt a well-established and widely used vertex-based constitutive model (Honda & Eguchi, 1980;
Nagai & Honda, 2001; Farhadifar et al., 2007; Mao et al., 2013; Fletcher et al., 2014; Bi et al., 2015).
We consider a monolayer of cells with identical physical properties but differing in general in size and
shape. Every cell is assumed to have a mechanical energy, Ũα , defined by

Ũα = 1

2
K̃
(

Ãα − Ã0

)2 + 1

2
�̃L̃2

α + 1

2
�̃L̃α . (3.3)

The first term in (3.3) models the cell’s bulk compressibility, in terms of a preferred area Ã0 and a stiffness
K̃ . The remaining terms represent the contractility of the cell periphery, via cortical actomyosin bundles
and cell-to-cell adhesion. The parameter �̃ represents the contractile strength while �̃ tunes the effective
preferred cell perimeter L̃0 = −�̃/2�̃, such that the energy associated with the peripheral forces is of the
form 1

2 �̃(L̃ − L̃0)
2. The quadratic contributions to the energy as a function of perimeter and area could in

principle be extended with higher-order non-linearities. At the tissue level, the system is assumed to evolve
down gradients of the bulk energy

∑Nc
α=1 Ũα from an initial disordered state. We model the deterministic
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evolution by assigning a drag force (relative to the substrate on which the monolayer sits), to each vertex
of cell α, of the form −η(Ã/Zα)dR̃j/dt̃. The drag magnitude is chosen to scale with the cell’s area rather
than its number of vertices (a natural assumption if the drag arises from physical interactions distributed
across the base of the cell) and viscous resistance to internal shear or extension is neglected. For the time
being we do not consider topological rearrangements of the network of cell edges, but return to this when
discussing simulations in Section 4.

We non-dimensionalize by scaling lengths on
√

Ã0, using

Ãα = Ã0Aα (L̃α , l̃i
α , R̃α , . . . ) =

√
Ã0(Lα , li

α , Rα , . . . ), Ũ = K̃Ã2
0U, t̃ = ηt/(K̃

√
Ã0). (3.4)

Thus (3.3) becomes Uα = 1
2 (Aα − 1)2 + 1

2�L2
α + 1

2�Lα , in terms of the non-dimensional parameters

� = �̃

K̃Ã0

, � = �̃

K̃Ã3/2
0

, (3.5)

where L0 = −�/2� is the dimensionless preferred perimeter. The total energy, U, of the monolayer may
now be written as the sum

U(
{
Ri

α

}
; �, �) =

Nc∑
α=1

{
1

2
(Aα − 1)2 + 1

2
�(Lα − L0)

2 − U0

}
(3.6)

where U0 = �2/4�2 is a constant that may be discarded as the dynamics are driven by energy gradients.
For later reference we define an associated pressure and tension for each cell as

Pα ≡ Aα − 1 and Tα ≡ �(Lα − L0). (3.7)

Cellular forces can be computed directly from the mechanical energy, using the fact that δiUα =
∇ iUα · δRi

α . The first variation of the energy with respect to the position of vertex i is given by

δi

{
1

2
(Aα − 1)2 + 1

2
�(Lα − L0)

2

}
= −f i

α · δRi
α . (3.8)

−f i
α ≡ ∇ iUα can be interpreted as the force required to shift vertex i through δRi

α to do work δiUα;
equivalently, f i

α represents the restoring force exerted at vertex i by cell α. This force can be calculated
explicitly by differentiating the mechanical energy term by term. Considering first the area contribution
we find

−∇i
1

2
(Aα − 1)2 = − (Aα − 1) ∇iAα = − (Aα − 1) ∇i

Zα−1∑
j=0

1

2
ẑ · (Rj

α × Rj+1
α )

= −1

2
(Aα − 1) (Ri+1

α − Ri−1
α ) × ẑ = −Pαpi

α ,

(3.9)
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where Pα is given by (3.7a) and pi
α ≡ 1

2

(
ni

α + ni−1
α

) = 1
2 (R

i+1
α − Ri−1

α )× ẑ gives the direction of the bulk
compressive force at node i. The perimeter term gives

−∇i
1

2
�(Lα − L0)

2 = −�(Lα − L0)∇iLα = −�(Lα − L0)∇i

Zα−1∑
j=0

(tj
α · tj

α)
1/2 (3.10a)

= �(Lα − L0)(t̂i
α − t̂i−1

α ) = Tαqi
α , (3.10b)

where Tα (see (3.7b)) represents a tension and qi
α ≡ t̂i

α − t̂i−1
α represents the direction of the inward force

due to stretching of the cell perimeter. Thus the force at vertex i can be written

f i
α = −Pαpi

α + Tαqi
α . (3.11)

The analogous force for a vertex model lacking the L̃2
α term in (3.3) is given in Spencer et al. (2017).

f i
α represents the force generated when perturbing the vertex of a cell in isolation. For the case of a

monolayer, each vertex will have a contribution from the three cells attached to it (or fewer, if the cell
is at the periphery of the monolayer). Thus the net force on vertex j, f j, will be given by the sum of the
contributions from each cell attached to it as

f j =
Nc∑

α=1

Zα−1∑
i=0

(−Pαpi
α + Tαqi

α)c
ij
α , (3.12)

where cij
α ensures that, although the summation is over all cells, we count only the contributions from the

cells connected to vertex j. More specifically, if cells α, α′ and α′′ meet at junction j, with anticlockwise
tangents t, t′, t′′ emerging from the vertex with normals (pointing clockwise) n, n′, n′′ orthogonal to each
tangent, the net force at the vertex can be written

f j = t(Tα + Tα′′) + t′(Tα′ + Tα) + t′′(Tα′′ + Tα′)

+ 1

2

[
n(Pα − Pα′′) + n′(Pα′ − Pα) + n′′(Pα′′ − Pα′)

]
. (3.13)

The tangential forces show how each edge is a composite structure with tension contributions from two
adjacent cells. The factor of 1

2 in the pressure terms reflects the fact that the force due to pressure acting
on any edge is distributed equally between each vertex bounding the edge. The tensions and pressures
depend on the total area and perimeter of each neighbouring cell via (3.7). For vertices at the periphery
of the monolayer, bordering cells α and α′, we write Pα′′ = Pext (an imposed isotropic stress) and set
Tα′′ = 0, so that

f j = tTα + t′(Tα′ + Tα) + t′′Tα′ + 1

2

[
Pαn + n′(Pα′ − Pα) − Pα′n′′]+ 1

2
Pext(n′′ − n). (3.14)

We use this relationship below when considering the boundary conditions at the edge of a monolayer.
When the system is out of equilibrium, the net force at each internal vertex is

Fj = f j −
(

Aα

Zα

+ Aα′

Zα′
+ Aα′′

Zα′′

)
Ṙj, (3.15)
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where the term proportional to Ṙj is a viscous drag having contributions from the three cells at the
trijunction; the dot denotes a time derivative. Writing Ṙj = Ṙα + Ṙi

α , the drag can be considered as
representing an internal dashpot within each cell connecting the cell centre to the vertex plus a drag on
each cell centre. Thus the net force on cell α becomes

Fα = −
Zα−1∑
i=0

(
f i
α − (Aα/Zα)(Ṙα + Ṙi

α)
) = −fα + AαṘα (3.16)

where fα = ∑Zα−1
i=0 f i

α , noting that
∑Zα−1

i=0 Ṙi
α = 0. Since inertia is negligible, the net force on any vertex

and on any cell must vanish, Fj = 0 and Fα = 0. The former condition defines the Nv coupled evolution
equations of the network vertices. When the system is in equilibrium, this simplifies to f j = 0, fα = 0.
Likewise the net torque on cell α,

Tα = −
Zα−1∑
i=0

Ri
α × (

f i
α − (Aα/Zα)

(
Ṙα + Ṙi

α

)) = −
Zα−1∑
i=0

Ri
α × (

f i
α − (Aα/Zα)Ṙi

α

)
, (3.17)

must satisfy Tα = 0.

3.3 The stress tensor of a cell

For a tensor σ that is symmetric and divergence-free, defined over an area A with perimeter S , we have
σ = ∇ · (R ⊗ σ ), where R is an arbitrary position vector. Thus taking an area integral and applying the
divergence theorem gives (Norris, 2014)

∫
A

σ dA =
∫

A

∇ · (R ⊗ σ ) dA =
∮

S

R ⊗ σ · n dS. (3.18)

We use this weak formulation to derive the stress tensor of the monolayer, taking the stress to be uniform
over each cell. The forces acting on cell α are distributed around the vertices, so that taking A = Aα

(the domain of cell α), (3.18) motivates the definition of the cell stress σ α as

Aασ α =
Nv∑
j=1

Zα−1∑
i=0

cij
αRj ⊗ Fi

α =
Zα−1∑
i=0

(Rα + Ri
α) ⊗ Fi

α (3.19a)

=
Zα−1∑
i=0

Ri
α ⊗ (f i

α − (Aα/Zα)(Ṙα + Ṙi
α)) =

Zα−1∑
i=0

Ri
α ⊗ f i

α − (Aα/Zα)

Zα−1∑
i=0

Ri
α ⊗ Ṙi

α . (3.19b)

This reveals conservative (elastic) and dissipative (viscous) contributions to the stress. The former is

Zα−1∑
i=0

Ri
α ⊗ f i

α =
Zα−1∑
i=0

Ri
α ⊗ (−Pαpi

α + Tαqi
α). (3.20)

If the cell is in equilibrium and under zero net torque, then
∑Zα−1

i=0 Ri
α × f i

α = 0 (see (3.17)), ensuring that
this contribution to σ α is symmetric; the symmetry of (3.20) is confirmed below. Likewise the absence
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of torque on a cell due to drag in (3.17) requires the dissipative component of the stress to be symmetric,
allowing us to redefine the final term in (3.19b) as

− 1

2Zα

Zα−1∑
i=0

(Ri
α ⊗ Ṙi

α + Ṙi
α ⊗ Ri

α) ≡ −1

2
Ṡα , (3.21)

where Sα is the dimensionless shape tensor based on vertex location.
We simplify (3.20) by making use of two geometric identities, established in Appendix A, namely

Zα−1∑
i=0

Ri
α ⊗ pi

α = AαI,
Zα−1∑
i=0

Ri
α ⊗ qi

α = −
Zα−1∑
i=0

t̂i
α ⊗ ti

α , (3.22)

both of which are symmetric (recall ti
α = li

α t̂i
α). Noting that Tr

(∑Zα−1
i=0 t̂i

α ⊗ ti
α

)
= ∑Zα−1

i=0 t̂i
α · ti

α =∑Zα−1
i=0 li

α = Lα , we can then express the stress of cell α as

σ α = −Peff
α I + TαJα − 1

2
Ṡα . (3.23)

Here the elastic components of the stress have been written in terms of an isotropic and deviatoric
component. The former defines the effective cell pressure, which has contributions from the cell’s bulk
and the perimeter (in Young–Laplace form, with an effective radius of curvature 2Aα/Lα) as

Peff
α = Pα + TαLα

2Aα

. (3.24)

We will see below how the competition between bulk pressure and cortical forces can stiffen the
monolayer. The traceless contribution to the cell stress is

Jα = 1

Aα

(
1

2
LαI −

Zα−1∑
i=0

li
α t̂

i

α ⊗ t̂
i

α

)
. (3.25)

3.4 Relating cell stress and shape

We can now explore the relationship between the principal axes of cell shape and stress by considering the
commutativity of σ α and Sα . The tensors will share an eigenbasis, implying that their principal axes align,
if and only if they commute. Having separated the stress tensor (3.23) into an isotropic and deviatoric
component however, we require only that SαJα = JαSα and SαṠα = ṠαSα , which is established via direct
algebraic manipulation in Appendix B. Figure 3 provides a computational illustration of this mathematical
result for a disordered monolayer in equilibrium; details of the simulation scheme are given in Section 4.
Thus, for an individual cell, the principal axes of stress and shape align (both quantities being defined
directly in terms of cell vertex locations). Equivalently, within the present model, cells that are elongated
experience a local stress field that is oriented exactly with the direction of elongation. The consequences
of this observation are discussed below.
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Fig. 3. Computational validation of the predicted alignment between principal axis of stress and shape, for (�, �) = (−0.2, 0.1).
The initial cell array was generated using a Voronoi tessellation and then relaxed to equilibrium using periodic boundary conditions.
The eigenvectors corresponding the the principal eigenvalue of σ α and S are plotted in black and yellow, respectively. Darker cells
have Peff

α > 0 (net tension); lighter cells have Peff
α < 0 (net compression). (Colour in online.)

3.5 Stress of the monolayer

We now return to (3.18), taking the domain A in (3.18) to cover multiple cells. The area integral can be
evaluated over each cell to give a formulation for the ‘tissue’ stress over a simply connected region R of
the monolayer σ R as

(∑
α

Aα

)
σ R =

∑
α

σ αAα , (3.26)

summing over cells in R. The components of the first two terms on the right-hand side of (3.23) that are
proportional to Tα at the cell level, and their area-weighted sum in (3.26), are analogous to an expression
derived by Batchelor (1970) for a suspension of particles having interfacial tension. Equivalent expressions
for the equilibrium stress of the present model based on Batchelor’s formulation have been given by
Ishihara & Sugimura (2012) and Guirao et al. (2015).

For now let us take R to be the whole monolayer. The line integral in (3.18) can be evaluated by
setting

∮
P

R ⊗ σ · n dS =
∑

α

∮
∂Aα

R ⊗ σ · n dS (3.27)
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since Fj = 0 at all internal vertices. Let k = 0, 1, . . . , Np − 1 label the peripheral vertices, let peripheral
normals nk−1 and nk border vertex k and let pk = 1

2 (nk−1 + nk). Since the periphery is a closed curve, its

sum of tangents vanish, hence its sum of normals vanish, hence
∑Np−1

k=0 pk = 0. Let R0 be the centroid of

the monolayer, and write Rk = R0 + Rk
0, so that

∑Np−1
k=0 Rk

0 = 0. Assuming the pressure is Pext uniformly
around the periphery, the force balance at the peripheral vertices (3.14) gives

−1

2
Pext

Np−1∑
k=0

Rk ⊗ (
nk + nk−1

) = −Pext

Np−1∑
k=0

Rk ⊗ pk = −Pext

Np−1∑
k=0

Rk
0 ⊗ pk = −PextAI (3.28)

where the final expression results from (3.22a) and A = ∑Nc
α=1 Aα . Thus

∑
α σ αAα = −PextAI, i.e.

Nc∑
α=1

Aα

(
−Peff

α I + TαJα − 1

2
Ṡα

)
= −PextAI. (3.29)

Taking the trace of this sum gives

Nc∑
α=1

AαPeff
α = APext −

Nc∑
α=1

Aα

4
Tr(Ṡα), (3.30)

which describes the relaxation of the area of the monolayer to its equilibrium. Once in equilibrium, the
system must satisfy

Nc∑
α=1

AαPeff
α = APext,

Nc∑
α=1

AαTαJα = 0. (3.31)

A disordered distribution of cells within an equilibrium monolayer will have a range of values of Peff
α ,

and non-isotropic cells will have deviatoric contributions to their stress, but the whole population must
satisfy the weighted sums (3.31). For an isolated monolayer that is in equilibrium under zero external
loading (the condition relevant to Section 2), we must therefore impose

Nc∑
α=1

AαPeff
α = 0. (3.32)

3.6 Elastic moduli

It has been shown that, when the cells are identical hexagons, the stress at the tissue level under the present
model (neglecting friction) is equivalent to that of linear elasticity when considering small perturbations
about the unstressed state (Murisic et al., 2015). We can therefore use the expressions for stress at cell
(3.23) and tissue (3.26) level to recover expressions for the associated elastic moduli.

Taking Pext = 0 in a base state, imposing (3.32), we consider an isotropic expansion of a disordered
monolayer of magnitude 1 + ε where ε 	 1, so that Lα maps to (1 + ε)Lα , Aα maps to (1 + 2ε)Aα and so
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on. Linearizing about the base state, the dimensional bulk modulus, K̃Ã0K , of the monolayer is given by

K = A
dPext

dA

∣∣∣∣
Pext=0

=
Nc∑

α=1

Aα

2A

[
2Aα + �L0Lα

2Aα

]
, (3.33)

using (3.24) and (3.31). This prediction holds for a disordered network of cells, and therefore provides a
direct means of determining the variability of bulk modulus over different realizations of the monolayer.

When simplified to the special case of a hexagonal monolayer, for which Lα/
√

Aα = μ6 ≡ 2
√

2
√

3 ≈
3.72 for all α, (3.33) reduces in dimensionless form to

K = Aα − �μ6

8
√

Aα

, (3.34)

in agreement with Murisic et al. (2015) and Staple et al. (2010). K remains positive for � < 0, but can
become zero at � = (8/μ6)

2/3 when A = 1. The dimensional shear modulus, K̃Ã0G, for the special case
of a monolayer of identical hexagonal cells, is shown in Appendix C to be given by

G = 3
√

3�

(
1 − L0

Lα

)
, (3.35)

which is also equivalent to the shear modulus derived by Murisic et al. (2015) (but differs, as they showed,
with Staple et al. (2010)). Equation (3.35) illustrates how L must exceed L0, i.e. cell walls must be under
tension, in order for the monolayer to resist shear. Prediction of the shear modulus for the disordered
monolayer is much less straightforward; estimates (for a disordered dry foam) are reviewed in Kruyt
(2007).

3.7 Mapping parameter space

Prior to presenting simulations, it is helpful to review the main features of parameter space (Farhadifar
et al., 2007; Staple et al., 2010). Recall from (3.24) that Peff

α = Peff(Aα , Lα) where

Peff(A, L) = A − 1 + �(L − L0)L/2A. (3.36)

For a perfect N-gon, with perimeter and area satisfying L = μN

√
A where μN = 2(N tan(π/N))1/2,

Peff
N (A) = A − 1 + 1

2
�

(
μ2

N − L0μN√
A

)
≡ A − 1 + �μ2

N

2
+ �μN

4
√

A
. (3.37)

We define A∗
N(�, �) to satisfy Peff

N (A∗
N) = 0, to satisfy the constraint (3.32). Thus for hexagons, for

example, A∗
6 = 1 when L0 = μ6, i.e.

� = −2μ6�, � < 0. (3.38)

Analysis of the cubic
√

APeff
6 as a function of

√
A reveals that it is monotonic (implying a single root of

Peff
6 = 0) for � > 2/μ2

6; a positive root exists provided � < 0 for � > 0 that satisfies A∗
6 = 1 along

(3.38). For � > 0, the cubic has repeated roots along

� = 8

33/2μ6

(
1 − 1

2
�μ2

6

)3/2

, 0 < � < 2/μ2
6. (3.39)
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Fig. 4. (a) (�, �)-parameter space, showing boundaries for a uniform hexagonal array (following Farhadifar et al., 2007). Region
I represents a ‘soft’ network with no shear resistance, bounded by (3.38); Peff = 0 has a single positive root in region IIa and
two positive roots in region IIb. The network collapses in Region III, which is bounded by � = 0 and (3.39). The transformation
(3.40) allows (�, �) to be replaced by (�†, �†) in order to describe cases for which Pext 
= 0. (b,c) Classification of cell stress
configurations in a disordered monolayer, showing representative cell shapes. Larger (smaller) arrows indicate the orientation of
the eigenvector associated with the eigenvalue of the stress tensor having larger (smaller) magnitude, where |σα,1| ≥ |σα,2| ≥ 0.
Inward- (outward)-pointing arrows indicate the tension (compression) generated by the cell. (Colour in online.)

As a consequence the parameter map shown in Fig. 4 can be drawn (Farhadifar et al., 2007), with the
boundary between regions I and IIa defined by (3.38), that between regions IIa and III by � = 0 and
� > 2/μ2

6 and that between regions IIb and III by (3.39). We will focus attention below on region II, in
which at least one stress-free equilibrium state exists (for hexagons) with positive shear modulus. Along
the region I/IIa boundary, hexagons have P = 0 (A = 1) and T = 0 (L0 = L = μ6) and the monolayer
loses any resistance to shear (from (3.35)). (In a disordered monolayer, the rigidity transition to a floppy
region-I state has been shown to arise closer to L0 = μ5 ≈ 3.81 (Bi et al., 2015).) Approaching the region
IIa/III boundary, the equilibrium cell area approaches A = 0; two possible equilibria exist in region IIb,
coalescing at positive A along the region IIb/III boundary.

For later reference, we note that for a periodic array of hexagons under an external load Pext (for
which Peff

α = Pext in (3.31)), we may define (for Pext > −1)

A† = A/(1 + Pext) �† = �/(1 + Pext) �† = �/(1 + Pext)
3
2 , (3.40)

such that if Peff
6 (A; �, �) = Pext in (3.37) then Peff

6 (A†; �†, �†) = 0. This simple scaling symmetry of
(3.37) allows the axes of Fig. 4(a) to be replaced with �† and �† in order to encompass externally-loaded
monolayers subject to non-zero Pext.

Figure 4(b and c) illustrates four distinct classes of equilibrium cell shape and stress that arise in
simulations of disordered monolayers, distinguished by the signs of the eigenvalues (σα,1, σα,2) of the
cell stress tensor; recall that the corresponding eigenvectors align with the principal axes of the shape
tensor Sα . When Peff

α = −Tr(σ α) ≡ −(σα,1 + σα,2) > 0 (represented by darker cells, Fig. 4(b), the cell is
enlarged and under net tension: both eigenvalues of the stress tensor are negative when the cell is rounder,
although one can be positive when the cell is more elongated. Likewise when Peff

α < 0 (lighter cells,
Fig. 4(c), the cell is smaller and under net compression: both eigenvalues of the stress tensor are positive
when the cell is rounder, although one can be negative when the cell is more elongated.
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3.8 Simulation methodology

The majority of computational modelling was performed in Python, with some processes sent through
C where Python struggled with performance. The cells were described as an oriented graph using the
graph-tool module for Python (Peixoto, 2015). The algorithms and core data structures of graph-tool are
written in C++, thus its performance in memory and computation is comparable to that of pure C++. The
energy minimization was performed using a conjugate gradient method from the scipy library.

Simulations were performed in a square box of side L , imposing periodic boundary conditions. A
Matérn type II random sampling process was used to identify Nc initial cell centres within the box, giving
mean cell area Ā = L 2/Nc, chosen to match A∗

6 (given that hexagons are the most frequently observed
polygonal class in monolayers (Gibson et al., 2006)). A Voronoi tessellation was constructed between the
points (and their periodic extensions) to define an initial network of edges and vertices. The system was
then relaxed towards the nearest energy minimum. If the length of any edge fell beneath 0.1

√
A∗

6 (taking
the larger value of Ã∗

6 in Region IIb), a T1 transition (or intercalation) was implemented and relaxation
proceeded further (see Spencer et al., 2017 for a more refined treatment of this process). If the area of a
3-sided cell fell beneath 0.3A∗

6 (again taking the larger value of Ã∗
6 in region IIb), the cell was removed via

a T2 transition (extrusion). A small isotropic expansion or contraction of the network and the bounding
box was used to satisfy the zero-load condition (3.32) within an prescribed tolerance. The initial disorder
produced a distribution of values of Peff

α across the cell population.

4. Results

Simulations for � > 0 and � < 0 are illustrated in Fig. 5(a–d) respectively. In both examples, the Peff
α for

individual cells in the disordered monolayer lie close to Peff
N , the values for perfect polygons, suggesting

that Peff
α can be well predicted by a cell’s area and its polygonal class. Peff

N is monotonic in cell area when
� < 0 (L0 > 0), whereas it has a turning point for � > 0. Despite the potential for bistability in the
latter case, cells in a disordered array lie on both branches of the Peff

N curves. In both examples, the mean
cell area over the monolayer lies below unity, implying that cells lie below their equilibrium area: each
cell is held at this level by cortical tension, as the cell perimeters exceed the target value L0. Simulations
show that pentagons are smaller on average than heptagons; when � < 0 pentagons have Peff

α < 0 and
heptagons have Peff

α > 0 (Fig. 5c); in contrast, for � < 0 both sets of cells cluster around Peff
α = 0

(Fig. 5a).
The inherent disorder in equilibrium monolayers is illustrated in Fig. 6. The variance of Peff

α (about
mean zero) within a monolayer of 800 cells is mapped at discrete locations across (�, �)-parameter
space in Fig. 6(a). For each simulation, L was incrementally adjusted to enforce (3.32). The variability
weakens near the region I/IIa boundary and increases with �. Two individual realizations (Fig. 6b and
c) reveal mesoscopic patterns that emerge across the monolayer: shading identifies cells with positive or
negative Peff

α and line segments characterize the orientation of cell shape and stress. The example closer
to � = 0 (Fig. 6b) reveals slender patterns that are correlated over many cell lengths. Cells that are larger
(smaller) than their equilibrium area, with Peff > 0 (< 0), tend to align with their principal axis of shape
(and stress) parallel (perpendicular) to the line of cells, in structures that are reminiscent of force chains
in jammed systems (Majmudar & Behringer, 2005). In particular, chains of darker cells are elongated
parallel to the chain and exert a net tensile force along each chain, whereas lighter cells are compressed
along their chain axis and exert a net compressive force along each chain. Further visualization of these
structures is provided in Appendix D (Fig. D1a). In contrast, nearer the Region I boundary (Fig. 6c), the
correlation length of patterns increases and there appears to be less alignment of neighbouring cells.
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Fig. 5. (a, c) Curves show Peff
N defined in (3.37) plotted against cell area for perfect N-gons, using (�, �) = (−0.5, 0.15) (L0 = 3.33,

a, b) and (�, �) = (0.2, 0.048) (L0 = −2.08, c, d). Symbols show Peff
α defined in (3.24) for computationally simulated cells, with

shapes displayed in (b,d). Darker (lighter) cells in (b,d) have Peff
α > 0 (< 0). (Colour in online.)

Figure 7 illustrates the impact of varying parameters (�, �) (with Pext = 0) on the shape and size
of cells when partitioned into polygonal classes. The mean circularity of cells increases with � as
one moves across region IIa (Fig. 7a and b): near the region-I boundary, cells with more sides become
highly distorted (see inset), whereas near the region IIa/III boundary (where L0 → 0) cells become more
uniformly round. Increasing � for fixed � near this boundary increases the cortical tension and promotes
rounding, while reducing the mean cell area (Fig. 7c and d). Moving back across region IIa towards the
region-I boundary, L0 increases, reducing cortical tension and allowing cells to enlarge. In comparison
to the size of hexagons, the area distribution across polygonal classes (Fig. 7e) is much more uniform
near the region I/IIa border than near the IIa/III border. The non-linearity in Peff

N implies that changes
in parameters influence circularity and areas among different polygonal classes non-uniformly. In con-
trast, the total area occupied by different polygonal classes shows surprisingly little parameter variation
(Fig. 7f).

In addition to the model parameters (�, �), the density of cells (controlled by Pext in (3.31)) also
induces changes in the equilibrium cell packing configurations. As Fig. 8 illustrates, monolayers under
uniform net compression (for which Pext < 0 on average) will tend to produce more round cells, closer
to perfect polygons. In contrast, monolayers under uniform net tension (for which Pext > 0 on average)
exhibit more disordered arrays, with cells tending to be more elongated. In parameter fitting below, we
initially impose the constraint Pext = 0.
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Fig. 6. (a) A map of the variance of Peff
α at discrete locations within region II of (�, �)-parameter space. Lines show the boundaries

for a hexagonal network, as in Fig. 4(a). The dark squares along the region IIb/III boundary are artefacts, reflecting the co-existence
of cells with small and large areas near this boundary. Each datapoint is taken from 5 realizations of a monolayer with 800 cells.
(b) An individual monolayer realization for � = −0.1, � = 0.1, Pext = 0 with 800 cells. Darker (lighter) shading denotes cells
with Peff > 0 (< 0). Line segments indicate the principal axis of the shape and stress tensor for each cell, coincident with the
heavy arrows in Fig. 4(b), i.e. aligned with the stress eigenvector associated with the eigenvalue of larger magnitude. (c) A similar
example for � = −1.11, � = 0.15. (Colour in online.)

4.1 Parameter fitting

Of the features described in Fig. 7, the total area per polygonal class (panel f) is a poor candidate for
parameter identification, while the mean area (panel c) requires a dimensional measure of area and the
mean normalized area (panel d) shows limited variation. In contrast, the mean circularity (panel a) shows
strong parameter variation without the additional requirement of a lengthscale measurement. However,
searching across parameter space we found it difficult to capture simultaneously both the distribution
of mean area and the distribution of mean cell circularity. Given the key contribution of cell area to the
stress tensor, we therefore chose to use cell area (following Farhadifar et al., 2007) to parameterize the
model to the Xenopus laevis animal cap explants introduced in Section 2; we return to circularity below.

Using simulations of monolayers under Pext = 0, we generated datasets A sim(�, �), the mean areas
of cells in each polygonal class, to compare with experimental data A exp = {Ā exp

4 , Ā exp
5 , Ā exp

6 , Ā exp
7 , Ā exp

8+ }.
We asses the fit of A sim relative to A exp using the following log-likelihood

ln
(
P(�, � | A exp, A sim)

) ∝ − ln

(
8∑

i=4

|Ā exp
i − Ā sim

i (θ)|2
)

. (4.1)
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Fig. 7. Dependence of cell geometry on model parameters, using five unique simulations with 800 cells (4000 cells total) in a
periodic box under zero net external pressure. (a) Mean circularity of cells per polygonal class, at parameter values indicated by
corresponding symbols in (�, �)-parameter space in (b,c). (b) The heat map shows mean circularity of all cells in a simulation,
using the same realizations used in Fig. 6. Insets show two example configurations. (c) Mean cell area per polygonal classes, for
the same set of parameters. (d) Heat map of mean area of all cells across (�, �)-parameter space. (e) Mean cell area per polygonal
class for given parameters, normalised by the mean area of hexagons. (f) Total area of all cells in each polygonal class, such that
the sum of all points equals the area of the box. (Colour in online.)

Evaluating (4.1) across a grid of parameter samples in region II (Fig. 9a), the posterior was maximized
with (�, �) ≈ (−0.26, 0.17), for which L0 ≈ 0.76. While there are other credible parameter regions near
the region III boundary, we can be confident that the monolayer in this experiment is far from the rigidity
transition at region I, and reasonably certain that it falls outside region IIb (where L0 < 0). The distribution
of area across polygonal classes is captured well by the model (Fig. 1e). For best-fit parameters, cells
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Fig. 8. Visualizing the effect of peripheral stress on network packing geometry. 800 cells were simulated in boxes of width
L = 10, 20, . . . , 90 leading to Peff distributions with means shown in (a). Pext = 0 for a box width of 20. The corresponding means
of the distributions of circularities are shown in (b). The variance of the distributions at different box widths are given in (c), for
Peff

α (solid) and circularity (dashed). Model parameters used were (�, �) = (−0.1, 0.1) for which A∗
6 = 0.446. Larger box sizes

have lower cell density, higher mean Peff, lower mean circularity and greater variability. (Colour in online.)

which are larger than average (shaded dark in Fig. 9b) tend to align in slender structures or, in some
instances, to be isolated at the centre of a rosette of smaller (pale) cells.

Despite matching area distributions well, the circularity distribution is over-estimated across all polyg-
onal classes (Fig. 1f). Figure 8(b) suggests that the circularity can be reduced by putting the monolayer
under net tension. To investigate the possibility that the thin basal tissue layer of the animal cap (Fig. 1a and
b) might induce such a tension in the apical epithelium, we ran additional simulations for which Pext > 0
(see (3.31)), maintaining fixed values of �† and �† (see (3.40)) in order to remain in an equivalent region
of parameter space. A demonstration of the changes in cell area and circularity across polygonal classes
as Pext for (�†, �†) = (−0.259, 0.172) is given in Fig. 9(c and d). While the area distribution maintains
close agreement with experiment as Pext increases, the circularity moves towards the experimental range
but does not fall comfortably within it, even for very large Pext. We conclude that additional refinements
to the model (such as higher order non-linearities in the energy Ũα , see (3.3)) may be necessary to ensure
quantitative agreement of both area and circularity distributions.

5. Discussion

We have investigated a popular vertex-based model of planar epithelia, addressing features associated
with cell packing rather than division or motility. We focused on a simple version of the model, neglecting
refinements such as representations of internal viscous forces (Okuda et al., 2015), non-planarity (Hannezo
et al., 2014; Murisic et al., 2015; Bielmeier et al., 2016), descriptions of curved cell edges (Brodland et al.,
2014; Ishimoto & Morishita, 2014), internal anisotropy, multiple cell types and so on. We first derived
an expression (3.23) for the stress σ α of an individual cell, expressed in terms of its shape. The isotropic
component of stress reveals the cell’s effective pressure Peff

α (3.24), which is set by a balance between
the internal pressure associated with bulk (cytoplasmic) forces that regulate cell area and cortical tension
that regulates the cell perimeter. With the area below and the perimeter above their respective targets
(Aα < 1 and Lα > L0), the bulk forces push outward against the stretched perimeter, giving the cell some
rigidity. The traceless tensor Jα in (3.23) characterizes asymmetries in the cell shape that might arise
from an imposed shear stress or, in the absence of an external load, internal asymmetries associated with
intrinsic disorder. A simple representation of viscous forces associated with drag from the underlying
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Fig. 9. Results of parameter fitting. (a) Heat map showing value of the likelihood function (4.1) across a uniform grid in valid
parameter space. The simulated monolayers used were the same as those in Figs 6 and 7. For each monolayer, the mean areas
per polygonal class were calculated and used to evaluate (4.1). The likelihood was maximized at (�, �) ≈ (−0.26, 0.17), marked
by the circular symbol; a corresponding monolayer is shown in (b), with cells having Peff

α > 0 (< 0) shaded dark (light). (c,
d) Distributions of area and circularity across polygonal classes for simulations with (�†, �†) = (−0.259, 0.172) for increasing
values of Pext . (Colour in online.)

substrate leads to a further contribution to the stress associated with dynamic shape changes. Crucially,
the principal axes of the shape tensor Sα (defined in terms of the vertex locations) align exactly with the
principal axes of the cell stress, as illustrated in Fig. 3. This result may have implications in cell division,
where it is postulated that there may be shape- and stress-sensing mechanisms guiding the positioning
of the mitotic spindle (Théry & Bornens, 2006; Minc et al., 2011). If the vertex-based model is accepted
as a leading-order description of cell mechanics, it follows that it will not be possible to separate these
mechanisms by looking solely at cell geometry, since the orientation of any inferred stress will necessarily
align with the cell shape. Instead, the system must be perturbed, either mechanically or biochemically
(using biological knockdowns, for example), such that the mechanisms can be disrupted and separated.
In this context, it is worth highlighting the distinction between the orientation of external stress that may
be imposed on a monolayer, and the heterogeneous stress field at the individual cell level (e.g. Fig. 3).
Observations show cell division in a stretched monolayer to be aligned with cell shape rather than the
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external stress orientation (Wyatt et al., 2015); the present model suggests that the cell-scale stress would
be aligned with cell shape, even if the average stress at monolayer level has a different orientation.

The distinction between individual cell stress σ α and tissue-level stress σ R is evident in the expression
(3.26) for the stress over a patch of cells, derived as an area-weighted average of the individual cell stresses.
For a monolayer under an isotropic external load of magnitude Pext, we derived a constraint (3.31) on the
area-weighted Peff

α ; furthermore, the averaged deviatoric stress must vanish in this case. When simulating
a monolayer that is not subject to lateral forcing, the constraint of zero mean effective pressure (3.32)
is important in determining the appropriate cell density within the simulation domain. One can then
examine the properties of the monolayer when this configuration is perturbed by small compressive or
shear deformations. We derived an exact expression (3.33) for the monolayer’s bulk elastic modulus
(generalizing results obtained previously for hexagonal cell arrays) and recovered directly an expression
(3.35) for the shear modulus in the hexagonal packing limit. The mechanical properties of the tissue can
therefore be tuned by varying the relative strengths of the bulk and cortical forces. As shown previously
(Bi et al., 2015), a phase transition arises when L0 ≈ 3.81, which bounds a region of parameter space in
which the monolayer loses resistance to shear deformations. Fitting our model to data from embryonic
Xenopus laevis tissue, by maximizing a likelihood function derived from the mean area per polygonal
class, suggests L0 ≈ 0.76 in the embryonic tissue, substantially distant from the rigidity transition. The
model fit is imperfect however, as we were not able to capture circularity distributions even when varying
the peripheral load on the monolayer (Figs 1f and 9). This suggests further constitutive refinements of
the model are needed, such as including higher-order non-linearities in (3.3). We also examined how cell
shape (and of course size) can be influenced by an external load Pext, with cells becoming rounder when
tightly packed (Fig. 8). The bulk isotropic stress (or equivalently the mean cell density) is likely to be
a significant parameter when simulating confined tissues, and is an example of a mechanical signal that
can be communicated over long distances. Future studies should address anisotropic external loading,
which has the capacity to promote more ordered cell packing (Sugimura & Ishihara, 2013).

The present descriptions of the stress tensor are appropriate for small-amplitude deformations close
to equilibria, and in future should be extended to account for irreversible cell rearrangements (such as
T1/T2 transitions) that endow the material with an elastic-viscoplastic character, as well as accounting
for cell division. Kinematic and geometric quantities (such as the texture tensor) characterizing large
deformations of cellular materials have been developed that are based on connections between centres
of adjacent cells (Graner et al., 2008; Blanchard et al., 2009; Etournay et al., 2015; Guirao et al., 2015;
Tlili et al., 2015; Blanchard, 2017), the dual network to that considered here. While it is straightforward
to repartition the stress (3.26) over the network of triangles connecting cell centres, it is less clear how to
relate it to strain measures defined with respect to cell centres rather than cell vertices, without for example
assuming that vertices are barycentric with respect to cell centres (Barton et al., 2016). In particular, the
relationship between the tissue-level stress postulated by Etournay et al. (2015) to that emerging from
the vertex-based model remains to be established.

While the monolayer can be stress-free at the bulk scale, individual cells can have non-zero Peff
α : those

for which Peff
α > 0 (< 0) are larger (smaller) than the equilibrium area at which bulk and cortical forces

balance. Each simulation of a spatially disordered monolayer describes an equilibrium configuration
of this very high-dimensional dynamical system, subject to the constraint that all edge lengths exceed
a defined threshold (smaller edges being removed by T1/T2 transitions). We have characterized some
features of the variability of these states, both in terms of the variance in Peff

α over the cell population and the
spatial pattern of compressed and dilated cells. While soft monolayers near the region I/II boundary show
very long-range patterning (Fig. 6c), stiffer monolayers nearer the II/III boundary appear to exhibit chains
of force (and cell shape, Figs 6b and D1a), where lines of tension and compression are transmitted along
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entangled strings. Evidence of force chains has recently been provided in the Drosophila melanogaster
embryo (Gao et al., 2016) and the patterns suggested by our model (Fig. 9) motivate ongoing investigations
in the Xenopus system. Robust evidence of force-shape chains in real epithelia would raise interesting
questions about the role of mechanical feedback on patterning of cell division.
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Appendix A. Geometric identities

The contribution to the stress due to cell pressure first involves

Zα−1∑
i=0

Ri
α ⊗ pi

α = 1

2

Zα−1∑
i=0

Ri
α ⊗ [(

Ri+1
α − Ri−1

α

)× ẑ
]
. (A.1)

Taking components,

{
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] = Aαδpq (A.2)

giving (3.22a). Referring now to the contractility term, we find
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recalling li
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giving (3.22b). This is symmetric because t̂i
α ⊗ ti

α = ti
α ⊗ t̂i

α .

Appendix B. Proof that Sα , Ṡα and Jα align

To establish that SαJα = JαSα for cell α, we can ignore the pre-factors in the tensors and need only show
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Let us henceforth assume that the sums over i, j and q are implicit. We also drop the α subscripts, under
the assumption that all vectors are relative to the same cell centroid. Considering the left hand side (LHS)
first:

LHS = Ri
pRi

q

(
Rj+1

q − Rj
q

) (
Rj+1

r − Rj
r

)
/lj
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where Mi
pq = 2Ri
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r are symmetric (Mi
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where we have exchanged indices in the first line and made use of the symmetry of the product in the
second. By similar steps we find

IIpr ≡ Mi
pqNj

qr/lj = Mi
qpNj

rq/lj = Mj
qpNi

rq/li = (Ni
rq/li)Mj

qp

= (Ni
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However, noting the definitions above, we see that the right hand side (RHS) of (B.1) may be written as

RHS = (Mi
pq/2li)Mj

qr − (Ni
pq/2li)Mj

qr = 1

2
(Ipr − IIpr) (B.5)

matching (B.2). Therefore the tensors commute and we have alignment of the principal axes of stress and
shape, when the system is in equilibrium.

Let us now establish ṠαSα = SαṠα . Ignoring pre-factors again, we have

ṠαSα = 1

2
(Ṙi

pRi
q + Ri

pṘi
q)R

j
qRj

r = Ṙi
pRi

qRj
qRj

r , (B.6)

which is symmetric. Given that Ṡα , Sα are both symmetric, and their product is symmetric, we have a
necessary and sufficient condition that they commute. We therefore also have alignment of the principal
axes of stress and shape when the system is out of equilibrium.

Appendix C. Shear modulus of a perfectly hexagonal cell

For a 2D linearly elastic isotropic material with constitutive relation σ = K ITr(ε) + 2G(ε − 1
2 ITr(ε)),

where K is bulk modulus, G shear modulus and ε linear strain, a small shear deformation (x1, x2) =
(X1, X2)+γ (X2, 0) (defined with respect to Cartesian axes mapping X to x), with ε = 1

2γ (x̂1⊗x̂2+x̂2⊗x̂1),
generates a shear stress σ12 = γ G. We expect a cell array formed from perfect hexagons to be characterized
by effective isotropic material parameters K and G. We discard the subscript α and let a representative
cell have vertices Ri = (L/6)ri where ri = (ci, si), ci ≡ cos(π i/3), si = sin(π i/3) and A = (L/μ6)

2.
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We can then identify G by perturbing the equilibrium stress σ (Ri) = −Peff I + TJ under the given shear
deformation and Taylor expanding σ (Ri + γ (Ri

2, 0)) about the equilibrium state for which Peff = 0 and
J = 0. Thus we must evaluate

G = −
5∑

i=0

Ri
2
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k=0

tk
1 tk

2

lk

)
(C.1)

in the symmetric configuration. The initial minus sign arises because σ models the restoring cell forces,
whereas the shear modulus is calculated using the force required to deform the object. The sum over i
arises from the chain rule. The sum over k vanishes in the equilibrium configuration so we need consider
only its derivatives, for which the only non-zero contributions are when k = i − 1 and k = i. Performing
the differentiation, we have
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where
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i
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2 (C.5)

for tk = lk t̂k . Finally, evaluating the sum over i, we recover (3.35).

Appendix D. Visualising force chains

We identify force chains in the monolayers using a criterion adapted from Peters et al. (2005). In order
for two cells, α and α′, to be in a force chain we require the following conditions to be satisfied:

cos θ <
σ α,1 · (Rα′ − Rα)∣∣σ α,1

∣∣ |Rα′ − Rα| , cos θ <
σ α′ ,1 · (Rα − Rα′)∣∣σ α′ ,1

∣∣ |Rα − Rα′ | , 0 < σα,1σα′ ,1. (D.1)

Here σα,1 (σ α,1) is the principal eigenvalue (eigenvector) of the stress tensor of cell α and Rα′ − Rα is the
vector running from the centroid of cell α to the centroid of α′. Equation (D.1a) ensures that cell α′ lies
within θ radians of σ α,1, while (D.1b) equivalently ensures that cell α lies within θ radians of σ α′ ,1. (This
reciprocal requirement is demonstrated in Fig. D1 (b–e); cell α lies within the criterion for cell α′, but α′

does not satisfy the criterion for α, so the cells do not form a chain; however α and α′′ do form a chain.)
Finally, (D.1c) ensures that both cells are under compression or tension.
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Fig. D1. (a) An example of force chains in a monolayer, with 800 cells and � = −0.1, � = 0.1, Pext=0. Darker (lighter) shading
denotes cells with Peff > 0 (< 0). Short line segments indicate the principal axis of the stress tensor for each cell (see Fig. 4). Long
red lines identify chains satisfying (D.1) with θ = π/4. (b–e) identify force chains. Red lines represent vectors running between
cell centroids. Black double sided arrows indicate the principal axis of stress. b) Cell α has been selected to start a chain, and cells
α′ and α′′ are found to satisfy (D.1c). (c-e) Only α′′ is selected to join the chain as it satisfies both (D.1a) (c) and (D.1b) (d). α′ is
excluded because is fails (D.1a) (c), despite satisfying (D.1b) (e). (Colour in online.)

To construct the visualization shown in Fig. D1(a), cells are randomly selected to start new chains,
and this starting cell is then denoted a leader. Leaders are cells at the ends of chains, which have not had
the above criterions checked with all of their neighbours. Once a new leader has been chosen to start a
chain, the following procedure is executed:

1. Select a leader from the current chain. This cell is no longer a leader.

2. Identify all of this cell’s neighbours which are not already part of a chain (including the current
chain), if any. All neighbours that satisfy (D.1) are added to the chain and become new leaders.

3. Repeat from step 1 until no leaders remain.

We chose to only include chains comprised of three or more cells. The fact that new leaders cannot
neighbour current members of the chain ensures that we have no closed loops, although we do allow
branching. However, it also means that the set of chains in a monolayer is not unique, but depends on
which cells are chosen to start new chains.
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