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Abstract

A large number of GPCRs are potentially valuable drug targets but remain understudied.

Many of these lack well-validated activating ligands and are considered “orphan” receptors,

and G protein coupling profiles have not been defined for many orphan GPCRs. Here we

asked if constitutive receptor activity can be used to determine G protein coupling profiles of

orphan GPCRs. We monitored nucleotide-sensitive interactions between 48 understudied

orphan GPCRs and five G proteins (240 combinations) using bioluminescence resonance

energy transfer (BRET). No receptor ligands were used, but GDP was used as a common G

protein ligand to disrupt receptor-G protein complexes. Constitutive BRET between the

same receptors and β-arrestins was also measured. We found sufficient GDP-sensitive

BRET to generate G protein coupling profiles for 22 of the 48 receptors we studied. Alto-

gether we identified 48 coupled receptor-G protein pairs, many of which have not been

described previously. We conclude that receptor-G protein complexes that form spontane-

ously in the absence of guanine nucleotides can be used to profile G protein coupling of con-

stitutively-active GPCRs. This approach may prove useful for studying G protein coupling of

other GPCRs for which activating ligands are not available.

Introduction

G protein-coupled receptors (GPCRs) are the targets of a large fraction of clinically-useful

drugs, and efforts to develop new drugs targeting GPCRs are ongoing [1]. Defining character-

istics of GPCRs are the natural ligands that bind and activate each receptor, and the intracellu-

lar transducers (G proteins and arrestins) that propagate signals to downstream effectors [2].

Individual GPCRs can couple to several different G proteins from more than one G protein

family. Because each of the four G protein families (Gs/olf, Gi/o, Gq/11, and G12/13) activates dif-

ferent downstream effectors, GPCR-G protein coupling profiles have traditionally been deter-

mined using second messenger assays, most commonly those that measure intracellular cyclic

AMP (cAMP) and calcium. Although these assays are robust and quite sensitive, crosstalk

between pathways can complicate interpretation, and comparable second messenger assays

are not available for all four families. G protein coupling can also be determined by more direct

methods, such as [35S]GTPγS binding in vitro, but these methods are more difficult to
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implement, particularly at scale across multiple G protein subtypes [3]. More recently, genetic,

spectroscopic and luminometric assays have been developed that allow more direct assessment

of G protein coupling profiles in living cells [4–8]. These assays can detect coupling to all four

G protein families, avoid ambiguity due to signal crosstalk, and are efficient enough to allow

profiling of a large number of GPCRs in parallel.

Several recent studies have used these methods to profile G protein coupling of GPCRs in

response to activating ligands [9–12]. However, for a large number of so-called orphan GPCRs

the natural ligand is either not known or not well-validated, and surrogate activating ligands are

not available [13]. Therefore, studies profiling G protein coupling have generally not included

orphan GPCRs. In a recent study we found that many GPCRs would spontaneously form com-

plexes with cognate G proteins in the absence of guanine nucleotides, and these complexes were

disrupted by the addition of GDP [14]. This is consistent with the known ability of constitutively-

active GPCRs to activate G proteins in the absence of an agonist [15]. It occurred to us that the

nucleotide-sensitivity of spontaneous GPCR-G protein complexes could be used to define cou-

pling profiles of orphan GPCRs without using activating ligands. Here we test this idea using 48

orphan GPCRs, most of which have not been extensively studied or characterized. We find that

approximately half of the receptors we studied possess sufficient constitutive activity to define a G

protein coupling profile. These results may facilitate efforts aimed at understanding the physiolog-

ical roles these receptors, and at discovering and validating new drugs acting at GPCRs.

Materials and methods

Materials

Trypsin, culture media, PBS, DPBS, penicillin/streptomycin and L-glutamine were from

GIBCO (ThermoFisher Scientific, Waltham, MA, USA). PEI MAX was purchased from Poly-

sciences Inc. (Warrington, PA, USA). Digitonin, apyrase and GDP were purchased from Milli-

poreSigma (St. Louis, MO, USA). Coelenterazine h was purchased from Nanolight

Technologies (Pinetop, AZ, USA).

Plasmid DNA constructs

GPCR coding sequences were provided by Bryan Roth (University of North Carolina, Chapel

Hill, NC; PRESTO-Tango Kit—#1000000068, Addgene, Watertown), MA, USA) [16], except

for GPR139, which was a gift from Kirill Martemyanov [17]. For each receptor the coding

sequence was amplified with a common forward primer (corresponding to a cleavable signal

sequence) and custom reverse primer (corresponding to the receptor C terminus) and ligated

into a pRluc8-N1 cloning vector. All plasmid constructs were verified by Sanger sequencing.

Plasmids encoding Venus-Kras, Venus-PTP1b, Venus-1-155-Gγ1, and Venus-155-239-Gβ1

have been described previously [4,18]. Gα subunit plasmids were purchased from cdna.org

(Bloomsburg University, Bloomsburg, PA). Plasmids encoding Venus-β-arrestin-1 and -2

were a gift from Vsevolod Gurevich (Vanderbilt University, Nashville, TN, USA), and plas-

mids encoding the S1 subunit of pertussis toxin (PTX-S1) was kindly provided by Stephen R.

Ikeda (NIAAA, Rockville, MD, USA).

Cell culture and transfection

HEK 293 cells (CLS Cat# 300192/p777_HEK293, RRID:CVCL_0045; ATCC, Manassas, VA,

USA) were propagated in plastic flasks and on 6-well plates according to the supplier’s proto-

col. HEK 293 cells with targeted deletion of GNAS, GNAL, GNAQ, GNA11, GNA12 and

GNA13 (G protein three family knockouts; 3GKO) were derived, authenticated and
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propagated as previously described [19]. Cells were transfected in growth medium using linear

polyethyleneimine MAX (PEI MAX; MW 40,000) at an nitrogen/phosphate ratio of 20 and

were used for experiments 48 hours later. Up to 3.0 μg of plasmid DNA was transfected in

each well of a 6-well plate. For G protein experiments 3GKO cells were transfected with a

GPCR-Rluc8, Gα subunit, Venus-1-155-Gγ2, Venus-155-239-Gβ1, and pcDNA3.1(+) or

PTX-S1 in a (1:10:5:5:5) ratio for a total of 2.6 μg of plasmid DNA in each well of a 6-well plate.

For arrestin experiments HEK 293 cells were transfected with a GPCR-Rluc8, Venus-β-

arrestin-1 or -2, GRK2 and GRK6 in a 1:10:5:5 ratio for a total of 2.1 μg of plasmid DNA. For

trafficking experiments HEK 293 cells were transfected with a GPCR-Rluc8 and either Venus-

Kras or Venus-PTP1b in a 1:10 ratio for a total of 1.1 μg of plasmid DNA.

BRET assays

For G protein coupling experiments cells were washed twice with permeabilization buffer

(KPS) containing 140 mM KCl, 10 mM NaCl, 1 mM MgCl2, 0.1 mM KEGTA, 20 mM

NaHEPES (pH 7.2), harvested by trituration, permeabilized in KPS buffer containing 10 μg

ml-1 high purity digitonin, and transferred to opaque black 96-well plates. Measurements were

made from permeabilized cells supplemented either with 100 μM GDP or 2U ml-1 apyrase. For

arrestin and trafficking experiments cells were washed twice in PBS and harvested by tritura-

tion in DPBS. For all experiments 5 μM coelenterazine h was used as a substrate. For the exper-

iments shown in Fig 1, permeabilized cells were supplemented with apyrase, and GDP

(100 μM) was injected during continuous recording using a Polarstar Optima plate reader

(BMG Labtech, Offenburg, Germany). All other measurements were made using a Mithras

LB940 photon-counting plate reader (Berthold Technologies GmbH, Bad Wildbad, Germany).

Raw BRET signals were calculated as the emission intensity at 520–545 nm divided by the

emission intensity at 475–495 nm. Net BRET signals were calculated as the raw BRET signal

minus the raw BRET signal measured from cells expressing only the Rluc8 donor.

Statistical analysis

The data shown in Fig 1 represent the mean ± SD of 16 technical replicates from one exemplary

experiment. Because background basal BRET differed for each G protein, in this experiment raw

BRET values for each trace are normalized the average of the first ten data points of all of the

traces for a particular G protein. The data shown in Fig 2 represent the average of three indepen-

dent experiments, each performed in duplicate. G protein heat maps (Fig 3) represent the differ-

ence in the raw BRET ratios measured from cells incubated in presence and absence of GDP

(ΔBRETGDP). Arrestin heat maps represent the basal net BRET. No hypothesis testing was per-

formed and no claims of statistical significance are made. The threshold for assigning G protein

coupling was determined by assuming that the majority of receptor-G protein pairs would be

uncoupled, and that the ΔBRETGDP values for these pairs would be randomly distributed around

zero. Coupled pairs were detected as outliers from this distribution using the ROUT method [20]

implemented in GraphPad Prism 8 (GraphPad Software, La Jolla, CA) with Q (the maximum

false discovery rate) set to 1%, meaning fewer than 1% of the detected (coupled) pairs are expected

to be false-positives. The same procedure was used to detect receptor-arrestin pairs.

Results

Receptor-G protein interactions

We have previously monitored direct interactions between GPCRs and G proteins using biolu-

minescence resonance energy transfer (BRET) between receptors fused to Renilla luciferase
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(Rluc8) and G protein heterotrimers tagged with the fluorescent protein Venus. Using per-

meabilized cells we found that many GPCRs spontaneously interacted with G proteins in a

nucleotide-sensitive fashion [14]. Importantly, these constitutive GDP-sensitive interactions

corresponded well to known G protein coupling, suggesting that it should be possible to study

G protein coupling of orphan GPCRs without using activating ligands. To test this idea we

fused Rluc8 to the C terminus of 48 class A orphan receptors, 43 of which are on the most

recent list of understudied GPCR targets compiled by the Illuminating the Druggable Genome

(IDG) project [21,22]. Receptors were coexpressed together with a Gα subunit and Venus-Gβγ
in genome-edited HEK 293 cells lacking endogenous Gs/olf, Gq/11 and G12/13 proteins [19]. We

chose one Gα subunit to represent each of the four G protein families (Gαi1, Gαs-long, Gαq,

Gα13) as well as Gα15, due to its unique coupling properties [23]. Except when Gαi1 was used,

we also transfected the S1 subunit of pertussis toxin to prevent coupling of endogenous Gi/o

proteins to GPCRs.

Complexes between constitutively-active receptors and cognate G proteins formed sponta-

neously in permeabilized cells when apyrase was used to hydrolyze residual guanine
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Fig 1. Addition of GDP disrupts GPCR-G protein complexes. (A) Cartoon representation of the experimental

design. Constitutively-active GPCRs fused to Renilla luciferase (Rluc8) form spontaneous active-state complexes with

nucleotide-free G protein heterotrimers fused (via the Gβγ subunit) to the fluorescent protein Venus in the absence of

activating ligands. Addition of GDP (100 μM) disrupts these complexes, decreasing BRET between GPCR-Rluc8 and

Gαβγ-Venus. (B) Representative experiments of this type with GPR82 and GPR174. Traces represent the mean ± SD of

16 technical replicates from a single experiment, and each trace is normalized to the basal BRET observed for that

particular G protein. GDP was injected where indicated by the horizontal bar.

https://doi.org/10.1371/journal.pone.0247743.g001
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nucleotides, thus maintaining the nucleotide-empty state of the G protein. Addition of GDP

(100 μM) led to rapid complex dissociation, and a decrease in BRET between receptors and G

proteins (Fig 1A). For example, GPR82 formed GDP-sensitive complexes with Gi1 heterotri-

mers, but not with Gs, Gq, or G13 heterotrimers (Fig 1B). In contrast, GPR174 formed GDP-

sensitive complexes primarily with Gs and G13 heterotrimers (Fig 1B). Almost nothing is

known about GPR82 (Jensen PubMed Score 1.16), which is listed as a “probable” GPCR, and

we were unable to find any reports of GPR82 coupling to G proteins in the literature. In con-

trast, GPR174 (Jensen PubMed Score 10.06) has been described as a receptor for lysophospha-

tidyl-L-serine (lysoPS) [7] and the chemokine CCL21 [24], and is known to couple to Gs/olf

and G12/13 heterotrimers [9]. These results demonstrate the utility of this approach for profil-

ing G protein coupling of orphan GPCRs.

Changes in BRET after addition of GDP (ΔBRETGDP) for the 240 pairings in our sample

clustered around zero, as expected if the majority of receptor-G protein pairs do not constitu-

tively couple (Fig 2). However, a population of more negative values of ΔBRETGDP was appar-

ent that presumably corresponds to coupled receptor-G protein pairs. We set a conservative

threshold for coupling by identifying outliers from a random distribution of ΔBRETGDP val-

ues, using a false discovery rate (FDR) of 1% (see Materials and Methods).

Using this threshold G protein coupling was detected for 22 of the 48 receptors and 48 of

the 240 pairings in our sample (Fig 3; S1 File). We detected constitutive coupling of 18 recep-

tors to Gi1, 8 receptors to Gs, 6 receptors to Gq, 7 receptors to G13, and 9 receptors to G15. Of

the 22 profiled receptors 11 are annotated for G protein coupling in the IUPHAR Guide to

Pharmacology (GtoPdb), and within this set there was excellent agreement between our results

and annotated coupling [13] (S1 File). The sole exception was GPR75, which coupled to Gi1 in

our dataset but is annotated as coupling to Gq. This receptor has been shown to stimulate ino-

sitol phosphate turnover and calcium release in other studies [25]. In several cases, our results

agreed with annotated receptor-G protein pairs, but also indicated coupling to additional G

protein families. For example, our results confirmed coupling of GPR26 to Gs [26], but indi-

cated additional coupling to Gi1, G15 and Gq. We also found several instances where no G pro-

tein coupling was annotated in GtoPdb, but where published reports indicated signaling
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Fig 2. Determination of threshold ΔBRETGDP. Most receptor-G protein pairs did not interact, and values of

ΔBRETGDP were distributed around zero. Values to the left of the dashed vertical line (ΔBRETGDP = -0.009) were

identified as outliers from this background distribution (i.e. coupled pairs) with a false discovery rate (FDR) of 1%.

Each point represents a single receptor-G protein pair, and the mean of three independent experiments performed in

duplicate.

https://doi.org/10.1371/journal.pone.0247743.g002
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Fig 3. Constitutive G protein and β-arrestin coupling of understudied GPCRs. Heat maps representing the mean

ΔBRETGDP for 200 receptor-G protein pairs (blue) and basal net BRET for 80 receptor-β-arrestin pairs (red). The

righthand column indicates the G proteins for which ΔBRETGDP exceeded the determined threshold. Each cell

represents the mean of three independent experiments performed in duplicate. Eight receptors that trafficked poorly to

the plasma membrane are not shown here.

https://doi.org/10.1371/journal.pone.0247743.g003
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through a particular G protein pathway. In such cases our results were also generally in good

agreement with previous reports, but again indicated coupling to additional G proteins that

was previously unreported. For example, GPR62 has been shown to constitutively activate ade-

nylyl cyclase (AC), albeit weakly, suggesting coupling to Gs [27]. Our results confirm that this

receptor couples to Gs, but also show similar coupling to Gi1 and G15. Dual coupling to Gi and

Gs proteins may help to explain relatively weak constitutive activation of AC by this receptor.

These results illustrate the value of an unbiased profiling approach that includes G proteins

from all four Gα subunit families.

For 26 of the receptors we studied ΔBRETGDP did not meet threshold for any of the G pro-

teins tested. The most likely explanation for this outcome is that these receptors simply lacked

sufficient constitutive activity to couple efficiently to G proteins in the absence of a ligand.

However, one alternative explanation is the failure of these receptors to traffic efficiently to the

plasma membrane, where the majority of G protein heterotrimers are located. To test this idea

we measured bystander BRET between each receptor and markers of the plasma membrane

(PM) and endoplasmic reticulum (ER) [18]. Most receptors showed substantial BRET to the

PM marker, and less BRET to the ER marker, indicating efficient trafficking to the cell surface.

However, 8 receptors (GPR31, GPR37L1, GPR142, GPR146, GPR148, GPR152, GPR160 and

MRGPRG) showed BRET to the ER marker that exceeded BRET to the PM marker, indicating

inefficient trafficking to the PM (S1 File). All 8 of these receptors were among the 26 that failed

to show constitutive G protein coupling, suggesting that retention of these receptors in the bio-

synthetic pathway may have contributed to our inability to detect G protein coupling.

Receptor-arrestin interactions

It is also possible that some of the receptors that we studied do not couple to G proteins at all,

as is the case for some “decoy” receptors (e.g. the C5a2 complement receptor) [28]. Because

some decoy receptors bind to β-arrestins we asked if any of the orphan receptors in our sample

interacted constitutively with these transducers by measuring basal BRET between receptors

and Venus-β-arrestin-1 and Venus-β-arrestin-2 in intact cells. Basal BRET between unstimu-

lated GPCRs and arrestins is typically low unless there is a specific interaction [29], or unless

arrestins are recruited in some other way to membrane compartments where receptors are

located. Accordingly, basal BRET between orphan receptors and Venus-β-arrestins was low

for most of the receptors in our sample (Fig 3; S1 File). However, GPR182 and GPR4 were

both outliers for both β-arrestin-1 and β-arrestin-2. GPR182 failed to couple detectably to G

proteins, suggesting that this receptor may be biased towards interacting with arrestins rather

than G proteins.

Discussion

In the present study we measured guanine nucleotide-sensitive coupling of G proteins to a

sample of understudied orphan GPCRs. We used an unbiased approach that directly indicates

receptor association with unmodified Gα subunits and does not require an activating ligand.

We were able to detect G protein coupling to 22 of the 48 receptors we studied. We confirmed

many receptor-G protein pairings determined previously by other methods, and demonstrated

several new pairings. With respect to the overall prevalence of coupling to different G protein

subtypes, our results with constitutive activity of orphan receptors agree well with previous

studies of agonist-induced coupling of non-orphan GPCRs [9–12]. Gi1 was the most frequent

coupler (18 receptors), whereas the Gq/11 family (including Gq and G15) was the second-most

frequent (15 receptors). Of the 9 receptors that coupled to only one G protein, 7 coupled solely

to Gi1. We also found that coupling to G13 (7 receptors) was more common in our dataset than
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might be predicted based on GtoPdb annotations of all GPCRs, as shown previously by others

[9,10]. It is possible that coupling to G12/13 is underrepresented in GtoPdb because simple sec-

ond messenger assays are not available for this family. Coupling to G13 was always observed in

conjunction with coupling to another G protein [30]. Among the G13-coupled receptors in our

sample were all 4 members of a closely-related family of acid-sensing receptors (GPR4, GPR65,

GPR68 and GPR132) [31], all of which coupled to G13 at least as well as any other G protein.

The assay that we used here has a particular advantage for studies of constitutive receptor

activity, in that GDP can essentially be used as a common ligand to disrupt coupled GPCR-G

protein complexes. This comes with a significant drawback, in that constitutive activity is

required, and a subjective threshold was needed to assign receptor-G protein coupling. It is

likely that many of the receptors that we were unable to profile will couple well to G proteins

when bound to an activating ligand. Although these caveats mean that our study undoubtedly

missed several receptor-G protein pairings, it also suggests that our results can help predict

which of these orphan receptors have high and low constitutive activity. For example, GPR18

is a relatively well-studied receptor (Jensen PubMed Score 42.64) that binds to endogenous

cannabinoid compounds [32] and is annotated in GtoPdb as coupling to Gi/o and Gq/11. This

receptor showed subthreshold ΔBRETGDP (which was greatest for Gi1) in our study, suggesting

that GPR18 has low constitutive activity compared to other receptors in our sample. Another

limitation of our study is that we did not address selectivity among G proteins within a family,

although this could be easily rectified with additional studies. We also identified several orphan

receptors that are at least partly retained in the endoplasmic reticulum of HEK 293 cells. These

receptors may require cell type-specific trafficking factors to reach the plasma membrane. For

example, GPR37L1 is expressed almost exclusively in glial cells and is thought to couple to Gi/o

proteins [33], but trafficked poorly to the cell surface in HEK 293 cells.

We found one receptor, GPR182, that did not couple to G proteins in our assay, but did

constitutively interact with β-arrestins. This result is consistent with a previous study that

showed very high constitutive binding of a GPR182-V2R vasopressin receptor fusion protein

to β-arrestin [16]. Gene-transcription studies suggest that this receptor may also signal through

several canonical G protein pathways [34], but specific G protein coupling has not been

reported. Given the demonstrated importance of GPR182 for cellular proliferation and hema-

topoiesis [35,36], our results suggest that further studies of GPR182 signaling mechanisms are

warranted.

In summary, we were able to profile constitutive G protein coupling for a significant frac-

tion of understudied class A orphan GPCRs. The success of this strategy suggests that it may

be useful for profiling G protein coupling of other GPCRs (e.g. adhesion receptors and class C

orphans) for which well-validated activating ligands are not available.
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