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Simple Summary: The perception and processing of chemosensory stimuli are indispensable to the
survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food,
finding mates and avoiding signs of danger. This review aims to present updated information about
olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mecha-
nisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with
the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying
problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling
in controlling pests and insect vectors are also discussed.

Abstract: From a unicellular bacterium to a more complex human, smell and taste form an integral
part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to
odorants and tastants are simple, though quite sensitive, and robust. They explain the organization
and elementary functioning of the chemosensory system. Molecular and functional analyses of the
receptors and other critical molecules involved in olfaction and gustation are not yet completely under-
stood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role
in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sand-
flies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster
as a model organism, the knowledge gained may be implemented to design new means of controlling
insects as well as in analyzing current batches of insect and pest repellents. In this review, the
complete mechanisms of olfactory and gustatory perception, along with their implementation in
controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are
explained in fruit flies.

Keywords: Drosophila melanogaster; gustation; gustatory receptors; insect repellents; insect vectors;
odorant receptors; olfaction; signaling pathway

1. Introduction

Drosophila melanogaster has provided a new dimension to the discipline of neuroscience.
The research on olfactory and gustatory systems using fruit flies has grown rapidly during
the last few years due to the strong genetic similarity that humans share with them. This
has proved instrumental in establishing D. melanogaster as an ideal model organism. Addi-
tionally, fruit flies offer additional advantages to researchers over humans or mammals. The
flies can be easily cultured in laboratory conditions and are quite inexpensive to maintain.
They produce a large number of eggs and have a relatively short life cycle that provides
much-needed flexibility to the researchers. The flies can also be genetically modified [1]
and the neurons easily detected in every individual fly [2]. The larval stages of the fly can
be used for different experiments, since they are simple in structural organization and easy
to handle as compared to adult flies.
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Olfaction plays a vital role in the survival of D. melanogaster. The process commences
with the binding of volatile odorant molecules to their specific receptors known as odorant
receptors (Ors), which are expressed on the olfactory sensory neurons (OSNs). In the
larval stages, each of the two dorsal organs (DO) have 21 OSNs [3,4], which contrarily,
are contained in specialized sensory hairs known as sensilla, situated on the third an-
tennal segments and maxillary palps in the adult flies. Earlier studies on olfaction in
D. melanogaster used odorants in association with an appetitive or an aversive stimulus.
The naïve D. melanogaster larvae showed vigorous chemotaxis towards many odorants,
including ethyl acetate (EA) [5]. It was observed that the behavioral responses of larvae
were diametrically opposite to shorter and longer chain acetates. The former (methyl
to pentyl acetates) were attractive in nature, whereas the latter (hexyl to octyl acetates)
triggered repulsion [6]. Besides this, the flies effectively avoided odorants which were
paired with an electric shock in learning and memory experiments [7]. An age-dependent
decline in olfactory response/memory was reported in D. melanogaster [8] and in those
offspring born to aging flies [9]. These behavioral assays based on odorants have played a
major role in discovering specific genes involved in the olfactory pathways [10,11] and the
regions of the insect brain controlling them.

In gustation, there is a remarkable similarity of food choices and their detection that
fruit flies share with mammals. This has given opportunities to researchers to conduct
in-depth studies of taste perception. Both mammals and fruit flies consume carbohydrates
as their major food source, and both avoid chemicals that are either toxic or taste bitter.
The sensitivity and range of recognition of gustatory receptors (Grs) of D. melanogaster are
similar to mammals. The Grs are mainly localized in the head and pharyngeal regions
of the larvae [12], while in adult flies, they are dispersed on the mouthparts, leg tarsi,
and around the female ovipositor. The wings of D. melanogaster also possess taste sensilla.
The margins of the anterior wings respond to both appetitive and aversive stimuli due
to increases in Ca2+ ions in the cytoplasm [13]. The Grs detecting food items are well
characterized in D. melanogaster with a single Gr responding to fructose [14], but the case
is different in bitter taste receptors. Several researchers have proposed bitter taste Grs to
exhibit a multimeric organization comprising of one subunit tuned to a limited specificity,
while others function as broadly required co-receptors [15–20]. The role of the intestinal gut
of fruit flies in perceiving gustatory stimuli has also been reviewed. Due to the presence
of Gr transcripts, the intestinal gut controls many biological functions such as ingestion,
absorption of nutrients, and balancing body sugar levels [21].

The in-depth understanding of the chemosensory machinery of D. melanogaster has
great practical applications, which may be implemented to design new methods of con-
trolling disease-causing insect vectors and crop pests, and to gain a better understanding
of how the batches of insect and pest repellents that are currently available in the market
function. Insects are one of the major sources of the transmission of pathogens to humans
and cattle, as well as the destruction of food crops [22]. Mosquitoes, ticks, sandflies, and
mites are a few of the major insect vectors that spread life-threatening diseases to human
beings, such as; malaria, dengue, West Nile fever, encephalitis, yellow fever, and Congo
hemorrhagic disease [23]. In particular, mosquitoes are the biggest menace to the human
population. Anopheles mosquitoes, i.e., An. Gambiae and An. Funestus, are involved in
the transmission of the malarial parasite, Plasmodium sp., to their human hosts, triggering
one million annual deaths [24,25]. The human filarial nematode Wuchereria bancrofti, and
arboviruses spread through the bites of Culex mosquitoes [25] and Aedes aegypti (the yellow
fever mosquito), account for many cases of dengue globally [25,26]. As regards crop pests,
the facts are disturbing; for example, the spotted wing Drosophila suzukii, an invasive global
insect pest, causes huge crop loss by destroying fresh, ripened small fruits and tree fruits at
large scale [27–30].

To present remedies for such problems, the role of chemosensory mechanisms was
evaluated in pest management using D. melanogaster as a model organism.
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2. Olfactory System—Components and Basic Organization

In D. melanogaster larvae, the olfactory system is mainly localized to the head region.
The head portion of larvae has a couple of DOs expressing 21 OSNs in each [3,4] (Figure 1A).
Contrarily, the adult fruit flies detect odorants through a pair of antennae and maxillary
palps (Figure 1B). These appendages are positioned on the head region, enveloped with
numerous sensory hairs called sensilla. The sensilla possess OSNs that are specialized in
detecting odorants (Figure 2A). Each antenna has about 410 olfactory sensilla with nearly
1300 OSNs, whereas the number of olfactory sensilla is up to 60 in each maxillary palp
with approximately 120 OSNs [31–34]. These sensory hairs exhibit differences in their
morphology. A recent work on serial block-face scanning electron microscopy (SBEM)
images of antennal tissues has further led to a systematic morphological and morphometric
analysis of the identified olfactory sensilla in D. melanogaster. A plethora of new information,
such as inner dendritic enlargement with enhanced mitochondrial content, the presence of
extracellular vacuoles in the lumen of sensilla, empty sensilla with no OSNs, and two new
unconventional types of basiconic sensory hairs, was discovered. The olfactory sensilla in
fruit flies can be separated into four different groups [35] (Figure 2B), which are as follows:
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 Figure 1. Components of the olfactory system: (A) Larva: With a much smaller and simplified
architecture, the dorsal organ (DO), antennal nerve (AN), mushroom body (MB), larval antennal lobe
(LAL), and ventral nerve cord (VG) constitute the larval olfactory system; (B) Adult: The antenna
and maxillary palp (MP) along with the antennal lobe (AL), antennal nerve (AN), mushroom body
(MB), and lateral horn (LH), complete the fly’s olfactory system (Modified from [36–39]).
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Figure 2. Schematic of (A) Sensillum: A sensillum consists of accessory cells, olfactory sensory neu-
rons (OSNs), and pores for odorant molecules to enter; (B) Antenna: The antennae in D. melanogaster’s
head are covered with sensory hairs called sensilla. These are of four types, namely trichoid (needle-
shaped), basiconic (club-shaped), coeloconic (peg-shaped), and intermediate (shape between basi-
conic & trichoid) sensilla (Modified from [40]).

a. Basiconic sensilla: The sensory hairs at the proximomedial region of the antenna
are club-shaped and are called basiconic sensilla. These sensilla are of 10 types, viz. ab1-
ab10, are further grouped into three sub-classes, i.e., large, small, and thin. The large
basiconic sensilla (ab1–ab3), ~12 µm in length, house two or four OSNs, whereas small
basiconic sensilla (ab7–ab10), which are ~9 µm long, enclose two OSNs. The thin basiconic
sensilla (ab4–ab6) are also ~12 µm in length but are thinner in shape. They encompass
mostly two with a few cases of four OSNs per sensillum [31,41]. Additionally, there are
also two novel types of basiconic sensilla; one is a large basiconic sensillum, abx(3), which
encloses three OSNs, and the other is a small basiconic sensillum, abx(1), with a single OSN.
Interestingly, one small basiconic sensillum with no OSN is also known to exist, which is
designated as abx(0) [35]. The sensory hairs on the maxillary palp are all thin basiconic
(pb1–pb3), each housing two OSNs [41]. The basiconic sensilla are single-walled.

b. Trichoid sensilla: The trichoid sensilla are pointed in shape and vary in length
from 18–22 µm [31]. They occupy the lateral profile of the antenna, predominantly at
the distal tip. These sensilla are of four types, namely at1-at4, and are classified as T1
(at1), T2 (at2), and T3 (at3 & at4) corresponding to the number of OSNs they house, i.e.,
one, two, and three, respectively [31,41]. However, Fluorescence-guided Single Sensillum
Recording (FgSSR) analyses have re-categorized two trichoid sensilla, namely at2 and at3,
as intermediate sensilla ai2 and ai3 [42]. Besides this, one trichoid sensillum belonging to
the T1 subtype with no OSN has also been found in fruit flies and named T(0) [35]. The
trichoid sensilla are also single-walled.

c. Intermediate sensilla: There are a few sensory hairs in the antenna exhibiting length
and structure in between trichoid and basiconic sensilla. These are called intermediate
sensilla. They are scattered among the trichoids on the frontal antennal surface, with
their number varying from 10–20 on each antenna [31,41]. The intermediate sensilla are
of two types, namely ai2 and ai3, housing two and three OSNs respectively [42]. They are
single-walled.

d. Coeloconic sensilla: The coeloconic sensilla are the smallest of all the sensory hairs.
They are short in size (~5 µm) and peg-shaped. Although they are dispersed with other
groups of sensilla, the majority of them cover the posterior surface of the antenna. The
number of OSNs in coeloconic sensilla varies between two to four neurons per coeloconic
sensillum [31,41,43]. The ac3 sensillum houses two OSNs, ac2 and ac4, housing three
OSNs each, whereas ac1 compartmentalizes four OSNs [35]. These sensory hairs are
double-walled.

Further, in D. melanogaster, the antennal lobe (AL) functions as a deutocerebral neuropil
showing functional similarities to the olfactory bulb of the vertebrate brain [44]. At larval



Insects 2022, 13, 142 5 of 34

stage, the antennal nerve (AN) connects 21 OSNs in DO to the larval antennal lobe (LAL).
The LAL has about 30 subunits comparable to the glomerulus of an adult fly [4,45]. The
sensory information from LAL then goes through several projections and local neurons
(PNs & LNs) to be relayed to higher centers of the larval brain to initiate a behavioral
response (Figure 3A). Similarly, in adult flies, OSNs located in the antenna relay sensory
information to the AL, consisting of tightly packed neuropils called glomeruli. The number
of glomeruli in D. melanogaster is 54 per AL, out of which 52 are innervated by chemosensory
and 2 by thermosensory neurons [46,47]. At the glomeruli, the electric signals are further
relayed to two specific classes of neurons, the PNs and LNs. The PNs housed in the AL
project their axons to the protocerebrum [41] and from here on to the mushroom body (MB)
and lateral horn (LH). Thus, the information from the PNs is transferred to these paired
neural organs, which comprise higher centers of the fly’s brain [48,49], (Figure 3B).
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2.1. Olfactory Sensory Neurons (OSNs) 

The OSNs form the most important aspect of olfactory detection in D. melanogaster. 

Their numbers exhibit great variations between the larval and adult stages of the fly. In 
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Figure 3. Olfactory signaling pathway of (A) Larva: At the larval stage, the odorant molecules are
sensed by the dorsal organ (DO). The stimulus is then transferred to the larval antennal lobe (LAL)
by the olfactory sensory neurons (OSNs) housed in the DO. From here onwards, through a grid of
projection neurons (PNs) and local neurons (LNs) the electrical signal is projected to the larval brain
to elicit a response; (B) Adult: In fruit flies, the olfactory signaling begins with the antennae and
maxillary palps. The OSNs, with the help of odorant receptors (Ors), carry the olfactory cue to the
antennal lobe (AL). From there on, through a network of PNs and LNs, the stimulus is transferred to
the mushroom body (MB) and lateral horn (LH) to initiate a response (Modified from [34,50]).

2.1. Olfactory Sensory Neurons (OSNs)

The OSNs form the most important aspect of olfactory detection in D. melanogaster.
Their numbers exhibit great variations between the larval and adult stages of the fly. In
larvae there are 21 OSNs per DO, whereas the adult fruit flies house much greater number
of neurons. Each antenna displays ~1300 OSNs, whereas the actual number is 120 in each
maxillary palp. An individual OSN typically embodies a single Or, although a few multiple
receptor OSNs are also present in D. melanogaster [44,51]. The OSNs expressing identical
receptor gene/genes then project to a specific glomerulus [52,53], where they synapse onto
PNs and LNs [54] for further processing of the olfactory cues. A few studies have suggested
that the number of OSNs converging into glomeruli varies between 52–53 OSNs per
glomerulus [55]. However, each glomeruli has its own unique neuronal composition and
glomerular volume, which is a result of varying numbers of OSNs and uniglomerular PNs
received by different sets of glomeruli [56]. Additionally, an increased number of glomeruli
per antennal lobe has been reported in D. melanogaster. The number is now 58, out of which
51 are olfactory [57] and 7, i.e., VP1d, VP1l, VP1m [58], VP2, VP3 [59], and VP4 [60–62]
are thermo/hygrosensory in nature. They house a total of ~2600 antennal lobe sensory
neurons (ALSNs) including OSNs and thermo/hygrosensory neurons (T/HSNs) [63].
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2.2. Odorant Receptors (Ors)

The odorant receptors (Ors) in D. melanogaster are membrane-associated proteins by
nature. They are encoded and expressed by Or genes [64,65]. The seven transmembrane
domains possessed by these proteins are quite distinct and have no homology to the
vertebrate GPCRs or Ors [66–68]. There are 60 Or genes in D. melanogaster, which encode
62 Ors by the process of alternative splicing (Table 1) [69–71]. However, studies using
transgenic reporter techniques have changed the scenario to a considerable effect. These
studies have revealed that the count of genes exclusive for antennal Ors is 40, whereas
7 genes translate receptors specific to maxillary palps [34,41,52]. The remaining Or genes
are involved in the encoding of larval Ors and are not detectably expressed in adult fruit
flies. There are 25 larval Ors, of which 13 are specifically expressed in larvae [70,72,73].
Additionally, Ors exhibit a unique feature. The receptors expressed in the antennae and
maxillary palps of D. melanogaster are exclusive to them and are not expressed in each other,
as established by several algorithmic studies. These studies have identified a dyad element
that promotes the expression of maxillary-palp-specific Ors and a motif that represses their
expression in the antennae [74]. One more restrictive feature of Ors is that the expression
of Or genes in morphologically distinct sensilla follows a set pattern [75]. The study of
this pattern has revealed a strong correlation between the developmental pathways of the
sensilla and the types of Ors they express [32].

Table 1. Odorant receptors (Ors) in Drosophila melanogaster.

Olfactory Sensory Neuron Odorant Receptor Glomerulus

- Or1a * -
ai3 Or2a DA4m

ab4A Or7a DL5
ab8B Or9a VM3
ab1D Or10a DL1
ab6A Or13a DC2
ai3A Or19a DC1
ai3A Or19b DC1
ab3A Or22a DM2
ab3A Or22b DM2

- Or22c * -
ai2B Or23a DA3

- Or24a * -
- Or30a * -

ab4B Or33a DA2
ab2B, ab5B Or33b DM5, DM3

pb2A Or33c VC1
ac3B Or35a VC3
pb1A Or42a VM7d
ab1A Or42b DM1

ai3 Or43a DA4l
ab8A Or43b VM2

- Or45a * -
- Or45b * -

pb2B Or46a VA71
ab5B Or47a DM3
at4A Or47b VA1v

ab10B Or49a DL4
ab6B Or49b VA5
ab4B Or56a DA2

- Or59a * -
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Table 1. Cont.

Olfactory Sensory Neuron Odorant Receptor Glomerulus

ab2A Or59b DM4
pb3A Or59c VM7v

- Or63a * -
at4B Or65a DL3
at4B Or65b DL3
at4B Or65c DL3

ab10A Or67a DM6
ab9 Or67b VA3

ab7B Or67c VC4
at1A Or67d DA1
ab9 Or69a D

pb1B Or71a VC2
- Or74a * -

ab5A Or82a VA6
- Or83a * -

ab, ai, at, pb, ac3 Or83b/Orco DA, DC, DL, DM, VA, VC, VM
ai2A Or83c DC3
ab2B Or85a DM5
ab3B Or85b VM5d

- Or85c * -
pb3B Or85d VA4
pb2A Or85e VC1
ab10B Or85f DL4
at4C Or88a VA1d
ab1B Or92a VA2

- Or94a * -
- Or94b * -

ab7A Or98a VM5v
ab6 Or98b VM5d

Outline of odorant receptors (Ors), their OSN classes, and targeted glomeruli. Larval specific Ors are marked with
asterisk *. (Adapted from [76,77]).

It is well-established that a solo Or gene is translated in each OSN [41,78,79]. However,
a few studies have revealed interesting facts about Or gene expression. Each D. melanogaster
OSN expressing an Or also expresses a co-receptor named as Orco/Or83b [65,80]. This
co-receptor is essential to the appropriate ciliary routing and functioning of every single
Or [65,81]. The flies devoid of Orco exhibit defective behavioral and electrophysiological
responses to a number of odorants [67]. Besides this, four populations of OSNs co-express
two conventional Ors (Or33a/Or56a, Or33b/Or47a, Or33b/Or85a and Or33c/Or85e) and a
fifth one co-expresses one Or and one Gr (Or10a/Gr10a) along with the co-receptor Orco
leading to a modulated ligand response profile [51,52]. A couple of recent works using
cryo-electron microscopy have further given an insight into the functioning of Or/Orco
heteromeric complexes. Butterwick et al., through structural analyses, has found that an
Orco homomer consists of four subunits organized in a symmetrical fashion around a cen-
tral pore. Each Orco subunit is further composed of seven transmembrane helical segments
(S1–S7), out of which S7a (the cytoplasmic section) forms the crux of the anchor domain,
whereas S7b (the transmembrane section) contours the central pore. The pore is narrow-
est at the extracellular end of S7b due to the presence of hydrophobic residues Leu473
and Val469. When a ligand binds to the Or/Orco heteromeric complex, the hydrophobic
aperture is expanded. This central ion-conduction pathway then veers into the four lateral
channels (6-Å long) that open to the cytosol, providing an uninterrupted pathway for the
transfer of ions [82]. On a similar note, Marmol et al. has deciphered that the odorant
receptor MhOr5 in Machilis hrabei exhibits identical quadrivial structural organization and
functions similarly to Orco. Here, the binding of the ligand also dilates the S7b helices to
gate the ion conduction pathway. In nutshell, these structural understandings of the Or
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and Orco have shed a light on the promiscuous nature of these receptors, allowing insects
to have a versatile chemical recognition system [83].

2.3. Ionotropic Receptors (Irs)

Besides Ors, an additional group of receptors, called ionotropic receptors (Irs), is also
involved in olfaction in D. melanogaster. Structural analyses have revealed their similarities
to the ionotropic glutamate receptors (iGluRs) with a homology of less than 34% [84,85].
They also share the ion-channel-like characteristic of iGluRs, though the binding site for
glutamate is not present [86,87]. The chemosensory apparatus of the larval stage is mainly
distributed to the head region, encompassing the dorsal organ (DO), terminal organ (TO),
ventral organ (VO), dorsal pharyngeal organ (DPO), dorsal pharyngeal sensilla (DPS),
ventral pharyngeal sensilla (VPS), and posterior pharyngeal sensilla (PPS), all existing in
pairs [45,88–90]. All of the above organs express Irs. A few Irs are also present in the body
area that forms the complete larval repertoire together with the receptors of the head region
(Table 2) [91]. Contrarily, the distribution of Irs in adult flies is quite diverse (Table 3). In
the head region, they are dispersed in the antenna, labral sense organ (LSO), dorsal cibarial
sense organ (DCSO), ventral cibarial sense organ (VCSO), and the labellum. The Irs are
also expressed in the wings and legs of the fruit fly [91].

Table 2. Ionotropic receptors (Irs) in Drosophila melanogaster (larva).

DO TO VO DPO/DPS VPS PPS Abdomen

Ir21a Ir7a Ir7g Ir7a Ir7b Ir25a Ir7d
Ir25a Ir7b Ir25a Ir7f Ir7g Ir76b Ir7g
Ir68a Ir7d Ir67a Ir7g Ir25a Ir92a Ir10a
Ir92a Ir7e Ir76b Ir11a Ir76b Ir94g Ir25a
Ir93a Ir7g Ir25a Ir100a Ir68b

Ir25a Ir48b Ir76b
Ir56c Ir48c Ir85a
Ir60c Ir51b
Ir76b Ir60b
Ir94e Ir60d
Ir94h Ir60e

Ir67b
Ir67c
Ir76b
Ir92a
Ir94a
Ir94b
Ir94g
Ir100a

Outline of larval repertoire of ionotropic receptors (Irs). (Adapted from [91]). DO—Dorsal organ, TO—Terminal
organ, VO—Ventral organ, DPO—Dorsal pharyngeal organ, DPS—Dorsal pharyngeal sensilla, VPS—Ventral
pharyngeal sensilla, PPS—Posterior pharyngeal sensilla.

The Irs confer odorant responses much like the Ors, but more in-depth studies need
to be conducted in this direction. The number of Ir genes in the D. melanogaster genome
is 61, in addition to 2 putative pseudogenes. Among these, 17 genes encode the antennal
Irs, while the rest of them are translated and scattered all over the fly’s body (both in the
larval and adult stages); the latter are called divergent Irs. Amid the antenna, out of 13 Irs,
the majority of them sense olfactory cues from amines, aldehydes and evaporative acids,
and few Irs are hygrosensory or thermosensory in nature [60,85,91,92]. The remaining four
Irs, i.e., Ir8a, Ir25a, Ir76b, and Ir93a are present and function as co-receptors in different
amalgamations [93,94]. This paired functioning of Irs with co-receptors suggests that they
work in tandem, resulting in ion channels responding to volatile odorant molecules [94,95].
Additionally, the identification of the co-receptor extra loop (CREL), a conserved sequence
of the Ir co-receptor ligand-binding domain (LBD) has brought an array of new insights.
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It has helped in understanding the assembly and stoichiometry of Ir complexes and their
intracellular transport in a much-improved way [96]. Besides olfaction, the Irs are also
involved in the perception of gustatory stimuli. A group of approximately 35 Irs, the Ir20a
clade is translated in all of the taste organs of the fly co-expressed with bitter or sweet
Grs [97]. This is explained in detail later, in the gustatory section of the review.

Table 3. Ionotropic receptors (Irs) in Drosophila melanogaster (adult).

Antenna LTB LTP LSO VCSO DCSO Legs Wings Abdomen

Ir8a Ir7a Ir25a Ir10a Ir7a Ir10a Ir7a Ir7a Ir7a
Ir21a Ir7c Ir56d Ir20a Ir11a Ir20a Ir7c Ir7b Ir7c
Ir25a Ir11a Ir76b Ir25a Ir20a Ir25a Ir11a Ir7c Ir10a
Ir31a Ir25a Ir56a Ir25a Ir76b Ir20a Ir10a Ir11a
Ir40a Ir47a Ir60b Ir56a Ir100a Ir25a Ir25a Ir20a
Ir41a Ir56a Ir60c Ir76b Ir47a Ir52a Ir25a
Ir64a Ir56b Ir60d Ir94a Ir52a Ir52b Ir56a
Ir68a Ir56d Ir67c Ir94b Ir52b Ir52c Ir76b
Ir75a Ir60c Ir76b Ir94c Ir52c Ir56a
Ir75b Ir60d Ir94a Ir94h Ir52d Ir56d
Ir75c Ir76b Ir94e Ir56a Ir60c
Ir75d Ir94b Ir94f Ir56d Ir76b
Ir76a Ir94e Ir94h Ir60c Ir94e
Ir76b Ir100a Ir67a
Ir84a Ir76b
Ir92a Ir94e
Ir93a Ir94h

Outline of distribution of ionotropic receptors (Irs) in adult flies. (Adapted from [91,97]). LTB—Labellar taste
bristles, LTP—Labellar taste pegs, LSO—Labral sense organ, VCSO—Ventral cibarial sense organ, DCSO—Dorsal
cibarial sense organ.

2.4. Odorant Binding Proteins (Obps)

Encoded by a clan of 52 genes, the Obps are found in abundance in D. melanogaster [92].
They are a group of highly divergent pint-sized proteins of 13–28 kDa secreted in the
olfactory sensillar lymph [98,99]. The Obps ease the transportation of hydrophobic odorants
such as a few food odorants, pheromones, etc. to the Ors [98,100,101]. The Obp76a, also
known as LUSH, is essential for the detection of the pheromone cis-vaccenyl acetate (cVA)
by Or67d in trichoid sensilla [102]. However, various studies have shown that even in
the absence of Obp76a, D. melanogaster can detect cVA, refuting its essentiality [103,104].
Another study involving Obp28a, one of the most abundant Obps in fruit flies, showed
that it was not involved in the transportation of odorants [105]. Contrary to these findings,
recent work has established that Obp28a is essential for the detection of the floral odorant
β-ionone by fruit flies [106]. Thus, these findings of the functioning of different Obps
suggest that a much larger picture of the exact role and mechanism of their operation
remains to be deciphered.

3. Olfactory Signaling Pathway—Interpreting Olfaction in Drosophila melanogaster
3.1. Larva

The larvae and adults of D. melanogaster share a general outline of the olfactory system,
though in larvae, it is smaller and simplified. The presence of a reduced number of
OSNs in larvae suggests a diminished primary olfactory repertoire as compared to adult
flies [107]. The 21 OSNs in the DO are connected to the LAL by the AN. The LAL consists of
approximately 30 subunits showing resemblance to the adult glomerulus, though smaller
in number and size [4,45]. In the LAL, the OSNs interact with 21 uniglomerular PNs,
14 multiglomerular PNs, 14 GABAergic and cholinergic LNs, 4 neuromodulatory neurons,
6 subesophageal zone (SEZ) neurons, and 1 descending neuron. The olfactory signals
are thus transmitted to higher centers of the larval brain to elicit different behavioral
responses [108,109].
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3.2. Adult Fly

The antennae and maxillary palps are key to olfaction in adult fruit flies. They house
several OSNs that are primarily involved in sensing odorants in D. melanogaster [110].
Studies have revealed that an Or behaves differently to different odorants. It can be
excited by some odorants and inhibited by others [111]. Such a response shows the
temporally complex nature of odorant signaling. Barring a few cases where the OSNs
express either multiple Ors—such as ab5 sensilla, where Or33b and Or47a, are expressed
together [51]—or receptors of the gustatory family [112,113], the majority of the 1300 OSNs
in the D. melanogaster genome expresses one Or per neuron from the total of 61 Ors [36]. An
additional Or, Or83b/Orco functioning as a co-receptor is also expressed in each neuron. It
acts in concert with conventional Ors to recognize different odorants [65].

The point of emphasis is this: how do OSNs further process the olfactory stimuli they
sense? The answer lies within the antennal lobe. Each of the 52 glomeruli it houses receives
projections from the OSNs embodying the same Or [41,46,49,52,60]. From here on, the
stimuli are relayed on to a network comprising projection neurons (PNs), inhibitory local
neurons (iLNs), and excitatory local neurons (eLNs). The PNs are involved in transmitting
olfactory information to higher centers of the fruit fly’s brain, i.e., MBs and LHs, whereas
iLNs and eLNs establish lateral connections among different glomeruli [114]. What is
interesting at this point is the systemization of the PNs into two different neural tracts.
They are the:

a. Inner antennocerebral tract (iACT): the calyx neuropil of the MB, along with the
LH, forms synaptic connections with the PNs of the iACT [115].

b. Medial antennocerebral tract (mACT): The PNs of the mACT bypass the MB calyx
and go straight to the LH [116]. A few cases have revealed that part of the PNs of the mACT
sends its extensions into multiple glomeruli, which trigger an inhibitory response.

This is how olfactory stimuli are perceived by the OSNs and relayed to the higher
centers of the brain for further processing, to initiate varying behavioral responses in adult
fruit flies.

4. Molecular Basis of Olfactory Signaling—Decoding the Game of Smell

In D. melanogaster, the Or targeting a specific odorant (OrX) forms a heteromeric
complex with the universal co-receptor Orco [117]. The mode of action of this complex is
synonymous with the functioning of a ligand-activated cation channel [118,119]. On the
other hand, the Irs are known to form heteromeric complexes with up to three different
subunits. They consist of a variable, odorant-specific Ir (IrX), and one or two broadly
expressed co-receptors out of Ir8a, Ir25a, and Ir76b [93,94]. The Irs exhibit a distinct
similarity with iGluRs in having a transmembrane domain, a ligand-binding domain (LBD),
and an aperture region [120]. Various models have been extensively studied focusing
on the functioning of the above-mentioned olfactory receptors in D. melanogaster. These
models include the molecular signaling pathways involved in the sensing of food odorants,
pheromones, and CO2, respectively. To have a much better understanding of the cited
models, let us divulge the details of these signaling cascades.

4.1. General Odorant Sensing

The odorant-binding proteins (Obps) carry odorant molecules to the OrX-Orco het-
eromeric complex. The binding of the ligand and receptor leads to the activation of an ion
channel [121]. This channel is a non-specific cation channel permeable to Ca2+ and other
positively charged ions (Na+, K+). The permeability leads to an influx of cations changing
the membrane potential of the OSNs, leading to their depolarization and repolarization
in a subsequent manner [118]. Thus, the olfactory signal (electrical activity) is transmitted
along the OSNs to the PNs and then to higher centers of D. melanogaster’s brain. This
type of signaling is known as ionotropic signaling (Figure 4). In parallel, there are several
reports that point towards the involvement of G-proteins in odorant detection. It was found
that the olfactory acumen of flies was altered by mutations targeting the cAMP signaling
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cascade [122]. The Ors expressed in HEK293 cells, when stimulated by an odorant, resulted
in an enhanced cAMP production [123]. A decreased level of cAMP was also reported to
alter the proper detection of odorants by flies [124], whereas odorant stimulation led to an
increase in cAMP production [125]. In addition, the role of Gαq [126], Gαo [127], and Gαs
in the transmission of odorant stimuli further characterized the involvement of phospho-
lipid and cAMP second messengers in olfactory signaling [128]. Still, the involvement of
G-proteins in odorant detection is still debatable now [129] and is most likely to modulate
the functioning of ion channels in one or another way.
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4.2. Signaling in Pheromone-Sensing Ors (Prs)

The pheromone molecules attached to the pheromone-binding proteins (PBPs) are
fixed to the PrX-Orco heteromeric complex. The SNMP1, i.e., sensory neuron membrane
protein 1 most likely associates with the complex and mediates the transfer of pheromones
to PrX (pheromone specific Or protein) [131]. The pheromone-receptor complex then
activates an ionotropic channel (PrX-Orco channel), leading to an influx of cations (Ca2+,
Na+, K+) and subsequent depolarization of the pheromone sensory neurons (PSNs) [132].
This results in the transmission of the olfactory signal (Figure 5).

4.3. Signaling in the Sensing of CO2

The CO2 triggers a strong and inborn evading olfactory behavior in D. melanogaster [133,134].
Its sensing at a concentration of less than ~2% is mediated by the class of OSNs (ab1C) co-
expressing Gr21a and Gr63a [133,135–137], whereas detection at a higher concentration of
more than 5% involves acid-mediating Ir64a and Ir8a [92,138]. A few reports propose
that at lower concentrations, the G-proteins might be involved in the detection of CO2
by fruit flies. The Gαq and Gγ30A were found to play a role in the signaling of CO2
in D. melanogaster [129]. Another work hinted that the CO2 receptors Gr21a and Gr63a
might activate the TRPC channels through Gαq and PLC21C [139]. However, this is not an
established view and more work needs to be conducted in this direction to further validate
the involvement of G-proteins in CO2 signaling. At higher levels of CO2, Ir64a and Ir8a
act in tandem to decipher a dip in the pH of the sensory lymph to trigger an avoidance
behavior [92,138]. Besides this, a different study has put forward the participation of PNs
innervating the V-glomerulus (PNvs) in managing the avoidance response of fruit flies to
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low and high CO2 concentrations. It was shown that the PNv-1pathway is activated at
lower concentrations of CO2 (0.5%), whereas higher levels of CO2 (2%) stimulate PNv-1,
PNv-2, and GABAergic PNv-3 pathways [140]. Another interesting finding involving the
sensing of CO2 by D. melanogaster has come to the light. It has been found that fruit flies,
while walking, perceive CO2 as an aversive stimulus, whereas the same stimulus while
flying becomes attractive. This in-flight attraction to CO2 involves different components
working in tandem, i.e., Ir64a, Orco, and octopamine signaling [141]. However, recent work
has put forward the fact that fruit flies perceive CO2 as an attractant in both walking and
flying conditions when they are in an activated stage of searching for food. This modus
operandi is facilitated by the functioning of a distinct chemosensory pathway involving
Ir25a [142].

In nutshell, these models highlight the functioning of insect olfactory receptors as
heteromeric ligand-gated ion channels. Novel research decoding the structure of Orco has
further substantiated the involvement of ion conduction pathways in the perception of
olfactory stimuli by insects [82].
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5. Olfaction-Based Repellency—The Established and New Players on the Horizon

The process of olfaction is indispensable to the survival of insects. It allows them to
detect food, probable mates, and the signs of danger so as to avoid them. Likewise, the
disease-transmitting insect vectors also use their sense of smell to trace and feed on their
human hosts [143–146]. Additionally, crop infesting insects such as Drosophila suzukii, a
major global fruit pest, use olfactory detection of higher CO2 emission to target ripening
fruits [147]. This results in a humongous amount of agricultural loss globally, accounting
for millions of dollars [147–149]. Consequently, targeting and modulating the olfactory
system has become a prominent choice for researchers to control the menace of insects and
develop better alternatives for combating insect pests.

Insect repellents are still the first line of defense against disease-causing insect vec-
tors. The major ingredient used in these current batches of repellents is N, N-diethyl-m-
toluamide (DEET), which triggers an airborne repugnancy among insects [146,150,151].
As a result, DEET is wildly used to ward off blood-sucking mosquitoes to limit the trans-
mission of pathogens among humans [150,152]. To understand the molecular machinery
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behind this olfaction-based repellency caused by DEET, many researchers have opted for
D. melanogaster as a model organism. In one of the research works, it was observed that
fruit flies with intact antennae avoided DEET-treated food vials. Conversely, flies devoid of
both of the antennae, with their maxillary palps unharmed, did not show any repellency
to DEET. Thus, it was concluded that the DEET repellency is olfaction driven as antennae
house OSNs. To confirm the findings, Or83b/Orco mutant fruit flies were used, as Orco is
an indispensable co-receptor required for the proper functioning of Ors [65,67]. The results
were consistent, as wild-type flies avoided DEET-treated food vials while Orco mutants
were insensitive to DEET. Further in-depth analysis revealed that the reduced acuity of
food odorant was related to the electrophysiological inhibition of Or82a/Orco housed in
the ab5A sensillum and Or47a/Orco in ab5B sensillum. In summary, it was concluded that
DEET reduces the perception of food aroma in fruit flies by inhibiting the odorant-induced
activation of a subset of Or/Orco complexes to varying degrees [152]. Similarly, using Orco
mutant mosquitoes exhibited that they were not repelled by volatile DEET, indicating the
need for an intact Or pathway for DEET repellency [151].

A different work using D. melanogaster also exhibited involvement of the olfactory
system in the functioning of DEET. The study revealed that Or42a was involved in the
DEET repellency. The receptor was also sensitive to two other major repellents—picaridin
and Ir3535—hinting towards its generic nature [25]. However, a recent analysis with fruit
flies has unveiled that, although higher concentrations of DEET were detected by the Orco
based olfactory system, there was no specific OSN involved in this process. The deletion
of Or42a and Or2a neurons showed no difference in DEET avoidance, pointing towards
the involvement of multiple OSNs in the repugnancy of DEET [153]. Altogether, it can
be inferred that the repugnant behavior of insects towards DEET involves their olfactory
system. Still, there are several conflicting models involved in DEET olfactory repellency.
DEET is found to work by masking odorants. One such example is the reduced attraction
of Aedes aegypti mosquitoes to humans by masking the smell of lactic acid [154]. DEET
is also known to cause a dip in the release of 1-octen-3-ol, disrupting the host-seeking
mechanism of insects by changing the chemical profile of the host’s skin odorants [155,156].
Another hypothesis of the functioning of DEET is that it acts as a confusant. It is likely to
alter the regular activation pattern of the glomeruli of insects, thereby blocking the host’s
attractiveness. Besides this, as per the smell and avoid model, DEET activates aversive
GRNs in insects that override the neural activity of GRNs sensing attractive cues coming
from the host. This allow insects to preferably avoid their hosts [157]. In addition to DEET,
pyrethrum is also an extremely popular insect repellent that has been used by humans for
a long time to control arthropod pests. It is extracted from the dry flowers of the plant
Tanacetum cinerariifolium. However, the molecular mode of functioning of this repellent was
still a question that needed to be answered. Currently, it has been revealed that there is the
involvement of Or7a, Or42b, Or59b, and Or98a in avoidance behavior towards pyrethrum.
The first three receptors mentioned above are activated by pyrethrins which are the key
insecticidal constituents of pyrethrum, whereas Or98a is stimulated by E-β-farnesene (EBF),
a minor constituent. It was observed that genetically knocking out Or7a, Or59b, and Or98a
obliterated the repellency of fruit flies to pyrethrum, pointing towards their involvement in
avoidance behavior [158].

DEET is a highly efficient insect repellent, with its fair share of problems. First,
it needs to be applied on a recurrent basis in increased concentrations making it quite
expensive for the people in areas infested with vector-borne diseases [150]. In addition, a
reduced repugnancy by DEET is observed in mosquitoes owing to its repeated exposure.
Therefore, there have been efforts from the research community to design and develop
better alternatives to DEET, to deal with the menace of insect vectors and pests. A few of
the prominent examples are as follows:

a. Geosmin: Trans-1,10-dimethyl-trans-9-decalol, commonly known as Geosmin is a
compound with an earthy smell produced by a few specific groups of bacteria, fungi, and
cyanobacteria. Using D. melanogaster as a model organism, it was revealed that at extremely
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low concentrations, Geosmin triggered repellency. Further in-depth analysis exhibited
that this aversive behavior was triggered by Or56a housed in the ab4B OSNs [156,159].
Geosmin is also known to induce a dip in the attraction of fruit flies towards vinegar
compounds [159,160]. Thus, the ability of Geosmin to induce aversion and modulation of
inborn attraction makes it a very desirable candidate for a strong repellent.

b. OX1w: In insects, each OSN expressing an Or also expresses a co-receptor named
Orco [65,80]. This co-receptor is indispensable to the proper ciliary routing and functioning
of every single Or [65,81]. In D. melanogaster, the attraction towards ethyl acetate (EA) is
mediated by the Or42b/Orco heteromeric complex [161]. A group of researchers working
on fruit fly larvae found that the air-borne application of the Orco antagonist, OX1w,
eliminated their chemotactic movement towards EA [146]. Thus, inhibiting the functioning
of Orco by designing more potent Orco antagonists can be a potential method to control
insect vectors and pests.

c. Coffee furanone: 2-methyltetrahydrofuran-3-one, also known as coffee furanone is
a natural volatile compound, found to have repellent/attractant properties. A recent work
using D. melanogaster showed that the application of coffee furanone triggered an aversive
behavior in fruit flies. An in-depth analysis brought to light the functions of this compound,
as activating the variable OrX subunit of the OrX/Orco heteromeric complex is necessary
for odorant detection. What makes coffee furanone special is its promiscuous nature, as it is
known to stimulate nearly 80% of the OSNs in the antennae of D. melanogaster and various
other insect species. In addition, coffee furanone is a common flavoring agent used in food
and is considered safe for humans. Consequently, all of these features of coffee furanone
brands it a highly desirable candidate to serve as a repellent or attractant to combat insect
vectors or crop pests [121].

d. Essential oils: Since it has already been shown that insects use their olfactory
system to detect food and hosts, the use of plant-based essential oils to repel them has
immense potential to be developed into high-quality repellents. Several essential oils such
as camphor, peppermint oil, norcamphor, nerol, menthyl acetate, menthone, (-)-menthol,
etc. have been found to elicit repellency in D. melanogaster and D. suzukii, which are serious
global crop pests. It was observed that aversion to essential oils was reduced in Orco
mutant fruit flies, pointing towards their olfactory mode of functioning. Thus, further
in-depth study of the molecular mechanism of the operation of essential oils will be helpful
in the long run to ward off the ever-increasing menace of the insects [162] (Figure 6).
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Figure 6. Schematic of molecular players involved in the olfaction-based avoidance of insect repel-
lents: Using D. melanogaster as a model organism it has been observed that the functioning of DEET,
pyrethrum, and a slew of new potent alternatives is based on the targeting of either OrX or Orco
subunit of the OrX/Orco heteromeric complexes.

6. Gustatory System—Components and Basic Organization

Unlike mammals, the gustatory system in fruit flies is distributed throughout their
bodies. The taste bristles encompassing the taste neurons in an adult D. melanogaster are
present in the proboscis, legs, ovipositor, and wing margins of the fly [163–165]. However,
in the larval stages, the taste system is limited to the head and pharynx regions [12,166].
The dorsal (DO, peripheral region), terminal (TO) and ventral organs (VO), along with
the dorsal (DPS), ventral (VPS) and posterior pharyngeal sensilla (PPS), and the dorsal
pharyngeal organ (DPO), constitute the larval gustatory system (Figure 7A) [89,167]. These
organs of appetence exist in sets of two, consisting of varied numbers of sensory neurons
organized in sensilla. The DO has 11 neurons distributed in 6 peripheral sensilla, the TO
has 37 neurons in 17 sensilla, the VO has 7 neurons in 5 sensilla, the DPS has 16 neurons
in 6 sensilla, the VPS has 17 neurons in 4 sensilla, the DPO has 5 neurons, and the PPS
has 6 neurons in 2 sensilla each [168]. In adult fruit flies, the taste organs comprising the
mouth part are both extrinsic and intrinsic in nature. The extrinsic taste organs composed
of the labial palps are connected to the proboscis, the tubular mouthpart used for feeding.
When D. melanogaster is indulged in active feeding, its labellum opens up to allow the food
item to interact with the taste pegs, followed by the food’s entry into the pharynx and
esophagus [169]. Here, the intrinsic taste organs are involved. These three organs, namely
the labral sense organ (LSO), ventral cibarial sense organ (VCSO), and dorsal cibarial sense
organ (DCSO), are found in the interior wall of the pharynx [170]. They consist of tightly
packed cell clusters and are involved in the monitoring of ingested food (Figure 7B). The
internal taste organs help D. melanogaster in deciding whether to perform a regurgitate
response to a harmful substance or to enhance sucking reflexes to a desirable food [171].
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Figure 7. Components of the gustatory system: (A) Larva: The taste system in larvae is mainly limited
to the head region. The dorsal (DO, peripheral region) terminal (TO) and ventral (VO) organs, along
with the dorsal (DPS), ventral (VPS), posterior (PPS) pharyngeal sensilla, and the dorsal pharyngeal
organ (DPO) constitute the larval gustatory system. These are all present in sets of two; (B) Adult:
The mouth part of D. melanogaster is composed of the extrinsic and intrinsic taste organs. The labial
palps and proboscis are the extrinsic taste organs, whereas the intrinsic taste organs include the labral
sense organ (LSO), ventral cibarial sense organ (VCSO), and dorsal cibarial sense organ (DCSO).
(Modified from [90,172]).

Looking closely at the elementary architecture and distribution of taste sensilla in fruit
flies, a terminal pore is seen at the tip of the taste bristles and pegs (Figure 8A). When fruit
flies ingest any food item, it contacts dendritic processes of the gustatory receptor neurons
(GRNs). The dendrites extend into the bristle shaft and may help in further processing of
the gustatory information [169,173]. Additionally, amid the inner surface of the bristle and
dendrites, there is a fluid-filled space. This fluid is called lymph, and is believed to make
food tastants accessible to their related receptors [174]. The taste lymph is secreted by the
support cells, though little is known about its basic composition. The legs and anterior
wing margin of D. melanogaster also house some taste bristles [13]. This wide distribution of
gustatory hairs serves as survival kit for fruit flies (Figure 8B). They can analyze the nature
of the food, and assess whether it is toxic or nutritious before extending their proboscis
for ingestion [175]. In females, a few sensilla are also present around the ovipositor that
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might help D. melanogaster in finding places that have enough nutrient availability for
proper laying and conditioning of eggs [163,176,177]. However, recent work targeting
complete anatomical, physiological, and molecular characterization of the ovipositor’s
sensilla and pegs in D. suzukii, D. melanogaster, along with a few related species, has brought
to light some interesting facts. The study through GAL4-driven expression of GFP in D.
melanogaster showed that the pegs in the ovipositor house mechanoreceptors rather than
chemoreceptors. This highlights a novel finding that the endpoint of the ovipositor in
D. melanogaster is not involved in the assessment of nutritional content of the egg-laying
substrate [178]. Besides this, the involvement of taste bristles in courtship and mating has
also been shown. A few studies suggest that male flies use sensilla on their forelegs to
detect pheromones, promoting copulation with females [19,179]. Thus, gustatory sensilla
are indispensable to the existence and survival of fruit flies.
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Figure 8. Schematic of (A) Gustatory sensillum: A gustatory sensillum consists of accessory cells,
gustatory receptor neurons (GRNs), mechanosensory neuron, and a terminal pore for the entry of
tastants molecules; (B) Distribution of gustatory sensilla on D. melanogaster’s body: The gustatory
sensilla in fruit flies are scattered on the proboscis, ovipositor, wing margins, and legs; (C) Types of
gustatory sensilla: The gustatory sensilla, based on their length, are of three types, namely long-type
(L-type), intermediate-type (I-type), and small-type (S-type). (Modified from [70,172]).

The gustatory sensilla on the labellum can be classified into three groups based on
their lengths (Figure 8C). They are the:

a. Long-type (L-type): The L-type bristles are long and harbor 4 GRNs per sensillum.
These neurons are A, C, DL, and E cells, responding to sugar, water, high salt, and low salt
concentrations, respectively [180,181].

b. Intermediate-type (I-type): The I-type gustatory hairs are intermediate in size.
They house 2 GRNs per sensillum. Out of these two, one GRN (A) helps flies to detect
sugar and low salt concentrations, while the other one (B) mediates the response to high
salt concentrations and aversive compounds [17,182,183]. The I-type sensilla are narrowly
tuned and include two sub-classes, I-a and I-b, that are distributed on the lateral regions of
the labellum in the anterior and posterior regions, respectively [17].

c. Small-type (S-type): As the name suggests, the S-type bristles are small in size.
Like the L-type, they also house 4 GRNs per sensillum, i.e., A, B, C, and DS cells, showing
gustatory responses to sweetness, bitterness, water, and high salt concentrations, respec-
tively [180,183]. The S-type sensilla are further divided into three sub-types, i.e., S-a, S-b,
and S-c, amalgamated with each other on the medial region of the labellum. Out of these
three, S-a and S-b are the most broadly tuned sensilla, with S-b showing a much greater
response to the tastants [17].
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In addition to GRNs, the gustatory sensilla in D. melanogaster also house mechanosen-
sory neurons (MNs). As a result, when fruit flies feed, the taste sensilla receive both
gustatory stimuli as well as the mechanical sensation [91,184]. Thus, the gustatory coding
in the legs of fruit flies also needs to be investigated in detail to understand the complete
repertoire of organs involved in taste perception. The tarsal segments of the legs have a
lot more sensilla as compared to labellum, and were found to be the key in the sensing of
gustatory stimuli. It is the tarsi that come in initial contact with food items, followed by
the labellum [185]. In female D. melanogaster, gustatory sensilla are distributed on the five
tarsal segments of the forelegs, midlegs, and hindlegs of the fly in amounts of ~28, 21, and
22, respectively, expressing 28 Grs in various combinations. These sensilla can be divided
into four functional groups, which are as follows:

a. Type A1: Specific to the forelegs only, the Type A1 includes f5s, the most broadly
tuned sensillum, responding to a wide range of sweet and bitter compounds such as
sucrose, maltose, spartein, denatonium, etc.

b. Type A2: Comprising of f4s and f5b sensilla, they respond to a much narrower
range of bitter tastants, though the sugar reception profile is similar to the Type A1.

c. Type B: The repertoire consists of the sensilla f2b, f3b, and f4b. These sensory hairs
show a negligible response to the bitter compounds, and sugar taste reception is also on
the lower side as compared to Type A1 and A2.

d. Type C: The sensilla in this functional group consist of f3a, f1a, f5a, f1c, f1d, and
f2a. These gustatory hairs exhibit extremely weak responses to both sweet and bitter
compounds [186].

Further, two more types of foreleg sensilla, namely f5v and f4c were identified. The
f5v sensillum exhibits a strong response to sweet tastants, but reacts poorly to bitter
compounds. Contrarily, the f4c sensillum responds to a wide array of bitter compounds
such as lobeline, denatonium, etc. with fairly good measure. The gustatory sensillar
organization in the mid and hindlegs of the female fly is also quite similar to the foreleg,
barring a few exceptions. A limited number of sensilla, namely f5s, f4c, f1b, and f3b, are
only present in the foreleg; furthermore, the f3a sensillum of the midleg is not paired.
Besides this, in male D. melanogaster, the distribution of the gustatory hairs is comparable
to female flies, with only forelegs showing some additional taste sensilla [186].

The GRNs in the gustatory sensilla extend their axons to the subesophageal ganglion
(SEZ) [187]. It is widely regarded as the primary taste center in D. melanogaster [188]. The
SEZ is located in the ventral area of D. melanogaster’s brain and plays an important role in
the perception and processing of taste stimuli [189,190]. Each region of SEZ responds to
different types of taste. The anterior and dorsolateral regions respond to sweet/bitter stim-
uli from the pharyngeal GRNs, whereas the posterior SEZ retort to the tarsal’s sweet/bitter
taste neurons. In addition, the labellar bitter/sweet neurons send their projections to the
medial SEZ [191].

6.1. Gustatory Receptors (Grs)

The Ors and Grs in mammals are prime examples of typical G-protein-coupled recep-
tors (GPCRs). These receptors are transmembrane in nature and share a seven hydrophobic
domain structure consisting of α-helical chains [192]. However, in D. melanogaster the
Grs are not related to those in mammals, and are not GPCRs in nature. Indeed, in fruit
flies, the Grs are evolutionarily linked with Ors [66,69,164,179,193–197]. Further, several
studies substantiate that like Ors, the Grs are also ligand-gated cation channels, which
points towards a close relationship between these two receptor families [14]. Presently, the
number of Grs in D. melanogaster is 68 (encoded by 60 Gr genes), owing to the completion
of the D. melanogaster genome project [69]. Apart from their roles in the detection of tastes,
a few Grs have also been found to be expressed in OSNs [112,170]. The Gr21a and Gr63a
co-expressing OSNs, involved in the detection of CO2, are prime examples of this [198].

As far as the larval stages of D. melanogaster are concerned, the translational assay of
the Gr genes employing Gr-Gal4 lines has exhibited some interesting facts. It has shown
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that 39 Grs are expressed in the TO, DPS, VPS, or PPS of larva, comprising the larval
gustatory system [167,199,200] (Table 4). Most larval Gr-GAL4s also exhibit co-expression
alongside Gr33a-GAL4 and Gr66a-GAL4. This pattern of countenance advocates that most
larval Grs might respond to a bitter taste [167]. One more important thing which has come
to light from Gr-Gal4 expression analysis is that D. melanogaster larvae do not express major
receptors needed for sugar sensing. This absenteeism of the sugar Grs (Gr5a, Gr61a, and
Gr64a-f) raises an important question. The underlying question is: how do larvae respond
to sugars? The answer lies within Gr43a, the fructose receptor that might trigger sugar
detection in larvae [168,201].

Table 4. Gustatory receptors (Grs) in Drosophila melanogaster (Larva).

DO TO DPS VPS PPS

Gr2a Gr2a Gr2a Gr28a Gr22b
Gr28a Gr9a Gr22b Gr33a Gr28a

Gr21a Gr22d Gr66a Gr32a
Gr22a Gr22e Gr68a Gr33a
Gr22e Gr23a Gr39a.a
Gr28a Gr28b.a Gr39a.d

Gr28b.a Gr32a Gr39b
Gr28b.e Gr33a Gr66a
Gr32a Gr39a.a Gr93c
Gr33a Gr39a.b Gr93d
Gr36b Gr39b
Gr36c Gr43a

Gr39a.a Gr57a
Gr39a.b Gr58b
Gr47b Gr59d
Gr57a Gr66a
Gr58b Gr77a
Gr59a Gr93a
Gr59c Gr93b
Gr59d
Gr59e
Gr59f
Gr63a
Gr66a
Gr93b
Gr94a
Gr97a

Outline of larval repertoire of gustatory receptors (Grs). (Adapted from [154].) DO—Dorsal organ, TO—Terminal
organ, DPS—Dorsal pharyngeal sensilla, VPS—Ventral pharyngeal sensilla, PPS—Posterior pharyngeal sensilla.

The distribution of Grs in adult fruit flies is diverse. Out of 68 Grs known, the
expression analyses of the majority of them have revealed that 53 Grs are expressed in the
labellum, 32 Grs in the tarsal leg segments, 19 Grs in the taste pegs and pharynx, 7 Grs
in the wing margins, and 5 Grs in the antenna [191] (Table 5). This vast repertoire of Grs
allows D. melanogaster to respond to an array of tastants in an efficient manner. The taste
receptors are classified into different classes:

a. Bitter taste receptors: The structure and function of the bitter taste receptors in
D. melanogaster are more complex than their mammalian counterparts, consisting primarily
of homo- and hetero-dimers [16,202]. A few research works in this direction have identified
the involvement of multiple Grs in fruit flies for triggering a response to various bitter
tastants. The co-expression of Gr66a, Gr93a, and Gr33a in a single GRN, along with their
inevitability for responding to caffeine, hints towards a multimeric architectural ensemble of
the bitter taste receptors [15,16,203,204]. The response profile of various other bitter tastants
has further substantiated this finding. The hetero-multimers of Gr32a/Gr59c/Gr66a or
Gr22e/Gr32a/Gr66a are needed for the detection of denatonium (DEN), lobeline (LOB),
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and berberine (BER), while Gr22e/Gr32a/Gr66a responds additionally to strychnine (STR).
Besides this, Gr32a/Gr33a/Gr66a retorts to quinine (QUI), denatonium (DEN), escin (ESC),
sparteine (SPS), berberine BER), and lobeline (LOB) while responses to theobromine (THE),
umbelliferone (UMB), caffeine (CAF), and theophylline (TPH) necessitate the four-receptor
complex of Gr33a/Gr39a/Gr66a/Gr93a [20,205].

It has been found that, among the complete repertoire of the bitter Grs, there is a
ubiquitous expression of Gr32a, Gr33a, Gr39a.a, Gr66a, Gr89a, and Gr93a in all bitter GRNs
designated as “core bitter Grs” or “commonly expressed receptors” (CERs). These core Grs
may function as co-receptors (analogous to Or83b/Orco) with other Grs further reinforcing
their multimeric organization and enhanced complexity [17,19,20]. In addition to bitter taste
receptors, the transient receptor potential (TRP) channels were also involved in aversive
taste stimulation. The GRNs in the labellum express three TRP channels—TRPA1, Painless,
and TRP-Like (TRPL)—showing behavioral avoidance to aristolochic acid (AA) [206], isoth-
iocyanates [207], and camphor, respectively [208]. As far as aristolochic acid is concerned,
at higher concentrations, it is sensed directly by TRPA1, whereas at lower levels, it is picked
up through a signaling cascade initiated by opsins that later on couples to TRPA1 [209].

b. Sugar taste receptors: The sugar-responsive GRNs such as bitter neurons express
multiple Grs in a combinatorial fashion. This points towards their dimeric or multimeric
mode of functioning [210–213]. A common Gr found in most of the GRNs that are stim-
ulated by a small subset of sugars, particularly trehalose, is Gr5a [210,214–216]. It has
been deciphered that the Gr5a-positive taste neurons also express Gr61a and a group of
six closely related Grs (Gr64a, Gr64b, Gr64c, Gr64d, Gr64e, and Gr64f) in a tandem array,
designated as the “candidate sugar receptors” [69,210,211,213,217]. To elaborate, the sugar
Grs in D. melanogaster, based on combinatorial expression in labial palps and tarsi, exhibited
varied patterns of translation. First, 7 out of 31 sensilla in each palp express all sugar Grs
except Gr64a. Second, 6 S-type sensilla translate Gr64f and Gr5a, along with Gr64b, Gr64c,
and Gr64e in a random fashion. Third, 6 neurons linked with the taste pegs exhibit strong
co-expression of Gr5a and Gr64c in addition to Gr64f. Finally, 4 neurons in the LSO display
the presence of Gr61a, Gr64a and Gr64b in addition to Gr64f. Besides this, the tarsal sweet
Grs also display different outlines of neuronal co-expression. The sensilla f5s and f4b
express all of the candidate sugar Grs, and f5a sensilla express Gr61a, Gr64b and Gr64f,
whereas f5v sensilla express Gr61a, Gr64a, Gr64c, Gr64f, and Gr43a [213].

Among the Gr64 cluster, Gr64a, along with Gr5a, are of prime importance for the
gustatory behavior of D. melanogaster. The Gr5a is tuned to a narrow range of sugars such
as trehalose, m-a-glucoside, glucose and melezitose, whereas Gr64a acts as a receptor for a
wide range of sugars such as sucrose, maltose, turanose, raffinose, palatinose, maltotriose,
leucrose, stachyose, maltitol, and fructose [210]. A study using Gr64 mutant flies (devoid
of Gr64a-Gr64f) has thrown light on the multimeric operation of sugar Grs. It has been
found that Gr64 mutant flies exhibited a highly reduced response to trehalose, even in the
presence of a functional Gr5a gene. It underlines the fact that the tracking of trehalose by
D. melanogaster requires the functioning of two or more Grs as a dimeric or multimeric
unit [212]. This finding has been further validated by another study using Gr64 mutant
flies. The study has revealed that Gr5a and Gr64a require Gr64f as a co-receptor forming a
functional heterodimer for normal trehalose and sucrose detection, respectively, in fruit
flies [218]. Besides this, the receptors for attractants other than sugars are not well estab-
lished until now, but a few works in this direction have unfolded the possible involvement
of Gr64e in detecting fatty acids [219].
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Table 5. Gustatory receptors (Grs) in Drosophila melanogaster (adult).

Antenna Labellum Taste Pegs Pharynx Wings Tarsal Leg
Segments

Gr5a Gr5a Gr5a Gr2a Gr22a Gr5a
Gr10a Gr8a Gr64c Gr22b Gr22e Gr8a
Gr21a Gr21a Gr64f Gr22c Gr28b.c Gr22a
Gr22e Gr22a Gr22e Gr39a.d Gr22b
Gr63a Gr22b Gr28a Gr43a Gr22c
Gr64b Gr22d Gr28b.a Gr59c Gr22d
Gr64f Gr22e Gr28b.c Gr68a Gr22e
Gr68a Gr22f Gr28b.d Gr28a

Gr23a.a Gr28b.e Gr28b.a
Gr23a.b Gr32a Gr28b.c
Gr28a Gr33a Gr28b.d

Gr28b.a Gr47a Gr28b.e
Gr28b.c Gr64a Gr32a
Gr28b.d Gr64e Gr33a
Gr28b.e Gr66a Gr36a
Gr32a Gr93a Gr39a.a
Gr33a Gr39b
Gr36a Gr43a
Gr36b Gr57a
Gr36c Gr58c

Gr39a.a Gr59a
Gr39a.b Gr59d
Gr39a.c Gr61a
Gr39a.d Gr64c
Gr39b Gr64e
Gr43a Gr64f
Gr47a Gr66a
Gr57a Gr68a
Gr58a Gr89a
Gr58b Gr93a
Gr58c Gr93b
Gr59a Gr98d
Gr59b
Gr59c
Gr59d
Gr59f
Gr61a
Gr64a
Gr64b
Gr64c
Gr64d
Gr64e
Gr64f
Gr66a
Gr68a
Gr89a
Gr92a
Gr93a
Gr93b
Gr98a
Gr98b
Gr98c
Gr98d

Outline of distribution of gustatory receptors (Grs) in adult flies. (Adapted from [17,98,186,191,213]).

c. Salt taste receptors: The salts play a key role in the survival of organisms by regu-
lating many important physiological processes. However, their effects change drastically
with concentrations. A moderate salt concentration is beneficial (up to 100 mM), while
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a high concentration (more than 200 mM) have exhibited deleterious effects [220]. Thus,
like many other organisms, D. melanogaster also displays a preference for low salt condi-
tions. In the larval stage, two epithelial sodium (DEG/ENaC) channels are involved in the
sensing of salts. These channels, namely PPK11 and PPK19, are expressed in the TO and
trigger appetitive and aversive behavioral responses to low and high salt concentrations,
respectively [221]. In addition, it has been found that besides PPK19, Sano, a cytoplasmic
protein co-expressed with Gr66a in the TO, is also needed by larvae for detecting increased
concentrations of NaCl [222]. Contrary to this, the sensing of salts in adult D. melanogaster is
different and diverse. Here, in place of ENaC channels, the Ir76b is needed for low and high
salt sensing [220,223]. However, a recent study has revealed that a wide array of receptors
expressed in different classes of GRNs are also involved in salt detection. The sweet taste
receptors Gr64f and Ir94e act as the two low salt cell type receptors, responding to lower
levels of NaCl, whereas the bitter taste receptor Gr66a responds to higher concentrations
of NaCl and KCl, behaving as a high-salt cell type receptor. Besides Gr66a, the PPK23glut

also acts as a robust high-salt cell type receptor triggering a strong avoidance behavior to
various salty tastants such as KCl, CaCl, CsCl, NaBr, etc. [224].

d. Sour taste receptors: Many factors influence the choice of food that D. melanogaster
makes, with acid content being one of them. Fruit flies prefer food items that are low in
acid, while rejecting highly acidic compounds. Some reports suggest the role of bitter
GRNs and Irs in the detection of acids. A subsection of neurons for bitter tastants detect
carboxylic acid [225], whereas Ir7a perceives high levels of acetic acid [226]. As per a
recent study, the tracking of low and high acidic contents by D. melanogaster involves two
independent pathways. These pathways compete with each other to finalize the triggering
of an appetitive or aversive response. Additionally, the role of Otopetrin-like a (OtopLa), a
protein confined to the tips of a new class of GRNs in acid-sensing, has been discovered. It
was observed that the OtopLa functions as a cation channel, and is involved in the attractive
sensing of low levels of acids [227]. However, another new report has also discovered the
essentiality of OtopLa in eliciting a repulsive behavioral response to food with a high acid
content [228].

6.2. Ionotropic Receptors (Irs)

In addition to olfaction, the Irs in D. melanogaster are intricately involved in the
gustatory system as well. It has been found that Irs, belonging to the clade Ir20a, perceive
taste stimuli in both larvae and adult fruit flies [90,97]. In larvae, 11 Irs are known to be
expressed in different gustatory organs. Out of this, Ir48c, Ir60b, Ir60e, Ir67b, Ir67c, Ir94h,
and Ir94f are translated in the DPS, whereas Ir20a is manifested in the DPO. Additionally,
the Ir47a is expressed in the TO in addition to the manifestation of Ir56a, Ir67b, and Ir94d
in larval body. Thus, this distribution of Irs, particularly in DPS, hints at their major role in
deciphering the metabolic compounds produced in the larval digestive tract. Besides the
Ir20a clade, Ir76b and Ir25a from another class of Irs have also been found to be expressed
in all of the larval gustatory organs [90]. In adult fruit flies, the distribution of the Ir20a
clade is a bit more diverse. Here, ~35 Irs from this group are expressed in GRNs, either
independently or co-expressed with the sweet and bitter taste receptors. However, it has
been observed that out of 35 Ir20a genes, only 28 genes code for proteins, while the other
7 genes might be pseudogenes. Thus, out of these 28 Irs, Ir47a, Ir56a, Ir56b, Ir56d, and
Ir94e are expressed in the labellar taste sensilla. It has also been found that the Ir56a is
co-expressed with the bitter receptor Gr66a, whereas Ir56b and Ir56d exhibit co-expression
with the sugar receptor Gr5a. This pattern of translation indicates their role in the detection
of appetitive and aversive tastants individually. Furthermore, the members of the Ir20a
group are also translated in the gustatory sensilla of D. melanogaster legs. The Ir52a and
Ir56d are expressed in both the tibia and tarsal segments, whereas Ir20a, Ir47a, Ir52a, Ir52c,
Ir52d, Ir56b, Ir62a, and Ir94b are translated solely in the tarsi. This distribution of Irs does
not end here, but is further extended to the pharynx of the fly. The Ir20a, Ir56a, Ir60b,
Ir67c, Ir94f, and Ir94h are expressed in the LSO, while VCSO exhibits the translation of
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Ir20a, Ir94a, Ir94c, and Ir94h. Lastly, Ir52a is expressed in the anterior margin of wings,
thereby concluding the distribution of Irs in the gustatory system of the fruit fly [90,91,97].
In nutshell, this widespread distribution of the Ir20a group in gustatory organs, in addition
to their axonal projections to the SEZ, points to their intricate role in the perception of taste
stimuli [97].

6.3. Transient Receptors Potential Channels (TRP)

Along with Grs, TRP channels are also involved in the detection of aversive com-
pounds by D. melanogaster. The roles of three TRP channels, i.e., painless, TRPA1, and
TRPL, have been ascertained in this regard [206–208,229]. It has been found that TRPA1 is
needed in a subset of bitter GRNs to trigger an avoidance response to aristolochic acid [206].
The role of TRPA1 and painless in the sensing of reactive electrophiles (a group of noxious
compounds) such as allyl isothiocyanate (the colorless oil of wasabi) has also come to
light [207,229]. Furthermore, TRPL is involved in the detection of unpalatable food items,
such as camphor, by D. melanogaster [208].

7. Gustatory Signaling Pathway—Understanding the Chronology of Taste

The cascade of events involved in the perception of taste in D. melanogaster is not well
recognized. It demands a more thorough understanding and in-depth study of the various
factors that help GRNs in eliciting an action potential.

7.1. Detection of Sugary/Bitter Tastants

As mentioned earlier, the Grs in fruit flies exhibit an inverted topology, similarly to Ors,
and function as ligand-gated cation channels [230]. This ionotropic mode of functioning
has been further substantiated by a work involving Gr43a, a highly conserved receptor.
This receptor bestowed the sensing of fructose onto extracted patches of membranes of
Gr43a, expressing cultured cells [14,177]. However, altered detection of sweet tastants has
been observed in mutant fly strains with distorted G-protein signaling [215,216,231,232].
In D. melanogaster, 11 genes have been identified until now that encode these G-protein
subunits. There are six genes translating α subunits, whereas β and γ subunits are expressed
by three and two genes respectively [232,233]. Moving onwards, a few research works have
brought to the surface the exclusive involvement of only two G-protein subunits in the
reception of gustatory stimuli. These monetary elements are Gsα (encoded by DGsα) and
Gγ1, both taking part in the tracking of sugars by fruit flies [215]. The reduced gustatory
response of flies with faulty Gγ1 to a variety of sugars further hints at its role in the
transmission of sweet taste perception [234]. To summarize, although clear evidence for the
involvement of G-proteins in the functioning of Grs is inadequate, they might be involved
in modulating the ionotropic pathway of taste detection in one way or another (Figure 9A).

7.2. Detection of Salty Tastants

The two amiloride-sensitive ENaC channels, i.e., PPK11 and PPK19, are involved in the
detection of salts at lower concentrations in larvae, but at lower and higher concentrations
in adult D. melanogaster. They are expressed in the taste sensing TO of larvae, and in adult
flies on the gustatory bristles of the labellum, legs, and wing margins [221]. The role of PPK
channels in salt sensing is well-established in larvae [177,222,235,236], but the same has
not been shown reliably in case of adult flies. Thus, the PPK channels may not be essential
for salt tasting in adult flies [177]. When D. melanogaster larvae detect a salty ligand, these
ligand-gated, voltage insensitive, depolarizing cation channels lead to a direct influx of
Na+/K+ ions into the GRNs [235,236]. This results in depolarization of their cell membrane
and the generation of an action potential. The role of Ir76b has also been reported in
low and high salt sensing in adult flies. The Ir76b functions as a constitutively open Na+

channel that leads to an intrusion of Na+ ions into the cell followed by its membrane
depolarization [220,223]. However, a recent report suggests that Ir76b forms a heteromeric
complex with the co-receptor Ir25a, to mediate gustatory salt responses [224]. The role of
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two low-salt cell type receptors—namely Gr64f and Ir94e—with NaCl-specified tuning
and two high-salt cell type receptors—i.e., Gr66a and labellar PPK23glut—responding to
high doses of an array of salty tastants have also come to light [224]. This is how salt
signaling works in D. melanogaster and helps them respond to salty tastants in an appetitive
or aversive manner (Figure 9B).
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Figure 9. Schematic of taste signaling: (A) Sweet/bitter taste signaling pathway: Formation of the
receptor–ligand complex activates a non-specific cation channel. This leads to an influx of cations
into the GRNs, leading to their membrane depolarization and further transmission of the signal. In
addition, bitter tastants such as aristolochic acid utilize TRPA1 and opsins to perform a repulsive
gustatory response [202]; (B) Salt taste signaling pathway: When D. melanogaster larvae detect a salty
ligand, the PPK11 and PPK19 channels open up. This leads to an influx of cations into the GRNs,
leading to their membrane depolarization. Contrarily, in case of adult flies, Gr64f, Gr66a, and Ir76b
are involved in salt signaling (Modified from [181]).

8. Gustation-Based Repugnancy—How Repellents Target the Gustatory System

Apart from triggering an olfaction-based repellency, DEET has also been reported to
target the gustatory system of insects with far more sensitivity. It acts as a feeding deterrent.
Initially, it was reported that Gr32a, Gr33a, and Gr66a, translated extensively in the bitter
sensing GRNs, were involved in the sensing of DEET. However, the expression of these
receptors in sugar-detecting GRNs did not trigger DEET repellency. This hinted towards the
involvement of some additional players in the manifestation of the aversive behavior [237].
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Later on, a work using D. melanogaster confirmed the participation of Gr32a and Gr33a
in the induction of DEET repugnancy [153]. The gustatory mode of functioning of DEET
was also observed when fruit flies devoid of labellum exhibited a decreased avoidance
of this repellent. Further in-depth molecular analysis revealed that, in addition to Gr32a,
Gr33a, and Gr66a, Gr89a is also involved in DEET repugnancy [238]. To conclude, these
findings suggest that the functioning of DEET involves the activation of bitter-sensing
GRNs. Nevertheless, a complete repertoire still needs to be accomplished, which will be
beneficial in designing improved and more potent alternatives to combat the insect menace.

As mentioned earlier, despite DEET being a potent repellent, its application is as-
sociated with the problems of higher costs, unpleasant odor, and reduced efficacy upon
recurrent use. Therefore, other alternatives to DEET, such as coconut oil, picaridin, lemon
eucalyptus oil, permethrin, etc. are being explored by researchers to develop new repellent
compounds with higher efficacy and pleasant smells [23,239]. In this quest, saponins have
emerged as compounds that can be used as a substitute for DEET. They are used by plants
as a natural means to ward off insects due to their toxicity and unpleasant taste. A saponin
extracted from the plant Quillaja saponaria has been found to exhibit insecticidal and anti-
feeding properties on D. melanogaster in the larval stage, as well as the adult stage. Further,
through behavioral screening and tissue-explicit rescue trials, the role of Gr28b expressed
in the labellum of fruit flies has come to light with no involvement of Gr32a, Gr32b, and
Gr66a. More precisely, the Gr28b.c isoform triggers the aversive saponin response [240]
(Figure 10). Altogether, it is a great sign, and more such works are needed in this direction
to develop better alternatives to DEET by targeting the gustatory system of insects.
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Figure 10. Schematic of insect repellents targeting the gustatory system: Apart from inducing an
olfaction-based repugnancy, DEET also functions as a feeding deterrent. Using D. melanogaster, it has
been observed that DEET and saponins, a class of obnoxious compounds, work by triggering the
bitter taste Grs.

9. Conclusions & Future Directions

The studies involving olfactory and gustatory processing in D. melanogaster have
made rapid progress in the last few years. This has further strengthened the position of
fruit flies in the arena of neuroscience as a versatile model organism. As a result, they
are being used quite prominently to test and develop new olfaction and gustation-based
repellent compounds as alternatives to DEET. When we talk about olfaction, we can say
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that a number of its aspects have been analyzed in detail by the researchers. The major
olfactory organs—the OSNs, their receptors, and ligands—have been covered in detail. Still,
several gaps need to be filled, both at physiological and molecular levels. The functional
characteristics of lateral horns (LHs), the role of Irs in olfaction, their ligands along with the
dose-response curves, and the complete molecular circuitry of olfaction need to be explored.
As far as gustation is concerned, the research work using fruit flies has shed some light
on their feeding and sexual behavior, along with the gustatory circuits involved. More
studies are required in this direction to obtain a clear picture of the molecular and signaling
pathways leading to the gustatory response in D. melanogaster. Moreover, the effect of
hunger and satiety on the feeding behavior of flies, their ability to differentiate between
the choices of food quality, and the correlation between olfactory and gustatory pathways
need to be established more strongly. The information gained will enable researchers to
check a much-enlarged pool of natural and synthetic compounds that can be developed
into potent repellents and pesticides. It will be a great service to the modern world, which
is crippled with the problems of vector-borne diseases and crop damage on a large scale.
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