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Abstract

Background

Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and

grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging

modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal

changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visuali-

sation and quantification of ICAS.

Methods

Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and

with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed

ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA)

reduction percentage and compared with 2D-CDS.

Results

There was a trend but no significant difference in successful 3D reconstruction of ICAS

between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2}

84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment

of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC}

0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81).

Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal

diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both

measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diam-

eter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agree-

ment was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction

percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than

for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal

CSA reduction percentage: Ex1 0.15, Ex2 0.51).
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Conclusions

Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification

of ICAS. Thereby, further studies are warranted which should now compare power-mode

3DUS with the angiographic gold standard imaging modalities for quantification of ICAS, i.e.

with CTA or CE-MRA.

Introduction

Worldwide, ischemic stroke is among the leading causes for disability, mortality and of great

socio-economic importance [1, 2]. Large-artery atherosclerosis, i.e. an occlusion or stenosis

with� 50% diameter reduction of a brain-supplying artery, was shown to be the most com-

mon cause of stroke in middle-aged patients in central Europe (Germany) and has the highest

rate of early stroke recurrence [3]. Therefore, screening for stenosis of brain-supplying arteries

is mandatory in acute stroke patients [4, 5], with special emphasis on the origin of internal

carotid artery (ICA) a preferential site for severe atherosclerosis. Digital subtraction angiogra-

phy (DSA) is still considered as the “gold standard” imaging modality for grading ICA stenosis

(ICAS) and for determining a patient’s eligibility for carotid endarterectomy (CEA) or carotid

angioplasty and stenting (CAS) [4]. But given its invasive character with a frequency of peri-

procedural neurological complications of up to 2.6% [6], DSA is just recommended if non-

invasive imaging modalities like two-dimensional colour-coded duplexsonography (2D-CDS),

computed tomography angiography (CTA) or contrast-enhanced magnetic resonance angiog-

raphy (CE-MRA) have yielded discordant results in before [4]. Three-dimensional ultrasound

(3DUS) which is nowadays already routinely used in obstetrics [7] has the potential to visualise

extracranial brain-supplying arteries similar to CTA or MRA and might ideally complement

2D-CDS which grades ICAS by predominantly assessing hemodynamic parameters [8, 9].

Studies that evaluated 3DUS for quantification of ICAS showed promising results (in chrono-

logical order [10–18]). However, there are still unsolved questions that might hamper transla-

tion of vascular 3DUS from bench to clinical routine. First, it is unclear which ultrasound

mode should be the basis for 3DUS, e.g. 3DUS based on high-resolution native B-mode ultra-

sound [11, 16, 18] or 3DUS based on power mode [10, 12, 14, 15, 17]. Together with recent

advances in (3D) ultrasound technology, native B-mode ultrasound allows visualisation of

carotid vessels with high temporal and spatial resolution [18], but hypoechogenic or heavily

calcified plaques still remain important limitations and restricted 3D visualisation of ICAS in

16% of cases in our previous study [18]. On the other hand, spatial resolution of power mode

ultrasound is considerably lower than of high-resolution B-mode ultrasound [19] which might

affect accuracy of measurements especially within stenotic lesions. Secondly, a great advantage

of 3DUS compared to DSA is that 3DUS allows assessment of ICAS as both diameter and

cross-sectional area (CSA) reduction with the latter being independent from the chosen pro-

jection view. Thus, assessment of CSA reduction might result in a better accuracy and inter-

rater agreement of stenotic value. So far, studies which addressed assessment of stenotic value

of ICAS did not compare both measuring methods systematically [10–18].

Therefore, the aim of this study was to evaluate 3DUS for quantification of ICAS in com-

parison to 2D-CDS. We expected that successful 3D reconstruction of ICAS would be higher

when based on power mode ultrasound than on high-resolution B-mode ultrasound. Further-

more, due to the optimized visualisation of the vessel’s lumen, power-mode 3DUS might result

in better inter-rater, inter-rater and, when compared to 2D-CDS, inter-method agreement
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than high-resolution B-mode ultrasound. Since stenotic value of ICAS was assessed as distal

diameter and as distal CSA reduction percentage, we can analyse our data with both methods.

Methods

The study was approved by the local Ethics Committee of the Medical Faculty of the University

of Leipzig (reference number: 120-13-22042013) and all participants gave their written

informed consent.

Study population

From June 2013 to July 2014, 37 patients with 43 ICAS (23 male; median age 73 years, range

53–91 years) were consecutively recruited from our outpatient clinic (28 patients) and stroke

unit (9 patients). Six of 37 patients had bilateral ICAS of whom 4 had low-degree contralateral

ICAS and only 2 had hemodynamically relevant ICAS on both sides. All patients from our out-

patient clinic were in regular control of a known ICAS and free of focal neurological symptoms

ipsilateral to the ICAS over at least the previous 6 months, i.e. the ICAS was considered to be

asymptomatic. The remaining 9 patients were treated on our stroke unit due to an acute

ischaemic stroke (8 patients) or a transient ischaemic attack (1 patient) in the territory of the

ICAS, i.e. they had a symptomatic ICAS. In the latter group of patients with a symptomatic

ICAS, ICAS was initially diagnosed by CTA in 7 patients and by CE-MRA in 2 patients and

confirmed by 2D-CDS before inclusion into the study. None of them had previously had CEA

or CAS of the stenotic ICA.

Three-dimensional ultrasound scanning

All B-mode respectively power-mode 3DUS scans were performed by an experienced vascular

neurologist (JP) using a Toshiba Aplio 500 (Toshiba Medical Systems GmbH, Neuss, Ger-

many) equipped with a linear transducer (PLT-1204BT) set at 13 MHz This conventional

ultrasound system was attached to the Curefab CS system (Curefab Technologies GmbH,

Munich, Germany) which comprised a freehand magnetic field tracking system and a worksta-

tion equipped with special software (Curefab CS, version 1.91). This way, common 2D B-

mode as well as power mode images, which were grabbed from the video port of the Toshiba

Aplio 500, were concatenated with spatial and temporal information and stored in a virtual

3D-volume. Within this virtual 3D-volume, carotid arteries were reconstructed manually as

visualized in Fig 1. The whole process of ICA visualisation took about 5 minutes in case of

power-mode 3DUS and 10 minutes in case of B-mode 3DUS.

Practically, all patients were lying in a supine position and were asked not to swallow during

the scan, while breathing was allowed. Various US parameters like gain and dynamic range (B-

mode) respectively colour gain and latency (power-mode) as well as focus were individually

optimised for each patient. In case of power-mode the setting was considered optimal when

the patent lumen of the non-stenotic distal common carotid artery was completely filled with

colour without relevant blooming artefacts or random noise in the adjacent tissue [19]. Subse-

quently, the ultrasound transducer was set cranial to the clavicle and medial to the sternoclei-

domastoid muscle and was moved cephalad in transversal direction keeping the ICA lumen in

the center of the monitor screen. The whole scan took about 7 to 10 seconds and 36 (B-mode)

or 13 (power mode) images per second were recorded. Altogether, each ICA was scanned six

times, i.e. three B-mode 3DUS scans followed by three power-mode 3DUS scans. The best

scan of each mode was used for post-processing. In addition, ICAS were also reconstructed

from the second-best power-mode 3DUS scan to obtain intra-rater agreement for each

examiner.
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Grading of ICAS by 2D-CDS und 3DUS

After anonymization of the data, patients were examined once by the same experienced vascu-

lar neurologist (JP) who was certified in neurosonology by the “German Society of Ultrasound

in Medicine and Biology” (DEGUM) and the “European Society of Neurosonology and Cere-

bral Hemodynamics” (ESNCH). ICAS were graded with 2D-CDS applying the multipara-

metric “DEGUM ultrasound criteria” [8] which are almost identical to the criteria of the

Neurosonology Research Group of the World Federation of Neurology [9].

All subsequent 3DUS analyses (JP and AW) were done blinded to the results of the

2D-CDS examination as well as to the 3DUS results of the other examiner. For 3DUS, smallest

luminal CSA within the stenosis as well as poststenotic normal luminal CSA were assessed per-

pendicular to the remaining lumen. Poststenotic lumen was considered as normal when there

was again a complete colour filling of the lumen in the 3D-volume. Stenotic value of ICAS was

then calculated as distal CSA reduction percentage. In addition, reconstructed ICA was rotated

to obtain smallest luminal diameter within the stenosis and a screenshot was taken (Fig 2).

Fig 1. Three-dimensional ultrasound (3DUS) vessel reconstruction. (A) Two-dimensional power mode images were grabbed from the video port of the

ultrasound system and concatenated with spatial and temporal information to be stored in a virtual 3D-volume. Within this virtual 3D-volume navigation in all

3 orthogonal spatial planes is possible ad libitum. Plane orientation: green = transversal, red = coronal, blue = sagittal. (B) Based on the transversal planes

(green), the lumen of the common and internal carotid artery was traced manually at variable distances of 1 to 4 mm with smaller (1 mm) intersection

intervals at level of the stenosis. This manual segmentation (all yellow lines) was followed by an automatic vessel reconstruction (C). The reconstructed

carotid artery can be rotated freely and cross-sectional area can be measured at every point perpendicular to the vessel’s course. Asterisk indicates origin of

external carotid artery (not shown). Scale bar each 1 cm.

doi:10.1371/journal.pone.0167500.g001

3DUS for Visualisation and Grading of Internal Carotid Artery Stenosis

PLOS ONE | DOI:10.1371/journal.pone.0167500 January 3, 2017 4 / 11



Thereby, we aimed at simulating DSA with its 2D projection of a 3D structure. Luminal diam-

eter was measured within ICAS and distal to it with ImageJ (1.48v; National Institutes of

Health, Bethesda, MD, USA) and stenotic value was calculated as distal diameter reduction

percentage according to the North American Symptomatic Carotid Endarterectomy Trial

(NASCET) [20].

Statistical analysis

Statistical analyses were performed with SPSS version 20.0 (IBM Corporation; New York, NY,

USA). Intraclass correlation coefficient (ICC, consistency mode) was calculated to assess intra-

rater and inter-rater agreement for stenotic value using B-mode respectively power-mode

3DUS. Visualisation and description of inter-method agreement between 2D-CDS and B-

mode respectively power-mode 3DUS for grading of ICAS was achieved by a Bland and Alt-

man analysis [21] and calculation of ICC since we assumed that in case of grading ICAS with

3DUS, which is an angiographic imaging modality free of hemodynamical constraints from

the contralateral side, independence of both sides was given. Intraclass correlation coefficient

(range of 0–1) was interpreted as follows: good agreement ICC� 0.75, moderate agreement

0.75< ICC� 0.50 and poor agreement ICC < 0.5 [22]. Generally, a p< 0.05 was considered

as statistical significant.

Results

Thirty-seven patients with 43 ICAS were examined with 2D-CDS and 3DUS. Applying

2D-CDS as reference standard 15 of 43 (35%) ICAS were graded as� 70% or high-grade. Six

patients had bilateral ICAS, and 2 of those 6 patients had high-grade ICAS on both sides.

Fig 2. Stenotic value of internal carotid artery stenosis (ICAS) depends on projection view. (A and B) Anterior-posterior projection of power-mode

3D reconstructed ICAS; original lumen is also reconstructed and visualised in yellow (A). (B—D) Stenotic value of ICAS assessed as distal cross-

sectional area reduction percentage (93%) does not change since it is not affected by rotation or tilting. By contrast, clockwise rotation of ICAS results in a

decrease of stenotic value assessed as distal diameter reduction percentage from 82% (B) respectively 83% (C) to 72% (D). Smallest luminal diameter is

marked with filled arrowhead while distal luminal diameter is marked with open arrowhead. Asterisk indicates origin of external carotid artery (not shown).

CCA common carotid artery. Scale bar: 1 cm.

doi:10.1371/journal.pone.0167500.g002
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Three-dimensional vessel reconstruction from the virtual B-mode 3D-volume was possible

in 35 of 43 ICAS (81%; examiner 1 {Ex1}) and 36 of 43 ICAS (84%; Ex2). Using power-mode

3DUS successful vessel reconstruction increased to 40 of 43 ICAS (93%, Ex1) and 38 of 43

ICAS (88%, Ex2) which was statistically not significant (chi-square test p = 0.11 {Ex1} and 0.39

{Ex2}). Reasons for failure of ICAS 3D-reconstruction were heavy calcification with acoustic

shadowing and in case of B-mode 3DUS also echolucent plaques which could not be discrimi-

nated from the lumen. Intra-rater, inter-rater and inter-method agreement for high-resolution

B-mode respectively power-mode 3DUS and 2D-CDS are shown in Table 1. For power-mode

3DUS, comparison of stenotic values assessed as distal diameter reduction percentage with

2D-CDS showed no evidence of bias between methods but moderate limits of agreement in

the Bland and Altman analyses (Fig 3A). However, assessment of stenotic value with power-

mode 3DUS as distal CSA reduction percentage accounted for a permanent overestimation of

ICAS in comparison to 2D-CDS and wide limits of agreement (Fig 3B).

Using 2D-CDS as reference standard, positive predictive value for power-mode 3DUS (dis-

tal diameter reduction percentage) for detecting a high-grade (� 70%) ICAS was 0.81 (Ex1)

respectively 0.76 (Ex2) while negative predictive value to exclude a high-grade ICAS was 0.92

(Ex1) respectively 0.91 (Ex2).

Discussion

In this study we addressed freehand 3DUS for visualisation and quantification of ICAS and

found a superiority of power-mode 3DUS in a direct comparison with high-resolution B-

mode 3DUS. In detail, the best intra- and inter-rater agreements were achieved for power

mode 3DUS and expression of the stenotic value as distal CSA reduction percentage, while the

best inter-method agreement between power-mode 3DUS and 2D-CDS was found when ste-

notic value was calculated as distal diameter reduction percentage.

Three-dimensional US angiography might ideally complement 2D-CDS for examination of

neck vessels which is mainly based on assessment of hemodynamic parameters and is routinely

performed in clinical stroke practice. Although 3DUS software algorithms are nowadays

implemented in most high-end ultrasound systems they are scarcely used for 3DUS, despite

some benefit for examination of carotid vessels which has been demonstrated in previous

Table 1. Intra-rater, inter-rater and inter-method agreement of 3D ultrasound (3DUS) for quantification of internal carotid artery stenosis (ICAS).

Intra-rater agreement (ICC) Inter-rater agreement (ICC) Inter-method agreement

with 2D-CDS for Ex1(ICC)

Inter-method agreement

with 2D-CDS for Ex2 (ICC)

Ex1 (1. & 2.

scan)

Ex2 (1. & 2.

scan)

1. scan 2. scan 1. scan 2. scan 1. scan 2. scan

B-mode 3DUS: distal CSA

reduction percentage

n.a. n.a. 0.36* (CI:

0.27–0.44)

n.a. 0.15 (CI:

0.09–0.20)

n.a. 0.51* (CI:

0.44–0.60)

n.a.

B-mode 3DUS: distal diameter

reduction percentage

n.a. n.a. 0.51* (CI:

0.43–0.58)

n.a. 0.40* (CI:

0.31–0.47)

n.a. 0.52* (CI:

0.46–0.59)

n.a.

power-mode 3DUS: distal CSA

reduction percentage

0.88* (CI:

0.79–0.94)

0.78* (CI:

0.62–0.88)

0.90* (CI:

0.82–0.95)

0.8* (CI:

0.70–0.91)

0.63* (CI:

0.40–0.79)

0.63* (CI:

0.39–0.78)

0.57* (CI:

0.33–0.76)

0.53* (CI:

0.26–0.72)

power-mode 3DUS: distal

diameter reduction percentage

0.83* (CI:

0.70–0.91)

0.76* (CI:

0.58–0.87)

0.81* (CI:

0.68–0.90)

0.85* (CI:

0.73–0.92)

0.85* (CI:

0.75–0.92)

0.77* (CI:

0.60–0.87)

0.78* (CI:

0.61–0.88)

0.67* (CI:

0.45–0.81)

Reference standard for grading carotid stenosis was 2D colour-coded duplexsonography. Stenotic value in 3D reconstructed ICAS was calculated as distal

diameter respectively distal cross-sectional area (CSA) reduction percentage. ICC intraclass correlation coefficient, Ex1 examiner 1, Ex2 examiner 2, CI

95% confidence interval of the intraclass correlation coefficient, n.a. non available,

* indicates statistical significance i.e. p < 0.05.

doi:10.1371/journal.pone.0167500.t001
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studies [12, 17]. This is probably due to different technical restrictions associated with the

scanning process like the necessity to move the ultrasound transducer with constant velocity

and without tilting which is often not achievable in a common ultrasound examination. More-

over, those 3D scans usually do not contain spatial information which excludes offline mea-

surements of the stenosis parameters like diameter or CSA [23]. Ultrasound transducers with a

mechanically swept probe have also been used for vascular 3DUS since they can provide such

spatial information [11, 13, 16], but their image quality is rather low and only a short vessel

segment can be examined.

In our study, freehand 3DUS was achieved by a magnetic field tracking system as an add-

on to a conventional ultrasound system. This way, the ultrasound scanning process was identi-

cal to a common ultrasound examination of the neck vessels. High spatial and temporal resolu-

tion of this system has been demonstrated in before [18]. We found a trend to a higher rate of

Fig 3. Inter-method agreement between power-mode 3DUS and 2D-CDS. (A and B) Inter-method agreements between power-mode 3DUS and

2D-CDS for grading ICAS are visualised by Bland and Altman analyses with the differences in stenotic values—assessed as distal diameter (A = examiner

1 and A’ = examiner 2) respectively CSA (B = examiner 1 and B’ examiner 2) reduction percentage—plotted against the mean stenotic value of both

modalities. For the comparison of stenotic values assessed as distal diameter reduction percentage with 2D-CDS the Bland and Altman analyses (A and

A’) showed no evidence of bias between methods but moderate limits of agreement (A bias 0.4%, limits of agreement 20.0 and -19.2; A’ bias 0.4, limits of

agreement 25.0 and -24.2). Assessment of stenotic value with power-mode 3DUS as distal CSA reduction percentage accounted for a permanent

overestimation of ICAS in comparison to 2D-CDS and wide limits of agreement (B bias -9.3, limits of agreement 17.1 and -35.7; B’ bias -11.4, limits of

agreement 15.2 and -37.6). Note that ICAS number 33 (marked in red) was assumed to be an outlier when assessing stenotic value via CSA reduction

percentage by both examiners as shown in the box-and-whisker plots (C and C’). Hence, Bland and Altman analyses with stenotic value assessed as

distal CSA reduction percentage (B and B’) were performed without ICAS number 33. 3DUS three-dimensional ultrasound, 2D-CDS 2D colour-coded

duplexsonography, ICAS internal carotid artery stenosis, SD standard deviation.

doi:10.1371/journal.pone.0167500.g003
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successful 3D reconstruction of ICAS when using power-mode (93% and 88%) rather than

high-resolution B-mode US (81 and 84%). As expected, residual lumen within hypoechogenic

ICAS could be visualised better with power mode 3DUS while high-resolution B-mode ultra-

sound failed to discriminate between lumen and hypoechogenic plaque. On the other hand,

heavily calcified plaques with acoustic shadowing resulted in poor image quality within ICAS

for both ultrasound modes and likewise restricted 3D vessel reconstruction. These results are

in agreement with previous studies where heavily calcified plaques made 3D vessel reconstruc-

tion based on power-mode impossible in about 5% of ICAS [10, 12, 14, 15]. To what extent use

of ultrasound contrast agents might further increase successful visualisation of ICAS and

improve image quality should be addressed in future studies; first results were promising [16].

Inter-rater agreement was clearly better for power-mode 3DUS in comparison to B-mode

3DUS. While the latter showed just a poor to moderate agreement, use of power-mode

resulted in a good agreement between both examiners. An even excellent inter-rater agreement

was achieved when power-mode 3DUS was used and stenotic value of carotid stenosis was cal-

culated as distal CSA reduction percentage. There are good reasons to express stenotic value of

ICAS as distal CSA rather than distal diameter reduction percentage. First of all, reduction of

CSA better represents the hemodynamic impact of—especially an eccentric—stenosis [24]. In

addition, measurement of CSA is also independent of the projection, that is, in case of DSA

and diameter measurement on the direction of X-rays (Fig 2). Therefore, especially in eccen-

tric carotid stenosis, stenotic values obtained by DSA standard projections might even under-

estimate the severity of ICAS [25–27]. Even when free rotation of the 3D reconstructed ICAS

allows the detection of the smallest stenotic lumen, inter-rater agreement was slightly lower for

stenotic values expressed as distal diameter reduction percentage compared to expression as

CSA reduction percentage. In contrast, inter-method agreement between power-mode 3DUS

based on diameter reduction and 2D-CDS for quantification of ICAS was good for both exam-

iners which is because hemodynamic parameters of the 2D-CDS criteria to grade ICAS were

originally adapted to DSA, that is, to distal diameter and not CSA reduction percentage [8, 9].

This is in line with previous studies which demonstrated the good accuracy of power-mode

3DUS when using diameter reduction in comparison to 2D-CDS and DSA [14, 15].

On the other hand, a moderate and concentric ICAS with a diameter reduction of just 50%

would already be of 75% stenotic value when measured as CSA reduction percentage [28].

Hence, it would be difficult to detect a progression over time reliably with conventional ultra-

sound because 2D section planes would probably vary between examinations [29]. Three-

dimensional US enables measurement of CSA perpendicular to the remaining lumen at any

point in the vessel’s course, thereby, facilitating follow-up examinations. More importantly,

studies that addressed CEA for secondary prevention of symptomatic ICAS used DSA as refer-

ence standard and expressed stenotic value as local or distal diameter reduction percentage

[20, 30, 31]. According to Rothwell and colleagues stenotic value calculated as distal diameter

reduction percentage can be transformed to local diameter reduction percentage with good

accuracy [32]. However, there is not such a formula for transforming CSA reduction percent-

age into diameter reduction percentage. Thus, prognostic value of CSA reduction percentage

in terms of secondary prevention of symptomatic ICAS is currently unclear. By performing a

single power-mode 3DUS examination, benefits of both methods to assess stenotic value could

easily be brought together: Carotid stenosis could be described as CSA reduction which would

emphasise the hemodynamic aspect and as diameter reduction upon which treatment decision

is currently primarily based. Because of good positive respectively negative predictive values of

power-mode 3DUS for delineating hemodynamically relevant (� 70%) ICAS, it might be used

as primary confirmatory imaging modality to support treatment decision. Such an approach

of initial 2D-CDS and subsequent power-mode 3DUS would limit more invasive examinations

3DUS for Visualisation and Grading of Internal Carotid Artery Stenosis

PLOS ONE | DOI:10.1371/journal.pone.0167500 January 3, 2017 8 / 11



like CTA or MRA to cases where a clear discrepancy is found between both US methods. How-

ever, it must be proven if such a strategy is more cost and time effective than the current strat-

egy of 2D-CDS followed by angiography [33, 34].

One limitation of our study is that reference standard for grading ICAS was set to 2D-CDS

and not to DSA. In particular, calculation of positive and negative predictive values of 3DUS

should refer to DSA which was the imaging modality in the large prospective CEA trials in the

1980’s and 1990’s [20, 30, 31]. However, DSA carries the risk of periprocedural complications

[6] and there is a debate, whether DSA can still be regarded as gold standard for grading

carotid stenosis [27] since DSA was shown to underestimate stenotic value of ICAS [25, 26].

For carotid stenosis with stenotic values between 70% and 99% sensitivity and specificity of

2D-CDS was demonstrated to be almost equal to MRA and CTA [27]. Moreover, inclusion cri-

teria of ongoing trials like ACST-2 (Asymptomatic Carotid Surgery Trial 2) [35] or ECST-2

(The European Carotid Surgery Trial-2) [36] which examine best treatment of extracranial

carotid stenosis allow grading by MRA, CTA and 2D-CDS and do not require DSA at all.

Another restriction is that just about one third of ICAS were of� 70% stenotic value, thus,

limiting calculation of mainly positive predictive value. Since confirmation of high-grade

ICAS is of particular interest in treatment decision, future studies should include more

patients with severe carotid stenosis. Finally, because only 9 of the 37 patients had an acute

ischaemic stroke or TIA, generalisation of our results to the acute population is limited. Thus,

value of 3DUS in the acute phase, where patients are often less compliant and diagnosis might

prompt an immediate invasive treatment consequence (e.g. in case of a symptomatic hemody-

namically relevant ICAS) must be proven in future studies.

Conclusion

Our results emphasise superiority of power-mode 3DUS in a direct comparison with B-mode

3DUS for visualisation and quantification of ICAS. Thereby, further studies are warranted

which should now compare power-mode 3DUS with the angiographic gold standard imaging

modalities for quantification of ICAS, i.e. with CTA or CE-MRA.
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19. Widder B, Görtler M. Strömungsbeurteilung anhand der Farbcodierung. In: Widder B, Görtler M. (eds.):
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