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Abstract: The glycaemic index (GI) is used to demonstrate the tendency of foods to increase blood
glucose and is thus an important characteristic of newly formulated foods to tackle the rising
prevalence of diabetics and associated diseases. The GI of gluten-free biscuits formulated with
alternate flours, resistant starch and sucrose replacers was determined using in vivo methods with
human subjects. The relationship between in vivo GI values and the predicted glycaemic index
(pGI) from the in vitro digestibility-based protocols, generally used by researchers, was established.
The in vivo data showed a gradual reduction in GI with increased levels of sucrose substitution by
maltitol and inulin with biscuits where sucrose was fully replaced, showing the lowest GI of 33. The
correlation between the GI and pGI was food formulation-dependent, even though GI values were
lower than the reported pGI. Applying a correction factor to pGI tend to close the gap between the
GI and pGI for some formulations but also causes an underestimation of GI for other samples. The
results thus suggest that it may not be appropriate to use pGI data to classify food products according
to their GI.

Keywords: gluten-free; biscuits; glycaemic index; resistant starch; sucrose replacement; in vivo study;
in vitro study

1. Introduction

The reformulation of gluten-free products in order to improve their nutritional profile
and tackle chronic metabolic diseases, such as diabetes and cardiovascular disease, is
topical. This include formulations with reduced or zero content of rapidly digestible
carbohydrates, decreased readily available glucose-based ingredients and higher level of
fibre to reduce the glycaemic index (GI) [1–4]. Indeed, it has been reported that gluten-
free foods have a higher GI when compared to their gluten-containing counterparts [1–3].
Correlations were found between celiac disease and type I diabetes, which also justify the
importance of providing gluten-free products with a lower GI among the population with
celiac disease [5–8]. Moreover, the increased incident rate of celiac disease in many Western
countries [9] also highlights the pressing need to provide gluten-free products with a lower
GI. A GI classification system categorizes foods as having a low (55), medium (55 to 70), or
high GI (>70) [10]. Although there are a growing number of studies related to the reduction
of GI and their evaluation, with more products being offered on the market there is still an
on-going debate about the usefulness of the GI classification and the real effect of a low
GI on human diet [11–13]. Nevertheless, it is well established that a high GI diet might
increase the risk of diabetes, obesity and certain types of cancer and a low GI diet can be
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beneficial for human health [14–19]. In this context, it is important to determine the GI of
any newly developed food product. GI is determined by means of in vivo study involving
human subjects according to ISO 26642:2010 [20]. The in vivo determination of GI is quite
expensive, time consuming and, even if the protocol is not invasive, ethical concerns are
often raised. To avoid these drawbacks, in vitro protocols are being applied in order to
predict the GI [21–24]. To date, many studies aiming at the evaluation of the characteristics
of gluten-free pasta and baked goods in order to understand the effect of new ingredients
or processing techniques on the GI have been published [25–27].

Biscuits are a convenient food liked by most of the population and they represent
a preferred source of carbohydrates for celiacs [28]. They are generally formulated with rice
and maize flour and starches [1]. The use of more nutrient-dense flours could help to improve
the nutritional quality of gluten-free products, including biscuits. Our research group worked
on the formulation of gluten-free biscuits by using unconventional flours. The different phases
of the research [29–33] were aimed at the production of appealing low-GI biscuits made with
flours that are rarely found in the biscuits available on the Italian market.

Based on the above background, the aim of this work was to investigate the effect of
resistant starch and sucrose replacers (inulin and maltitol) on the GI of gluten-free biscuits
formulated with buckwheat, sorghum and lentil flours. In addition, the GI in vivo data and
the pGI values, previously determined by Di Cairano et al. [33], were compared in order to
evaluate the reliability of the data obtained by the in vitro protocol.

2. Materials and Method
2.1. Samples

The four gluten-free biscuits under study were produced as reported in Di Cairano et al. [33].
The ingredients used in the formulation of the biscuits are presented in Table 1. The control
sample with sucrose as a sweetener was formulated with all other ingredients except
resistant starch and inulin, whereas other samples had resistant starch and maltitol or
inulin as a partial or full replacement of the flours and sucrose, respectively (Table 2).

Table 1. Ingredients used for the production of gluten-free biscuits samples.

Ingredient Supplier g/kg Dough *
Buckwheat flour Molino Filippini (Teglio, SO, Italy) 279.20
Sorghum flour Molino Favero (Padova, PD, Italy) 169.50

Lentil flour Terre di Altamura (Altamura, BA, Italy) 109.70
Resistant starch-HI-MAIZE® 260 Ingredion (Westchester, IL, USA) -

Sucrose Suicrà (Pigna Spaccata, NA, Italy) 189.40
Maltitol-Maltite 100 Tereos (Moussy-le-Vieux, France) -

Inulin–FibrulineTM Instant Cosucra groupe Warcoing s.a., (Warcoing, Belgium) -
Eggs Parmovo (Colorno, PR, Italy) 134.60

High oleic sunflower oil Tampieri Financial Group (Faenza, RA, Italy) 89.70
Water 19.90

Ammonium bicarbonate Esseco (Trecate, NO, Italy) 4.00
Sodium hydrogen carbonate Esseco (Trecate, NO, Italy) 3.00

Salt 1.00
* reported amounts refers to those used in the formulation of control biscuit.

Table 2. Gluten-free biscuit samples and their main characteristics.

Sample Characteristics

Control Buckwheat, sorghum and lentil flour (50:30:20) biscuits with 19% (of total dough
weight) sucrose as sweetener and no resistant starch (RS)

RS-inulin 30 As Control but with part of the flours replaced by RS (11.50% of total dough
weight) and 30% of sucrose replaced by inulin

RS-maltitol 50 As Control but with part of the flours replaced by RS (12.00% of total dough
weight) and 50% of sucrose replaced by maltitol

RS-maltitol 100 As Control but with part of the flours replaced by RS (11.50% of total dough
weight) and total replacement of sucrose with maltitol



Foods 2022, 11, 3253 3 of 13

Di Leo Pietro spa (Matera, Italy) provided the raw materials and the facility for biscuit
production. About 100 kg dough were prepared in an industrial spiral mixer, then biscuits
were formed through wire cut technology and cooked in a combustion oven tunnel for
about 12 min at temperatures ranging between 175 and 235 ◦C. After cooling biscuits were
packed in plastic and paper (81, PapPet) bags. Figure 1 illustrates the production process of
the biscuits; all samples and their characteristics are reported in Table 2.
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Figure 1. Flow chart of biscuit production process.

2.2. In Vivo Study

A randomized crossover design study was carried out to evaluate in vivo glycaemic
responses after the consumption of the experimental biscuits.

All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Life Sciences Ethics Committee of the University of
Wolverhampton (amended LSEC/201920/FTM/81). The amendment was initiated to allow
participants to perform the postprandial glycaemic test at home and to mitigate challenges
imposed by COVID-19 restrictions. The test was carried out from July to August 2021. It
is possible to successfully obtain home glucose profiles by providing participants with
a self-monitoring blood glucose device [34]. However, it is important that participants are
trained and properly informed.

2.2.1. Subjects

Fifteen healthy subjects were recruited as volunteers from the student and staff pop-
ulation of the University of Wolverhampton (UK) by advertisement. The criteria used to
select volunteers were based on the literature [35,36]. These included a body mass index
between 18.5–24.9 kg/m2, fasting glucose levels within the normal range (<6 mmol/L),
non-smoking, no food allergies or intolerance and no use of supplements/medications,
such as birth control pills, anti-asthmatic, or diuretics, that might interfere with glucose and
lipid metabolism. Furthermore, they should not, within the past 6 months or at the time of
the test, have been following a vigorous exercise regimen or weight loss program; have no
acute illness, any type of chronic metabolic disease and have had no major medical/surgical
events; and not be pregnant or lactating or planning pregnancy within the next 3 months.
Four subjects dropped out before the beginning of the study or during the test. Six males
and five females took part to the study and their mean average age was 27 ± 5 (range
age, 20–45) years and their BMI 20.62 ± 1.91 (18.5–21.51) kg/m2. However, the remaining
11 participants provide a reasonable degree of power and precision for investigating the
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GI of the newly developed formulations, as the generally acceptable size is a minimum of
10 subjects.

2.2.2. Study Design

The study was designed in a way that each subject performed seven tests in a random
order. Each subject was asked to visit the University twice, once at the outset for the
straining and screening session and the collection of the experimental pack, and once at
end of the test for the submission of the clinical bin. The experimental pack consisted of
four types of biscuits coded with a set of numbers, three sachets of 55 g of D-(+)- glucose
monohydrate powder (Sigma-Aldrich, St. Louis, MO, USA), seven bottles of natural mineral
water (Volvic®, Danone Waters Ltd., London, UK) a glucose meter kit containing a glucose
meter (BGM-60, Romed®, Wilnis, The Netherlands), test strips (BGTS-200, Romed®), and
blood lancets (BL-100TB; Romed®), clinical bin (Sharps Bin 1 Litre Mauser UK T/A Daniels
Healthcare, Littleborough, UK), sterile cotton wool (Johson & Johnson, New Brunswick, NJ,
USA), hand sanitiser (Dettol, Reckitt Benckiser Group PLC, Slough, UK), and participants’
information with a risk assessment sheet, self-administered 24-h dietary recall, detailed
instructions regarding how to perform the test, and a results recording sheet. The 55 g of
D-(+)- glucose monohydrate (Sigma-Aldrich, USA) was used as a reference, and the portion
size of the experimental biscuits was standardized to yield 50 g of available carbohydrate
content according to FAO/WHO recommendations [37]. Each subject consumed either the
reference beverage (a 50 g glucose in 250 mL of natural mineral water (Volvic, UK)) or one
of the test biscuits, as seen in Figure 2.
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performing the test (b).

Test 1, Test 4, and Test 7 were reference solutions. Tests 2, 3, 5, and 6 were the test
foods. The presentation order of the test food was randomized for each subject. Each product
was identified by a three-digit random code. They self-monitored their blood glucose for
two hours using the provided meter kit (Romed®, The Netherlands). There was a minimum
two-day interval between tests. The blood measurement was taken before starting the test and
again after 15, 30, 60, 90, and 120 min. An amount of 250 mL of mineral water was consumed
during the test, at a comfortable pace within 15 min from the beginning of the test.

Participants were advised to eat a regular evening meal followed by a 12 ± 1 h
overnight fast. They were required not to consume alcohol before or during the study day
and refrain from intense physical activity.
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2.2.3. Glycaemic Index and Glycaemic Load

The measured glycaemic values were used to build the curve of glycaemic response
for each subject and for every sample, including the glucose standard. Then, the incre-
mental area under the blood response curve (iAUC) was calculated using the trapezoidal
rule, ignoring the area beneath the curve [20,37]. For each subject, the GI was calculated
as follows:

GI =

(
iAUCtest food

iAUCglucose standard

)
× 100

The GI of each test food was taken as the mean of the whole group. The glycaemic
load (GL) of a serving was calculated according to the equation [38]:

GL = (GItest food × available carbohydrate in a serving [g])/100

The total available carbohydrate data were previously determined [33] and calculated
using the databased method.

The serving size of the biscuits was determined based on Council for Research in
Agriculture and Agricultural Economy Analysis (CREA) Italian dietary guidelines [39]
with a standard food portion size of 20 g per serving.

The obtained in vivo GI values were compared to the previously obtained data from
in vitro digestion [33]. The static in vitro digestion protocol was carried out according to
Minekus et al. [23] with slight modifications [33] to evaluate the glucose release during
digestion and the predicted glycaemic index (pGI).

2.3. Data Analysis

Statistical analysis was performed in Excel 2013 (Microsoft Office, Microsoft Corpo-
ration, Redmond, WA, USA) using the XLSTAT Premium Version (2019.4.2, Addinsoft,
Paris, France). One-way ANOVA was used to compare samples means. ANOVA was
followed by Tukey’s HSD test at a 95% confidence interval. Pearson’s correlation test at
a 95% confidence interval was used to explore correlations between parameters.

Based on the number of subjects taking part in the study, the obtained data refers to
11 replicates for the biscuit samples and 11 × 3 replicates for the glucose reference standard.
Data are thus represented as average ± standard error of mean (SEM).

3. Results and Discussion
Glycaemic Index and Glycaemic Load

The release profile of glucose during the 120 min of observation was different for
all the investigated samples (Figure 3). As generally expected, all the samples including
glucose reference solution, showed the highest release of glucose at 30 min. The glucose
released in the first 30 min represents the rapidly available glucose which has a significant
impact on the GI of the product [22,40]. After the peak in the first 30 min, the blood glucose
level decreased more or less rapidly, depending on the type of samples. This trend is
different from that observed during in vitro digestion [33], where after the first 20 min
a plateau or even a small increase in glucose release was recorded [33]. Looking at glucose
release graphs reported in the literature, it actually appears that the curve of glucose
release reaches a plateau after the peak when samples are digested in vitro, whereas blood
glucose measured in vivo decreases after the peak, generally reached at 30 min [41–44].
These results are an indication of different dynamics of the glucose release between in vivo
study involving human subjects and in vitro digestion. Indeed, it is too intricate to exactly
reproduce in vivo digestion by means of in vitro methods, although new techniques, such
as in silico models and instrumentations (SHIME®, Prodigest, Gent, Belgium; TIM, TNO,
The Hague, The Netherlands), are being applied and becoming increasing popular in order
to conduct in vitro digestion that better mimics in vivo conditions. Unfortunately, those
techniques are expensive, and many researchers mostly follow static digestion protocols.
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Figure 3. Temporal blood glucose levels for glucose standard and biscuit formulations. Control:
biscuits made with buckwheat, sorghum and lentil flours (50:30:20) and 19% sucrose (based on
total dough weight); RS-inulin 30, formulated as the Control but with part of the flours replaced
by resistant starch (11.50% of total dough weight) and 30% replacement of sucrose with inulin; RS-
maltitol 50: formulated as the Control but with part of the flours replaced by resistant starch (12.00%
of total dough weight) and 50% of sucrose replaced by maltitol; RS-maltitol 100 as the Control but
with but with part of the flours replaced by resistant starch (11.50% of total dough weight) and the
total replacement of sucrose with maltitol. Data are reported as mean ± SEM (11 measurements for
each biscuit sample and 11 × 3 measurements for glucose standard).

The change in the blood glucose level over time suggested that different GI could
be expected for each sample. Indeed, the four samples had a different GI (Figure 4).
Control biscuits made with sucrose and without resistant starch were able to be classified
as a high GI (77) food product [10], whereas RS-inulin 30 and RS-maltitol 50 made with
approximatively 12% resistant starch and 30% inulin replacing sucrose and 50% maltitol
replacing sucrose, respectively, could be classified as medium GI foods. In contrast, biscuits
formulated with the total replacement of sucrose by maltitol (RS-matitol 100) showed
a GI of 33 and can thus be classified as a low GI product. Sucrose replacement with both
inulin and maltitol effectively reduced the GI of the biscuits. As expected, the higher the
percentage of sucrose replacement, the higher the reduction of the GI.
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Figure 4. Glycaemic index of gluten-free biscuits made with unconventional flours, resistant starch
and sucrose replacers. Control: biscuits made with buckwheat, sorghum and lentil flours (50:30:20)
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and 19% sucrose (based on total dough weight); RS-inulin 30, formulated as the Control but with
part of the flours replaced by resistant starch (11.50% of total dough weight) and 30% replacement of
sucrose with inulin; RS-maltitol 50: formulated as the Control but with part of the flours replaced by
resistant starch (12.00% of total dough weight) and 50% of sucrose replaced by maltitol; RS-maltitol 100
as the Control but with but with part of the flours replaced by resistant starch (11.50% of total dough
weight) and total replacement of sucrose with maltitol. Data are reported as mean value ± SEM.
Different letters indicate different means according to Tuckey HSD test (p < 0.05).

Regarding inulin and maltitol, they are both considered low GI ingredients [45,46].
Maltitol is included in the list of food additives and no maximum level has been specified
for its use. However, foods containing more than 10% of added maltitol, or polyols in
general, must bear a warning of possible laxative effects [47,48]. Similarly, no maximum
limit has been recommended for inulin use. However, incorporating a high amount of
inulin into biscuit formulation made the dough processing very challenging [30]. Inulin
is not hydrolyzed in the human digestive tract due to the lack of inulinase; being a non-
digestible carbohydrate it can contribute to lowering the blood glucose level [49]. Maltitol is
a polyol partially absorbed by the small intestine. Matsuo [50] evaluated glucose responses
after the ingestion of 50 g maltitol or of a maltitol:sucrose mixture (50:50). The GI of maltitol
was significantly lower than that of sucrose, which was in agreement with other reported
data [51]. Other researchers investigated the glycaemic response to glucose and maltitol
in three ethnic groups and found that the absorption of these sugars was not affected by
ethnicity [52]. To the best of our knowledge, there are no other research papers that have
evaluated the effect of sucrose replacement on the GI of gluten-free biscuits by in vivo
study with human subjects.

Recently, Atkinson et al. [53], who reviewed and tabulated published and unpublished
sources of reliable GI values, suggested that 84% of 135 biscuit references were within low
the GI classification, whereas only 12% and 4% were of medium GI and high GI, respectively.
Of the reported data, only two samples were indicated as gluten-free biscuits and both
were low GI products. These samples were commercial gluten-free “Frollini” (GI = 37) [54]
and chocolate-coated gluten-free cookies (GI = 35) (Sydney University‘s Glycemic Index
Research Service (Sydney, Australia), unpublished observations). This information seems to
contradict the view that gluten-free products have a high GI. For example, Packer et al. [38]
reported a high GI for digestive gluten-free biscuits (GI = 83). Gluten-free products generally
present a higher GI when compared to their gluten containing counterparts [1,5,55,56]. This
is due to their very composition with high content of rapidly digestible starch and lack of
gluten network enveloping starch granules. Different studies focusing on the reduction of
the GI of gluten-free cereal-based products used in vitro screening methods to calculate
pGI or eGI and to evaluate the potential effect that the samples could have on the blood
glucose level. Di Cairano et al. [32] evaluated the pGI of gluten-free biscuits made with
gluten-free cereals, pseudocereals and legume flours generally little exploited in gluten-free
biscuits and compared it with commercially available gluten-free biscuits and a wheat
control. They reported a pGI about 23% higher for wheat biscuits and 17% and 30% higher
for the two commercially available gluten-free biscuits when compared to experimental
formulations. Tartary buckwheat and its malt were used to produce gluten-free cookies,
which displayed lower pGI compared to total rice flour control [57]. Sparvoli et al. [58]
found a reduction in the pGI of a wheat-maize-based biscuit when replacing the flours
with a common bean one. The replacement of maize flour with high amylose maize starch
also resulted in the reduction of pGI [59]. Feng et al. [60] reported a significant reduction of
the pGI of non-sucrose millet-based gluten-free biscuits when part of the flour and starch
were replaced with Lentinus edoses powder. All these biscuits [32,57–60] can be classified
as medium-high GI products with pGI values ranging between 57.6 and 100.2. These
values appear to contradict the in vivo GI data collected by Atkinson et al. [53] on the GI of
conventional and gluten-free biscuits. As mentioned before, data from in vivo measurement
of glucose release from gluten-free biscuits are scarcely available. Diverging information are
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reported about the usefulness of in vitro GI to predict in vivo data. Some authors reported
the lack of a strong correlation between in vitro and in vivo data [61]. Others indicated
that in vitro hydrolysis index and starch digestion rate are a good predictor of in vivo GI
determined in mice and human subjects and that there is a good analogy between the
intestinal phase of in vitro digestion protocols and in vivo studies [40,62–64]. Nevertheless,
in vitro protocols for the quantification of glucose release and subsequent calculation of
pGI are considered a reliable method for screening food products and estimating the effect
of product reformulations and new processing techniques on their GI.

In this study, a strong correlation was found between GI and pGI values reported in
the literature [33] (Table 3). As expected, correlations were also found between free glucose,
total sugars and GI. However, results of resistant starch content and rapidly available
glucose were not significantly correlated with GI values, displaying a p-value < 0.10; this
could be due to the small sample size. As previously reported [33], the correlation for
sample containing resistant starch was probably affected by the different amounts of sucrose
added to the recipe, which were higher in the biscuit with no resistant starch. Previous
research on the formulation of conventional and gluten-free biscuits indicated that the
use of resistant starch reduces the GI [65–67]. The results of the meta-analysis carried out
by Afandi et al. [68] confirmed resistant starch as significant factor responsible for the GI
of food product. Indeed, it is commonly known that resistant starch contributes to the
reduction of blood glucose level after meal. The European Union regulation allows the
use of a health claim relating to the reduction in blood glucose levels after a meal when
there is 14% of non-digestible starch of total starch present in the product [69]. While
acknowledging the fairly small sample size, the correlations found in the study presented
here confirm the information and the trends previously reported on food composition and
its effect on the GI [40].

Table 3. Pearson’s correlation coefficients between the in vivo glycaemic index and the predicted
glycaemic index, resistant starch, rapidly available glucose, free glucose and total sugars.

Glycaemic Index

r p-Value
Predicted Glycaemic Index 1 0.992 0.005

Resistant Starch 1 −0.984 0.066
Rapidly available glucose 1 0.936 0.064

Free glucose 1 0.984 0.016
Total sugars 1 0.993 0.007

1 data used to calculate correlations are from Di Cairano et al. [33]; values in bold indicate significant correlations
(p < 0.05).

Comparing the GI and pGI values [33], it appears that pGI overestimated the GI
(Table 4). The tendency of the in vitro glycaemic response to overestimate the in vivo data
were previously reported [61]. The percentage increase was not the same for all the samples
and was between 9% and 97%. The lower the GI, the higher the overestimation.

On the other hand, some researchers deem that differences found between GI and pGI
can be related to the different reference standard employed (glucose vs. white bread) [42].
Based on this consideration, another approach was applied. pGI data [33] were multiplied
by 0.7, as previously reported [42,64], in order to correct the use of bread as reference stan-
dard instead of glucose. This approach is rarely used in research papers dealing with the cal-
culation of pGI. To the best of our knowledge, it was introduced by Foster-Powell et al. [70]
as correction when white bread was used as a reference instead of sucrose. pGI values
after the correction was closer to GI values (Table 4). The percentage change was close to
0 for samples with intermediate sucrose replacement levels (30 and 50%) and pGI values
of control and total sucrose replacement sample yielded lower when compared to the GI
values. From this analysis, it was apparent that the overestimation or the underestimation
is not consistent and depends on the type of samples.
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Table 4. The glycaemic index (GI) predicted glycaemic index (pGI) [33] and glycaemic load (GL) of
gluten-free biscuits made with sucrose replacers and resistant starch.

Sample GI pGI * % Change pGIG ** % Change GL (x serving size)

Control 77 ± 5 a 84 ± 0.4 a ~9 59 ** ~(−23) 5.74
RS-inulin 30 58 ± 7 ab 78 ± 0.7 b ~34 55 ** ~(−5) 5.17

RS-maltitol 50 52 ± 5 bc 74 ± 0.6 c ~42 52 ** ~0 4.05
RS-maltitol 100 33 ± 5 c 65 ± 0.0 d ~97 46 ** ~39 2.62

* [33] ** pGI × 0.7 (pGIG). Control: biscuits made with buckwheat, sorghum and lentil flours (50:30:20) and 19%
sucrose (based on total dough weight); RS-inulin 30, formulated as the Control but with part of the flours replaced
by resistant starch (11.50% of total dough weight) and 30% replacement of sucrose with inulin; RS-maltitol 50: for-
mulated as the Control but with part of the flours replaced by resistant starch (12.00% of total dough weight) and
50% of sucrose replaced by maltitol; RS-maltitol 100 as the Control but with but with part of the flours replaced by
resistant starch (11.50% of total dough weight) and total replacement of sucrose with maltitol. Data are reported
as mean value ± SEM. Different letters indicate different means according to Tuckey’s HSD test (p < 0.05).

Although, in vitro protocols attempt to simulate as closely as possible the in vivo
conditions it is difficult to accurately replicate any human digestive conditions. The process
of food digestion generally has different phases, including oral digestion, oesophageal
transit, gastric digestion, small intestinal digestion, and large intestinal fermentation, and
involves complex shear stress and shear rate; gravitational forces; mass transfer, which
affects the digestion rate; and the amount of glucose in the blood stream. Moreover,
the food matrix controls the rate and extent to which nutrients and bioactive substances
become available for absorption, hence controlling the blood’s concentration profile and
how well they are utilised by peripheral tissues [71], which explain dependency of GI on
the composition or type of the investigated as well as the difference between pGI and GI.

Considering the collected data, it appears that pGI values can be taken into consid-
eration to gather information about the effectiveness of recipe modifications, the use of
new ingredients and processing techniques on the GI but not to accurately predict the
GI. It does not seem completely appropriate to use pGI data to classify food products
according to their GI, even though it is a rapid method, compared to an in vivo study,
easily used in many research papers. Nevertheless, pGI is useful in different research and
product development phases, as reported by Bohn et al. [72] who suggested that it is wise to
continue the optimization of in vitro techniques and use them in research and early stages
of product development.

Besides the GI, another important index relating to glycaemic response is the glycaemic
load (GL). It was introduced to quantify the overall glycaemic effect of a typical serving
of a food product [73,74]. The biscuits of this experiment had a GL per serving comprised
between 2.62 and 5.74 (Table 4) with RS-maltitol 100 having the lowest value and the control
biscuit with the highest. The four biscuits can all be considered low-GL products, having a GL
value < 10 [75]. The values are similar for those published by Henry et al. [75] who reported
that GL values comprised between 2.3 and 3.8 for gluten-containing digestive rich tea and oat
biscuits. Although GL was introduced to better classify the impact of a specific service of food
on the glycaemic response, diverging methods are used to calculate it [53,76] and different
portion sizes can be suggested by producers or by nutritional guidelines of different countries.
It is therefore difficult to use this index to compare different published data.

4. Conclusions

An attempt has been made to compare GI from in vivo study using human subjects and
pGI from in vitro digestion protocols for newly formulated gluten-free biscuits containing
resistant starch where sucrose was partially or completely replaced by maltitol and inulin.
Our study showed that the use of resistant starch and sucrose replacers, as well as inulin
and maltitol, effectively reduces the GI of gluten-free biscuits. Strong correlations were
found between GI and pGI values, although the significance of this correlation was product
formulation-dependent. The values of GI were lower than those of pGI from the literature,
which indicates that further studies are needed to improve the in vitro digestion protocol
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in order to obtain an accurate prediction of the GI. Our findings suggest that the use of
flours with a lower GI compared to the ones commonly employed in gluten-free biscuits
(maize, rice and starches) is not enough to obtain low GI biscuits.
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