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Gaseous molecules continue to hold new promise in molecular medicine as 
experimental and clinical therapeutics. The low molecular weight gas carbon 
monoxide (CO), and similar gaseous molecules (e.g., H2S, nitric oxide) have been 
implicated as potential inhalation therapies in inf lammatory diseases. At high 
concentration, CO represents a toxic inhalation hazard, and is a common com-
ponent of air pollution. CO is also produced endogenously as a product of heme 
degradation catalyzed by heme oxygenase enzymes. CO binds avidly to hemo-
globin, causing hypoxemia and decreased oxygen delivery to tissues at high con-
centrations. At physiological concentrations, CO may have endogenous roles as a 
signal transduction molecule in the regulation of neural and vascular function 
and cellular homeostasis. CO has been demonstrated to act as an effective anti-
inf lammatory agent in preclinical animal models of inf lammation, acute lung 
injury, sepsis, ischemia/reperfusion injury, and organ transplantation. Additional 
experimental indications for this gas include pulmonary fibrosis, pulmonary 
hypertension, metabolic diseases, and preeclampsia. The development of chemi-
cal CO releasing compounds constitutes a novel pharmaceutical approach to CO 
delivery with demonstrated effectiveness in sepsis models. Current and pending 
clinical evaluation will determine the usefulness of this gas as a therapeutic in 
human disease.
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INTRODUCTION

Over the last two decades, gaseous molecules have 
joined the ranks of experimental therapeutics with po-
tential applications in the treatment of pulmonary or 
systemic diseases. The principle advantage of gases in 
therapy is in their mode of administration (i.e., inha-
lation), which is practical for clinical use and noninva-
sive [1]. Gases which have known medical applications 
include a number of low molecular weight substances 
(e.g., H2, O2, N2O, CO2, He, Xe, N2, O3) [2,3]. In addition 
to these, three gases have gained widespread attention 
as novel therapeutics with anti-inflammatory and va-

soregulatory properties: nitric oxide (NO) [4,5], carbon 
monoxide (CO) [5-11], and hydrogen sulfide (H2S) (Table 
1; for chemical physical properties of these gases) 
[5,12-16]. In addition to their presence as ubiquitous 
contaminants of indoor and outdoor air, these three 
gases share an important similarity in that they are all 
produced in the body as the natural products of enzy-
matic reactions (Table 2) [13-15,17-23].

The recognition that gases could exert physiologi-
cal functions began with the identification of NO as 
an endogenously-produced regulator of vasodilatation 
and vascular cell proliferation [24-26]. These effects 
of NO are mediated by the binding of this gas to the 
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heme moiety of soluble guanylate cyclase (sGC), which 
stimulates the production of 3’,5’-cyclic guanosine mo-
nophosphate (cGMP) [27-29]. NO is a reactive free radi-

cal that can participate in oxygen and metal-depen-
dent redox reactions, which arises as the product of 
constitutive and inducible nitric oxide synthase (NOS) 

Table 1. Chemical and physical properties of the medicinal gases

Properties CO NO H2S

Formula weight, g/moL 28.01 30.006 34.0814

Specific gravity 20oC, 1 atm 0.9667 1.037 1.1763

Solubility (H2O)

1 atm, 20oC, vol/vol 0.0227 - -

1 atm, 0oC, vol/vol 0.0352 0.074 4.67

Boiling point, oC -191.5 -151.8 -60.2 

Melting point, oC -205.1 -163.6 -85.4 

Density 20oC, 1 atm, kg/m3 1.165 1.249 1.434

CO, carbon monoxide; NO, nitric oxide; H2S, hydrogen sulfide.

Table 2. Enzymatic generation of small gaseous mediators

Product Enzyme  Properties Substrate Cofactors Reference 

CO
(bilirubin, Fe)

Heme oxygenase-1 Inducible by chemical 
and physical stress

Heme NADPH; NADPH 
cytochrome p450 
reductase

[18-20]

Heme oxygenase-2 Constitutively 
expressed,
contains heme 
regulatory motifs

Heme NADPH; NADPH 
cytochrome p450 
reductase

[21,22]

NO
(L-citrulline)

NOS1
(neuronal NOS; 
nNOS NOS1)

Expressed in neural 
tissue; 
Ca++-dependent

L-arginine Tetrahydrobiopterin
NADPH, heme
FAD/FMN
Calmodulin

[17]

NOS2
(inducible NOS; 
iNOS NOS2)

Inducible, expressed 
in macrophages, 
hepatocytes;
Ca++-independent

L-arginine Tetrahydrobiopterin
NADPH, heme
FAD/FMN
Calmodulin

[17]

NOS3
(endothelial NOS; 
eNOS NOS1)

Constitutively 
expressed in
endothelium;
Ca++-dependent

L-arginine Tetrahydrobiopterin
NADPH, heme
FAD/FMN
Calmodulin

[17]

H2S
(NH3, pyruvate)

Cystathionine γ-
lyase

Expressed in vascular 
tissue

L-cysteine Pyridoxal phosphate
Calmodulin

[13-15,23]

H2S
(Cystathionine)

Cystathionine β-
synthase

Expressed in brain L-cysteine,
homocysteine

Pyridoxal phosphate
Heme

[23]

CO, carbon monoxide; NADPH, nicotinamide adenine dinucleotide phosphate; NO, nitric oxide; NOS, nitric oxide synthase; 
FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide; H2S, hydrogen sulfide.  
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enzymes [17]. Inhaled NO, which acts as a selective pul-
monary vasodilator [30,31], has been investigated for 
its therapeutic potential in several diseases including 
acute respiratory distress syndrome and pulmonary 
hypertension [31-33].

CO, a diatomic low molecular weight gas, shares 
similarities with NO in terms of molecular size and 
structure [34]. CO however, is a relatively stable non-
radical gas that typically reacts in biological systems 
with metal centers of hemoproteins [35]. The endog-
enous production of CO as the natural product of 
hemoglobin turnover has been recognized since the 
middle of the twentieth century [36-38]. However the 
production of CO in biological systems was previously 
regarded by the scientific community as a metabolic 
elimination product. In 1968 to 1969, the heme oxygen-
ase (HO) enzyme system responsible for the catalytic 
turnover of heme, was characterized and identified as 
a major source of CO in the body [18,19,39]. The induc-
ible form of this enzyme, HO-1, was identified as iden-
tical to the major 32 to 34 kDa stress protein responsive 
to xenobiotic stress [20,40]. Importantly, further stud-
ies established an association between the heme meta-
bolic pathway and the cellular stress response involv-
ing HO-1, which contributes to cellular adaptation to 
toxic environmental challenges [20,41,42]. Subsequent 
investigations sought to determine the physiological 
function of endogenously produced CO, as well as its 
role as a mediator of the cytoprotective properties of 
HO-1 [7,43-46]. Although many investigations have 
employed exogenous CO at low concentration, they re-
vealed an impact of this gas on intracellular signaling 
pathways [43-46]. These studies identified new roles of 
CO on the regulation of several fundamental biologi-
cal processes, including vascular tone [47,48], inflam-
mation [43], neurotransmission [44], cell proliferation 
[49], programmed cell death [45], mitochondrial bio-
genesis [50], and autophagy [51]. 

The current prospective status of CO as an inhaled 
therapeutic is based on extensive preclinical animal 
testing: reviewed in references [7,11], in models of acute 
lung injury (ALI) [52-54], ischemia/reperfusion (I/R) 
injury [55,56], sepsis [57], vascular injury, organ trans-
plantation [58-60]; and others, reviewed in references 
[5-7,61]. Protective effects of CO have been attributed 
to several mechanisms, including the regulation of 

inflammation and innate immune responses, apopto-
sis, as well as effects on microcirculation and cellular 
redox balance [5-7,11].

In addition to NO and CO, a third endogenously-
produced gaseous molecule H2S has recently emerged 
as a physiological mediator and candidate therapeu-
tic agent [12-16,62]. H2S which induces a suspended 
animation-like state in rodents can exert effects on the 
regulation of vascular tone, inflammation, myocardial 
contractility, neurotransmission, and insulin secre-
tion [62-66]. H2S has been demonstrated to confer 
anti-inf lammatory properties in several preclinical 
models, including ALI, and sepsis [67-69].

This review will focus primarily on the therapeutic 
potential of CO, with an emphasis on mechanistic 
studies and preclinical animal studies in models of 
ALI, sepsis, and organ transplantation, as well as its 
future prospect for clinical use. The pharmacological 
application of CO in therapy through the use of donor 
compounds will also be discussed [11]. The reader is 
referred to other reviews for recent perspectives on the 
therapeutic potential of NO [4,5], H2S [13,62] and of the 
other clinically relevant gases [3].

ENVIRONMENTAL AND CLINICAL TOXICOL-
OGY OF CO EXPOSURE

Environmental CO occurs in the atmosphere from 
man-made and natural sources, as a by-product of 
organic combustion. CO is a toxic inhalation hazard, 
and a common contaminant of indoor and outdoor 
air [70]. Environmental CO arises primarily as the 
product of the incomplete oxidation of fossil fuels (e.g., 
wood, coal, kerosene, and natural gas), and is present 
at high concentrations in automobile exhaust and to-
bacco smoke [70].

Indoor levels of CO range from 0.5 to 5 parts per 
million (ppm) but may reach much higher values (e.g., 
100 ppm) with inefficient heating or ventilation, or in 
the presence of environmental tobacco smoke [71]. In 
urban areas, ambient levels are typically 20 to 40 ppm, 
but may peak at much higher levels in heavily congest-
ed areas or alongside highways [72].

Inhaled CO diffuses rapidly across alveolar and cap-
illary membranes, with the majority forming a tight 
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binding complex with the oxygen carrier protein he-
moglobin to form carboxyhemoglobin (COHb), with a 
binding affinity for hemoglobin approximately 200 to 
250 times that of oxygen [70,73,74]. Partial occupation 
of CO at the O2 binding sites of hemoglobin inhibits 
the release of O2 from the remaining heme groups. 
These effects of CO impair the capacity of the blood 
to deliver O2, leading to tissue hypoxia [70,73]. The 

formation of COHb is reversible by removal of the CO 
source in favor of O2 inspiration. Thus, oxygen therapy 
is a common antidote for CO poisoning [74,75]. The 
basal COHb level in man is ~0.1% to 1% in the absence 
of environmental contamination or smoking. Habita-
tion of heavily populated urban areas with high levels 
of ambient CO, such as originating from automobile 
exhaust, or smoking, may increase this background 
[76,77].

COHb levels of greater than 20% are typically associ-
ated with symptoms of clinical toxicity. Acute signs of 
CO poisoning include dizziness, shortness of breath, 
and headache. Elevated or chronic exposures may lead 
to neurotoxicity, cognitive impairment, visual impair-
ment, and unconsciousness, with death occurring in 
the range of 50% to 80% COHb [74,75]. Recent stud-
ies have also identified chronic exposure to elevated 
ambient CO as a cardiovascular risk factor [78]. The 
proposed mechanisms for cardiotoxicity associated 
with chronic low level exposure have been reviewed 
elsewhere [79].

Although hemoglobin represents the primary sys-
temic target of CO, a direct toxicity of CO has also 
been described, associated with impaired function-
ing of cellular hemoprotein targets (e.g., myoglobin, 
cytochrome c oxidase and cytochrome p450), resulting 
in the impairment of respiration and other metabolic 
functions. However, the contribution of these addi-
tional cellular and tissue targets to systemic toxicity, 
usually associated with hypoxemia, remains unclear 
[74]. 

THE HO ENZYME SYSTEM: A SOURCE OF BIO-
LOGICAL CO

The majority of endogenously produced CO (estimated 
at 85%) arises as the natural product of heme degra-
dation, most of which originates systemically from 
hemoglobin turnover (Fig. 1) [36-38]. However, the 
heme pool subject to degradation may also originate 
from the turnover of other cellular hemoproteins in 
which it is utilized as cofactor, including cytochrome 
p450 and other cytochromes [21,80]. Heme is degraded 
enzymatically by the HOs (EC 1:14:99:3) [18,19,21]. The 
HO enzymes catalyze the oxidative cleavage of heme 
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Figure 1. Sources of biological carbon monoxide (CO). CO 
is naturally produced in the human body, primarily as the 
product of the turnover of hemoglobin and cellular hemo-
proteins. Heme, which is used as a prosthetic cofactor for 
hemoproteins, is degraded by the heme oxygenase (HO) 
(EC 1:14:99:3) enzyme system. HO catalyzes the rate limit-
ing step in heme degradation, to generate biliverdin-IXa, 
CO, and ferrous iron (Fe II), and requires 3 mol molecular 
oxygen and nicotinamide adenine dinucleotide phosphate 
(NADPH). Biliverdin-IXa produced in the HO reaction 
is reduced to bilirubin-IXa by biliverdin reductase (side 
chains are labeled as M, methyl; V, vinyl; P, propionate). 
Nonheme sources may make a minor contribution to exoge-
nous CO production. In the blood, CO binds hemoglobin to 
form carboxyhemoglobin (COHb). CO may also be inhaled 
with ambient air, in the context of smoking, accidental or 
occupational exposure, or as a component of therapy, as 
discussed in this review.
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at the a-methene bridge carbon atom, to generate 
biliverdin-IXα, ferrous iron and CO. The HO reac-
tion requires three moles of molecular oxygen for each 
heme molecule oxidized, and electrons from nicotin-
amide adenine dinucleotide phosphate (NADPH) cyto-
chrome p450 reductase [19]. Bilirubin-IXα is reduced 
to biliverdin-IXα by NADPH: biliverdin reductase [81]. 
Although the HO reaction represents the major en-
zymatic source of CO, a minor component of endoge-
nous CO may also arise from poorly defined nonheme 
sources. CO may arise as a by-product of lipid oxida-
tion or as the product of cytochrome p450-dependent 
metabolism of xenobiotics (e.g., methylene chloride) 
[82].

HOs consist of two major isozymes (HO-1 and HO-
2), each the product of distinct genes [21,22,83]. The 
constitutive isozyme HO-2 is expressed in most tis-
sues, with particular abundance in testis and brain 
tissue [21]. HO-1, the inducible isozyme, represents 
a major cellular and tissue homeostatic response to 
environmental stress signals [20]. HO-1 expression re-
sponds to many diverse chemical and physical stimuli, 
including the natural enzymatic substrate heme, a 
pro-oxidant compound, oxidants (e.g., H2O2), heavy 
metals and thiol (SH)-reactive substances, natural an-
tioxidants, deviations in ambient oxygen tension, as 
well as heat shock (in rodents) [7,20,41,42,84-87]. The 
induction of HO-1 is mediated primarily by transcrip-
tional regulation [87,88]. The mouse HO-1 (hmox-1) 
gene 5’ regulatory region contains two upstream en-
hancers occurring at -4 and -10 kb relative to the tran-
scriptional start site [89,90]. These enhancers contain 
sequences homologous to the antioxidant responsive 
element (ARE) [89,90]. The NF-E2-related factor-2 
(Nrf2) represents the major transcriptional regula-
tor of hmox-1 in response to many inducing stimuli 
[91,92]. Following cellular stimulation, Nrf2 migrates 
to the nucleus where it recognizes ARE binding sites 
in the hmox-1 promoter [93]. Nrf2 is inactivated by a 
cytoplasmic anchor, Keap-1 [93,94], and antagonized 
in the nucleus by a heme-sensitive transcriptional 
repressor, Bach-1 [95,96]. Additionally, a number of di-
verse transcriptional regulators can regulate hmox-1 in 
a cell-type and inducer-specific fashion [97,98]. These 
include hypoxia-inducible factor-1, heat shock factor-1 
(HSF-1), activator protein-1, early growth response fac-

tor-1 (Egr-1), nuclear factor kappa-B (NF-κB), and oth-
ers [7,84,97,98]. 

CO AS AN EFFECTOR OF INTRACELLULAR SIG-
NAL TRANSDUCTION PATHWAYS

Despite the known toxicity of CO at high concentra-
tion, recent research has revealed that low concen-
trations of CO may inf luence intracellular signal 
transduction pathways. CO can exert vasoregulatory 
properties [47], as well as modulate inf lammation, 
apoptosis, and cell proliferation in vitro and in vivo 
[7,11,46].

Cellular exposure to CO has been shown to directly 
or indirectly modulate the activity of several intra-
cellular signaling molecules (Fig. 2). Similar to NO, 
CO can act as a heme-ligand and activator of sGC, to 
increase the production of cGMP [99]. Experimental 
evidence indicates that NO activates sGC in vitro and 
corresponding vasodilatory action in vivo with greater 
potency [100].

CO was first implicated as a regulator of the sGC/
cGMP axis in the context of olfactory neurotransmis-
sion [44]. CO can exert vasorelaxant effects of CO in 
the liver and other vascular beds which are believed 
to be dependent of cGMP [47,48,101]. Alternatively, 
CO may also regulate vascular function through ad-
ditional proposed mechanisms including inhibition 
of cytochrome p450, and the activation of calcium-
dependent potassium channels Kca in vascular smooth 
muscle cells [102].

CO can modulate the activation of the mitogen 
activated protein kinases (MAPK), which are impor-
tant mediators of inflammatory and stress responses 
[43,45,53,55,56]. A potent anti-inf lammatory effect of 
CO was demonstrated in bacterial lipopolysaccharide 
(LPS)-stimulated macrophages, that depended on 
the modulation of mitogen activated protein kinase 
kinase-3 (MKK3)/p38 MAPK pathway [43]. The anti-
inf lammatory effects of CO also may depend on the 
downregulation of Toll-like receptor trafficking and 
activation, the inhibition of NADPH: oxidase depen-
dent signaling [103], and additional signal transduc-
tion pathway molecules including HSF-1, and Egr-1/ 
PPARγ [104,105].
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CO has been shown to modulate apoptotic signal-
ing pathways in cultured cells [45,55,56]. When applied 
at low concentration, CO inhibited cell death caused 

by proapoptotic agents (e.g., tumor necrosis factor-α 
[TNF-α]) in endothelial cells, which required the p38 
MAPK pathway, and modulation of NF-κB signalling 
[106]. Additional targets for CO-dependent regulation 
of apoptosis in cells subjected to oxygen-dependent 
stress include the STAT3 and phosphatidylinositol-3-
kinase/Akt pathways [107], downregulation of NADPH: 
oxidase dependent reactive oxygen species formation 
[108], and modulation of Fas-initiated extrinsic apop-
totic pathways [55,108,109]. 

CO also has been shown to exert antiproliferative 
effects in vitro, with respect to the proliferation of vas-
cular smooth muscle cells (SMCs) [49,110,111]. In SMC, 
both sGC/cGMP and p38 MAPK signaling pathways 
have been implicated in the antiproliferative effects of 
CO these cells [49,58,110,111].

Additional signaling mechanisms potentially in-
volved in CO-dependent regulation of cell prolifera-
tion, include the regulation of the lipid-raft associated 
signaling protein caveolin-1 [112], and modulation of 
NADPH oxidase [113]. More recent studies have im-
plicated the NOX1 isoform of NADPH oxidase in CO 
dependent inhibition of SMC migration [114]. Taken 
together, these modulatory effects of CO on the signal 
transduction pathways that culminate in the regula-
tion of inflammation, apoptosis, cell proliferation, and 
vascular function all may contribute to the proposed 
therapeutic effects of this gas.

 

CO AS AN INHALATION THERAPEUTIC: 		
PRECLINICAL STUDIES

The therapeutic benefit of CO inhalation has been 
shown in a number of preclinical animal models of 
lung and vascular disease, as outlined in the following 
sections. 

Endotoxin challenge
Anti-inf lammatory effects of CO have been demon-
strated in a mouse model of endotoxin exposure [43]. 
CO preconditioning reduced the production of serum 
TNF-a, interleukin (IL)-1b, IL-6, whereas increased 
the production of the anti-inflammatory cytokine IL-
10; reduced organ injury and prolonged survival fol-
lowing LPS challenge [43,115]. Anti-inf lammatory ef-
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Figure 2. Signaling pathways regulated by carbon monoxide 
(CO). CO can confer modulatory effects on the regulation of 
vascular function, inflammation, apoptosis, and cell prolif-
eration, through stimulation of several signaling pathways. 
The sGC/cGMP axis has been implicated in vascular effects 
of CO with respect to vessel dilation, regulation of platelet 
aggregation, and regulation of fibrinolysis through PAI-1. 
The sGC/cGMP axis has also been implicated in downregu-
lation of cell proliferation by CO, through upregulation of 
p38 mitogen activated protein kinase  (MAPK) and p21Waf1/

CIP1. Anti-inf lammatory and antiapoptotic effects of CO, 
including downregulation of proinf lammatory cytokines 
production are also thought to be mediated by p38 MAPK. 
Additional mechanisms involving the inhibition of cytosol-
ic reactive oxygen species (ROS) may play a role in regula-
tion of apoptosis through inhibiting death-inducing signal 
complex (DISC) formation. Stimulation of mitochondrial 
ROS may upregulate PPARγ leading to downregulation of 
the proinf lammatory factor Egr-1. Additional signaling 
molecules such as heat shock factor-1 (HSF-1) and caveolin-1 
have been shown to mediate the anti-inf lammatory and 
antiproliferative effects of CO, respectively. IL, interleukin; 
TNF, tumor necrosis factor; MIP1, macrophage inflamma-
tory protein 1; NF-κB, nuclear factor kappa-B; Egr, early 
growth response; PPAR, peroxisome proliferator-activated 
receptor; sGC, soluble guanylate cyclase; cGMP, cyclic gua-
nosine monophosphate. 
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fects of CO with respect to modulation of pro or anti-
inflammatory cytokines production were diminished 
in HSF-1 knockout (hsf1-/-) mice, implicating a role of 
the heat shock response in vivo [104]. 

Anti-inflammatory effects of CO have been recently 
documented in higher mammals including swine. 
CO reduced the development of disseminated intra-
vascular coagulation and inhibited serum levels of 
the proinflammatory IL-1β in response to LPS, while 
inducing the anti-inf lammatory cytokine IL-10 after 
LPS challenge [116]. Similar, though less significant 
effects were noted in a nonhuman primate model 
of Cynomolgous macaques subjected to LPS challenge 
[117]. CO exposure (500 ppm, 6 hours) following LPS 
inhalation decreased TNF-α release in broncoalveolar 
lavage fluid (BALF), but had no apparent effect on IL-6 
and IL-8 release, in addition to reducing pulmonary 
neutrophilia (not observed at lower concentrations of 
CO). This reduction of pulmonary neutrophilia was 
comparable to pretreatment with a well characterized 
inhaled corticosteroid budesonide. However, the ther-
apeutic efficacy of CO required relatively high doses 
that resulted in elevated COHb levels (>30%). This 
work highlights the complexity of interspecies varia-
tion in lung responses to CO, and of dose-response re-
lationships of CO to COHb levels and anti-inflamma-
tory effects [117]. This study was the first to examine 
the therapeutic index and dose-response relationships 
of CO therapy in nonhuman primates [117].

ALI
Low doses of CO have been shown to provide protec-
tion against ALI in rodent models. The administra-
tion of CO (250 ppm) during hyperoxia exposure 
prolonged the survival of rats and mice subjected to 
a lethal dose of hyperoxia, and dramatically reduced 
histological indices of lung injury, including airway 
neutrophil infiltration, fibrin deposition, alveolar pro-
teinosis, pulmonary edema, and apoptosis, relative to 
animals exposed to hyperoxia without CO [52,53]. In 
mice, hyperoxia was shown to induce the expression 
of proinflammatory cytokines (i.e., TNF-α, IL-1β, IL-
6) and activate major MAPK pathways in lung tissue. 
The protection afforded by CO treatment against the 
lethal effects of hyperoxia correlated with the in-
hibited release of proinf lammatory cytokines in the 

BALF. The protective effects of CO in this model were 
found to depend on the MKK3/p38b MAPK pathway 
[53]. It should be noted that some studies have reported 
negative findings with respect to protective effects of 
CO in rodent ALI models [118,119]. More recent stud-
ies report protective effects of HO-1 or CO in a model 
of hyperoxia-induced bronchopulmonary dysplasia in 
neonatal mice [120]. Lung specific transgenic overex-
pression of HO-1 alleviated hyperoxia-induced lung 
inflammation, edema, arterial remodeling, and right 
ventricular hypertrophy. Similar protective responses 
were elicited by intermittent CO inhalation in this 
model. However, neither CO nor HO-1 expression pre-
vented alveolar simplification in this model [120]. 

Ventilator-induced lung injury (VILI)
The therapeutic potential of CO has been shown in a 
specialized clinically-relevant model of VILI [54,121-
123]. Rats ventilated with an injurious (high tidal 
volume) ventilator setting in combination with LPS 
injection, exhibited lung injury. The inclusion of CO 
(250 ppm) during mechanical ventilation reduced the 
inflammatory cell infiltration in BALF. In the absence 
of cardiovascular effects, CO dose-dependently de-
creased TNF-α and increased IL-10 in the BALF [54]. 
CO application has also been reported to confer tissue 
protection in a mouse model of VILI, at moderate tidal 
volume ventilation [121-123]. In this model, mechanical 
ventilation caused significant lung injury reflected by 
increases in protein concentration, total cell and neu-
trophil counts in BALF. CO reduced mechanical ven-
tilation-induced cytokine and chemokine production 
and prevented lung injury during ventilation, involv-
ing the inhibition of mechanical ventilation-induced 
increases in BALF protein concentration and cell 
count, lung neutrophil recruitment, and pulmonary 
edema [121-123]. To date, these effects of CO were asso-
ciated with the activation of caveolin-1 [121], activation 
of PPARγ, and the inhibition of Egr-1 signaling [122]. 
These studies, taken together, suggest that mechanical 
ventilation in the presence of CO may provide protec-
tion in animal models of VILI. However, more studies 
are required to determine the exact mechanisms un-
derlying the therapeutic potential of CO in VILI mod-
els.
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Organ ischemia reperfusion injury and transplantation

Tissue protective effects of CO have been shown ex-
perimentally in rodent models of organ I/R injury. 
Lung I/R caused by occlusion of the pulmonary artery 
causes lung apoptosis, involving caspase activation, 
expression changes in Bcl2 family proteins, cleavage 
of PARP, and mitochondrial cytochrome c release [55]. 
CO conferred tissue protection in rodents subjected 
to lung I/R injury, as evidenced by reduced markers of 
apoptosis, which depended on activation of the MKK3/
p38a MAPK pathway [56]. In vivo studies using homo-
zygous HO-1 knockout mice (hmox-1-/-) demonstrated 
that HO-1 deficiency conferred sensitivity to the lethal 
effects of lung I/R injury. Application of exogenous CO 
by inhalation compensated for the HO-1 deficiency in 
hmox-1-/- mice, and improved survival during pulmo-
nary I/R [124]. The protection provided by CO involved 
activation of fibrinolysis. This effect of CO depended 
on activation of the sGC/cGMP axis, and downstream 
inhibition of plasminogen activator inhibitor-1, a 
macrophage-derived activator of SMC proliferation 
[124]. CO also inhibited fibrin deposition and improved 
circulation in ischemic lungs [125], involving the down-
regulation of the proinflammatory transcription fac-
tor Egr-1 [125]. Recent studies in a retinal I/R injury 
model, suggest that postinjury application of CO can 
inhibit injury of retinal ganglion cells through anti-
apoptotic and anti-inflammatory effects [126].

In organ transplantation models, I/R injury sub-
sequent to transplantation, may play a major role in 
graft failure. In this regard, CO has been intensively 
studied as an anti-inf lammatory therapeutic in ex-
perimental organ transplantation. CO has a demon-
strated potential for reducing transplant associated 
I/R injury and also reducing the probability of graft 
rejection when applied at low concentration, as an 
adjuvant to organ preservation fluid or when applied 
to donors and/or recipients in gaseous form at low 
concentration. The application of CO has now been 
shown to confer protection during transplantation of 
several organs, including vascular tissue [58], heart [59], 
small intestine [127], kidney, [128], liver [129], and lung 
[60,130,131]. During orthotopic left lung transplanta-
tion in rats, exogenous application of CO (500 ppm), 
significantly protected the graft, and reduced hemor-
rhage, fibrosis, and thrombosis after transplantation 

[60]. Furthermore, CO inhibited lung cell apoptosis 
and downregulated lung and systemic proinflamma-
tory cytokine production which were induced during 
transplantation [60]. Furthermore, protection against 
I/R injury was conferred in syngeneic rat orthotopic 
lung transplantation by inhaled CO administered to 
either the donor or the recipient [130]. Delivery of CO 
to lung grafts by saturation of the preservation media 
reduced I/R injury and inf lammation in syngeneic 
rat orthotopic lung transplantation [131]. In a vascular 
transplantation model, when transplant recipients of 

aortic grafts were maintained in a CO environment 
(250 ppm) with preconditioning, these animals dis-
played reduced intimal hyperplasia, and reduced leu-
kocyte, macrophage, and T cell infiltration in the graft 
[58]. Saturation of the organ buffer with CO gas also 
prevented cold I/R injury during subsequent intestinal 
transplantation [132]. The inhibition of apoptosis and 

inf lammation may represent the primary mecha-
nisms by which CO protects transplanted organs from 
dysfunction and failure [133], though improvement of 
blood circulation by CO within the reperfused trans-
planted organ [58,133,134], as well as antiproliferative [58] 
effects may contribute.

Pulmonary hypertension
Pulmonary arterial hypertension (PAH) is a terminal 
disease characterized by a progressive increase in pul-
monary vascular resistance leading to right ventricu-
lar failure. Several previous studies have demonstrated 
that HO-1 expression can exert a protective effect in 
animal models of pulmonary hypertension, and in 
the regulation of hypoxic pulmonary vasoconstric-
tion [135-137]. Administration of CO was shown to pro-
vide protection in rodent models of monocrotaline-
induced and hypoxia-induced PAH. Exposure to CO (1 
hr/day) reversed established PAH and right ventricular 
hypertrophy, restored right ventricular and pulmo-
nary arterial pressures, as well as pulmonary vascular 
morphology, to that of controls. The ability of CO to 
reverse PAH was dependent on endothelial NOS3 and 
NO generation, since CO failed to reverse chronic 
hypoxia-induced PAH in mice genetically deficient for 
eNOS (nos3-/-). The protective effect of CO was endo-
thelial cell-dependent, and associated with increased 
apoptosis and decreased cellular proliferation of vas-
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cular SMCs [138]. Additional studies have shown that 
CO decreased pulmonary artery vascular resistance 
and inhibited hypoxic vasoconstriction, through acti-
vation of the sGC/cGMP, and the hyperpolarization of 
potassium channels [139]. 

Fibrotic lung disease
Idiopathic pulmonary fibrosis (IPF) is a terminal dis-
ease characterized by scarring or thickening of lung 
tissues associated with fibroblast hyperproliferation 
and extracellular matrix remodeling with no known 
etiology or effective treatment [140]. IPF affects pri-
marily the lower respiratory tract resulting in com-
promised eff iciency of alveolar gas exchange [140]. 
Bleomycin, a redox cycling compound that generates 
O2

- and H2O2, causes lesions in mouse lung after in-
tratracheal administration, is used to model IPF in 
animals. Exogenous CO treatment can provide protec-
tion against bleomycin-induced fibrotic lung injury in 
mice [141]. In mice treated with bleomycin intratrache-
ally and then exposed to CO or ambient air, the lungs 
from CO-treated animals displayed reduced lung hy-
droxyproline, collagen, and fibronectin levels relative 
to air-treated bleomycin-injured controls. The protec-
tive effect of CO in this model was associated with an 
anti-proliferative effect of CO on fibroblast proliferation 
associated with the increased expression of p21Waf1/Cip1 
and inhibition of cyclins A/D expression [141].

Diabetes and metabolic syndrome
To date, only few studies have examined the direct 
therapeutic effects of CO in diabetes-related models. 
Diabetic gastroparesis is a condition where gastric 
emptying time is delayed, which is associated with 
increased oxidative stress, and injury to interstitial 
cells of Cajal in the stomach [142]. Nonobese diabetic 
mice with a gastric delay phenotype were subjected 
to inhaled CO therapy (100 ppm, 8 hr/day for 16 days), 
which reduced serum oxidative stress markers, re-
stored expression of Kit, a marker of interstitial cells of 
Cajal, and ameliorated gastric delay in this model [143]. 
Similar effects were previously observed in this model 
with HO-1 overexpression [142]. Previous studies have 
suggested an antioxidative role for CO (administered 
as donor compound) in preventing hyperglycemia-
induced endothelial cell sloughing in streptozotocin-

induced diabetes [144].
In a type 1 diabetes models, ex vivo treatment of den-

dritic cells with gaseous CO was shown to augment 
dendritic-cell based therapy. Application of CO-condi-
tioned dendritic cells was shown to effectively impair 
the accumulation and pathogenic activity of autoreac-
tive CD8+ T cells in the pancreas [145]. 

CO exposure inhibited apoptosis in cultured 
pancreatic b-cells exposed to proapoptotic stimuli, 
through activation of the sGC/cGMP axis [146]. Similar 
to results reported in other transplantation models, 
CO preconditioning of mouse islets or treatment of 
donors improved viability and reduced graft rejection 
during allogeneic islet transplantation [146,147]. 

In models of metabolic disease, inhalation of CO 
gas reduced hepatic steatosis in mice subjected to 
30% fructose or methionine-deficient and choline-
deficient diets [148]. CO exposure (administered as do-
nor compound) was shown to confer cardioprotection 
and restore mitochondrial function in a high fat diet 
induced model of metabolic syndrome [149]. Taken 
together, these studies are suggestive of a potential for 
CO therapy of metabolic disorders, though further in-
vestigation is needed.

Preeclampsia
Preeclampsia is a condition associated with pregnancy 
involving abnormal placentation, hypertension, and 
proteinuria. Although the condition is thought to 
involve increased oxidative stress in the placental cir-
culation, women who smoke during pregnancy have a 
significantly reduced risk of developing this condition 
[150]. Previous studies have suggested that deficiency 
in the HO-1/CO system may be associated with pla-
cental dysfunction and susceptibility to preeclampsia 
[151]. HO-1 expression was found to be reduced in pla-
centa from pregnancies complicated by preeclampsia 
[151]. Consistently, blood COHb levels were found to 
be significantly lower in women with preeclampsia 
compared with normal pregnancies [152]. Ex vivo ap-
plication of CO to placental villous extracts reduced 
I/R associated apoptosis in the syncytiotrophoblast 
layer [153]. Intriguingly, recent clinical studies have 
described ambient CO as an inverse risk factor for 
preeclampsia. Maternal exposure to moderate ambi-
ent CO was associated independently with a decreased 
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risk of preeclampsia [154]. Current views implicate the 
HO-1/CO system as an essential procirculatory factor 
in the placenta, though more studies are needed.

PHARMACOLOGICAL APPLICATION OF CO US-
ING DONOR COMPOUNDS

As an alternative approach to the administration of 
CO gas by inhalation, chemical CO-donor compounds 
termed carbon monoxide releasing compounds 
(CORMs) have been developed as experimental thera-
peutics over the last decade [11].

Several prototypical CORMs have been extensively 
tested in experimental models, including the original 
Mn2CO10 (CORM-1) and the ruthenium compounds 
tricarbonyldichlororuthenium-(II)-dimer (CORM-
2) and tricarbonylchoro (glycinato)-ruthenium (II) 
(CORM-3) [155,156].

CORM-1 and CORM-2 are hydrophobic, while 
CORM-3 is water-soluble and rapidly releases CO in 
physiological fluids. A water-soluble boron-containing 
CORM (CORM-A1) has also been developed, which 
slowly releases CO in a pH and temperature-depen-
dent fashion [157]. A new CORM (CORM-S1) based on 
iron and cysteamine has recently been synthesized, 
which is soluble in water and releases CO under ir-
radiation with visible light, while it is stable in the 
dark [158]. Micellar forms of metal carbonyl complexes 
have been developed that display slower kinetics of 
CO release and enhanced ability to target distal tissue 
drainage sites [159]. Furthermore, novel hydrophobic 
and hydrophilic CORMs based on iron carbonyls have 
been recently described [160].

CORMs have demonstrated vasoactive effects with 
CORM-3 shown to produce a rapid vasodilatory re-
sponse [161]. Similar to inhalation CO, cytoprotec-
tive effects have been obtained in various injury and 
disease models with pharmacological application 
of CORMs. CORMs can be used to deliver small 
amounts of CO to biological systems in a controlled 
manner and are emerging as an experimental therapy 
for sepsis and inflammatory disorders. An advantage 
of CORMs is that they deliver CO to tissues with less 
COHb buildup typical of inhalation CO [11].

CORMs have been shown to inhibit proinf lamma-

tory cytokine production in LPS-stimulated macro-
phages [162], and decrease the inflammatory response 
and oxidative stress in LPS-stimulated endothelial 
cells [163]. In vivo, CORMs attenuate systemic inflam-
mation and proadhesive vascular cell properties in 
septic and thermally injured mice by reducing nuclear 
factor-κB activation, protein expression of ICAM-1, 
and tissue granulocyte infiltration [164,165]. CORM-
3 has been shown to prevent reoccurrence of sepsis, 
CORM-2 prolongs survival and reduces inflammation 
and CORM-3 reduces liver injury after CLP [165,166]. 
Recent studies on the protective effects of CORMs in 
murine sepsis were related to stimulation of mito-
chondrial biogenesis through the Nrf2/Akt axis [167]. 
Furthermore, in cardiac transplantation model, inclu-
sion of CORM-3 in the preservation f luid improved 
cardiac function following transplantation [168].

These studies taken together have demonstrated 
that the CORM dependent release of CO can confer 
protection in models of inflammation and sepsis, sug-
gesting that CORMs could be used therapeutically to 
prevent organ dysfunction and death in sepsis.

CO AS AN INHALATION THERAPEUTIC: CLINI-
CAL STUDIES

To date, inhalation CO has been administered to hu-
mans in but a few published experimental studies. 
CO inhalation was administered to healthy human 
subjects to examine systemic inf lammation during 
experimental endotoxemia. In a randomized, double-
blinded, placebo-controlled, two-way cross-over trial, 
experimental endotoxemia was induced in healthy vol-
unteers by injection of 2 ng/kg LPS. The potential an-
ti-inflammatory effects of CO inhalation were investi-
gated by inhalation of 500 ppm CO (associated with an 
increase in COHb from 1.2% to 7%) versus synthetic 
air as a placebo for 1 hour. In this study, CO inhalation 
had no effect on the inf lammatory response as mea-
sured by systemic cytokine production (TNF-a, IL-6, 
IL-8, IL-1a, and IL-1b), although no adverse side effects 
of CO inhalation were observed [169]. However, given 
the limited scope of this initial trial, and the protec-
tive characteristics of CO application in many animal 
models of sepsis, further more detailed clinical trials 
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are required to reach a verdict on the efficacy of CO for 
reducing inflammation in septic patients. In contrast, 
a recent clinical study demonstrates the feasibility of 
administering inhaled CO to humans with COPD [170]. 
In this study, exsmoking patients with stable COPD 
were subjected to CO inhalation (100 to 125 ppm for 
2 hr/day for 4 days), which increased COHb levels to 
4.5%. Inhalation of CO by patients with stable COPD 
led to trends in reduction of sputum eosinophils and 
improvement of methacholine responsiveness [170].

CONCLUSIONS

Gaseous molecules continue to show future promise 
as they join the armamentarium of experimental and 
clinical therapeutics. Among the known medical gas-
es, CO inhalation has been demonstrated to have po-
tential applications in pulmonary diseases and other 
inflammatory diseases. To date, salutary effects of CO 
have been demonstrated in a number rodent model 
studies, though recent studies have attempted to reca-
pitulate findings in larger animals such as monkeys 
and swine [5,7,116,117]. Differences in lung physiologi-
cal responses to CO between rodents, large animals 
(e.g., nonhuman primates) and humans require fur-
ther investigation. Additional studies will be required 
to confirm the safety and efficacy of CO inhalation as 
a treatment for inflammatory lung diseases. Pharma-
cological application of CO using CORM technology 
provides an attractive alternative to inhalation gas [11]. 
However, further understanding of the pharmacoki-
netics and toxicological responses of CORMs, includ-
ing hemodynamic effects, must be achieved before 
employing CORMs as clinical therapy. The effective-
ness of inhaled CO as a therapeutic in human diseases 
including sepsis, renal transplantation, pulmonary 
fibrosis, and pulmonary hypertension, awaits the out-
come of additional planned preclinical testing and 
clinical trials. The next decade should yield a resolu-
tion on the feasibility and efficacy of exploiting the 
therapeutic index of CO in human disease. 
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