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The development of near-infrared-II (NIR-II) fluorescence imaging has implemented real-
time detection of biological cells, tissues and body, monitoring the disease processes and
even enabling the direct conduct of surgical procedures. NIR-II fluorescence imaging
provides better imaging contrast and penetration depth, benefiting from the reducing
photon scattering, light absorption and autofluorescence. The majority of current NIR-II
fluorophores suffer from uncontrollable emission wavelength and low quantum yields
issues, impeding the clinical translation of NIR-II bioimaging. By lengthening the
polymethine chain, tailoring heterocyclic modification and conjugating electron-donating
groups, cyanine dyes have been proved to be ideal NIR-II fluorophores with both tunable
emission and brightness. However, a simpler and faster method for synthesizing NIR-II
dyes with longer wavelengths and better stability still needs to be explored. This minireview
will outline the recent progress of cyanine dyes with NIR-II emission, particularly
emphasizing their pharmacokinetic enhancement and potential clinical translation.
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INTRODUCTION

Near infrared fluorescence imaging technology is widely used in tracking biological processes and
disease diagnosis due to its non-invasive, real-time and multi-dimensional monitoring
characteristics. Indocyanine green (ICG) and methylene blue (MB) has been approved by the
US Food and Drug Administration (FDA) for clinical using, such as angiography or directing cancer
surgery (Chen et al., 2019). Contrast to the NIR-I (700–1,000 nm) region, the NIR-II
(1,000–1,700 nm) region has higher tissue penetration depth and imaging contrast for
mammalian bioimaging (Frangioni, 2003), resulting from the reducing photon scattering, light
absorption and tissue autofluorescence (Hong et al., 2017). Initially, some inorganic materials were
developed for NIR-II imaging, given the examples like carbon nanotubes (Welsher et al., 2009),
quantum dots (Bruns et al., 2017; Li et al., 2015), rare Earth doped nanoparticles (Fan et al., 2018;
Naczynski et al., 2013; Zhong et al., 2017) or gold nanocluster (Liu et al., 2019; Zhu et al., 2018a).
These materials usually have relatively high quantum yield and tunable emission wavelengths, which
is particularly advantageous for vessel (Hong et al., 2014), liver or kidney (Loynachan et al., 2019)
imaging. However, the long-term retention and unconfirmed biotoxicity limit their clinical
translation (Zhang et al., 2013).

Researchers then refocused on organic dyes with good biocompatibility and fast excretion post-
imaging. A variety of NIR-II dyes have been synthesized, such as donor-acceptor-donor (D-A-D)
(Antaris et al., 2016) and cyanine fluorophores. D-A-D molecules have relatively low extinction
coefficient and moderate quantum yield in nonpolar organic solvent, while they are easily quenched
by water and thus lower the quantum yield in water (Yang et al., 2017). The introduction of shielding
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groups can partly reduce the intermolecular interaction
caused by excessive conjugated system, thus improving the
fluorescent brightness (Yang et al., 2018; Zhang et al., 2016).
Compared with the D-A-D structures, the cyanine dyes
have higher absorption coefficient and moderate quantum
yield (Ding et al., 2019). Typically, cyanine dyes consist of
two heterocyclic end groups connected by a polymethine
chain with tunable lengths (Bricks et al., 2015). The
π-conjugate strength can be enhanced by lengthening the
polymethine chain or modifying heterocycle, effectively
promoting the emission wavelength of cyanine dyes over
1,000 nm, such as IR-26, IR-1061, IR-1080 and Flav7
(Casalboni et al., 2003; Cosco et al., 2017; Li et al., 2018).
However, there are still critical issues in developing a NIR-II
dye for clinical trials, due to poor molecular stability and short
circulation time.

In this Minireview, we summarized commercial NIR-II
cyanine dyes with both NIR-II peak and off-peak emission
(Antaris et al., 2017; Carr et al., 2018; Zhu et al., 2018a).
Meanwhile, we describe recent developments in the synthesis
of NIR-II cyanine derivatives, and outline the progress of the
pharmacokinetics improvement and in vivo imaging applications
of cyanine dyes.

SYNTHESIS OF NEAR-INFRARED-II
CYANINE/POLYMETHINE DYES
Commercial Cyanine Dyes With Both Peak
and Tail NIR-II Emission
Small molecules with NIR-II emission have been synthesized and
commercialized for years (Bricks et al., 2015), such as IR-26, IR-

FIGURE 1 | The development of NIR-II cyanine dyes for improving biological bioimaging, disease diagnosis and navigation surgery. (A) Core structures of NIR-I/II
cyanine dyes. (B) Absorption and emission spectra of ICG and IR-1061 (in acetonitrile). Reproduced with permission from (Yeroslaysky et al., 2019). (C) TEM images,
DLS, molecular dynamics simulation (red frame), and schematic diagram of FD-1080J-aggregates. Reproduced with permission from (Sun et al., 2019) Copyright 2019
ACS publications. (D) Multicolor imaging in mice using ICG, MeOFlav7 and JuloFlav7. Reproduced with permission from (Cosco et al., 2020) Copyright 2020
Springer Nature Publishing Group. (E) The diagram of multichannel biological imaging through multi-wavelength emission and tunable lifetime.
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1061, IR-783 (Figure 1A). Some of them have been further
expanded for imaging in vivo. A case in point is IR-1061,
which was sequentially wrapped by polyacrylic acid (PAA)
and DSPE-mPEG to form a stable nanocomplex in aqueous
solution (Tao et al., 2013). The IR-1061 nanocomplex
provided high-resolution vessel imaging in the 1,300–1,700 nm
sub-NIR-II window, with a minimally discernible blood vessel
width ∼150 μm. NIR-I dyes (ICG and IRDye800CW)
spectroscopic mischaracterization on silicon detectors with
insufficient NIR sensitivity falsely recorded their emission
properties (Figure 1B). Recently, detecting on InGaAs camera
have recovered the real emission spectrum of NIR-I-peak dyes. It
has been found that most of NIR-I dyes have detectable NIR-II
fluorescence (tail emission), and their NIR-II fluorescence
intensity is even higher than that of some NIR-II peak
emission dyes (Antaris et al., 2017; Zhu et al., 2018a).
Highlighting the importance of NIR-II imaging with bright
NIR-I-peak dyes that will fundamentally alter both clinical
fluorescent imaging systems and current NIR-II dye synthetic
strategies (Zhu et al., 2018b).

Current Synthesis Strategies for NIR-II Peak
Emission of Cyanine Dyes
Researchers have taken large efforts to design and synthesize
NIR-II fluorophores with long wavelength, high quantum
efficiency, good biocompatibility and optical/physiological
stability, producing novel cyanine dye structures with
improved optical properties (Figure 1A; Table 1). Zhang’s
group designed a set of fluorophores with tunable wavelength
emission named CXs by changing the number of methylene
groups (Lei et al., 2019). Compared with commercial IR-26,
CXs has better water solubility and optical stability. By
increasing the quantity of methylene groups, the peak
emission shifted from CX-1 at 920 nm, CX-2 at 1,032 nm to
CX-3 at 1,140 nm. Inspired by IR-26 structure, Sletten’s group
replaced the sulfur heteroatom in thiaflavylium to oxygen to
enhance the fluorescence intensity (Cosco et al., 2017). The
electron-donating dimethylamino group was added to
compensate the conjugated system to ensure long-wave
absorption/emission. They eventually synthesized a series of
cyanine dyes by linking two dimethylamino flavylium
heterocycles with a polymethylene chain (Flav7). They further
found that the steric hindrance of substituents would affect the
π-conjugation strength, so that the emission wavelength of Flav7

adjusted ∼80 nm through changing the position of the
substituents (Pengshung et al., 2020). Zhang’s group also
synthesized a NIR-II FD-1080 dye which can be excited at
1,064 nm (Li et al., 2018). Adding a cyclohexene group in the
middle of the methylene chain effectively increased the stability of
FD-1080. The water solubility of FD-1080 was significantly
increased by introducing sulfonic acid groups on the
heterocyclic ring and the quantum yield of FD-1080-FBS
complex can be increased from 0.31 to 5.94%. In addition, the
FD-1080J-aggregate was achieved through self-assembly with 1,
2-dimyristoyl-sn-glycero-3-phosphocholine (Figure 1C) (Sun
et al., 2019). J-aggregate of FD-1080 has pushed the emission
peaks to 1,370 nm, affording even clearer imaging contrast for
vasculature visualization. With the benefit of FD-1080-J-
aggregates labelled mesoporous implant, the researchers
fabricated the MSTP-FDJ@PAA to guide osteosynthesis with
minuscule invasion, high resolution, and real-time surgical
navigation in the NIR-II bioimaging window (Sun et al.,
2021). However, the lack of cyanine dyes with peak emission
over 1,500 nm and precisely tunable-emission wavelength has
unfortunately limited NIR-II imaging exploration.

The Enhancement of NIR-II Brightness
Generally, the quantum yield of a single NIR-II fluorescent
molecule, owing to the small HOMO\LUMO energy gap and
excessively large conjugated system lead to low structural rigidity
(Lei et al., 2021), is relatively low. The intramolecular twist (Lei
et al., 2021), the interaction between molecules or the interaction
between molecules and water will also reduce the brightness in
biological conditions. Therefore, researchers sought to increase
the intermolecular distance by increasing the steric hindrance
between molecules to increase the quantum yield of NIR-II dyes
(Li et al., 2018). The Forster resonance energy transfer (FRET)
effect between CXs can effectively enhance the brightness of CX-
3, thereby realizing the response to biomarker of drug-induced
hepatotoxicity OONO− (Lei et al., 2019). The complex formed by
the protein (albumin) and the dye (NIR-I-peak cyanine) can also
effectively increase the brightness by restricting the
intramolecular rotation of the fluorophore (Tian et al., 2019).
Besides, recent academic publication has shown that in addition
to the length of the polymethine chain, substituents affect the
brightness of cyanine dyes (Cosco et al., 2017; Cosco et al., 2020;
Lei et al., 2019; Pengshung et al., 2020; Wang et al., 2019). For
example, Sletten’s group found choosing substituents with fewer
vibration modes could significantly increase the fluorescence

TABLE 1 | Typically reported peak-emission NIR-II fluorophores.

λabs/λem QY [%] solvent εφ[M−1cm−1] Properties Refs

FD 1080 1,043/1,089 0.44 DMSO 196 Water-soluble Li et al. (2018)
Flav 7 1,026/1,045 0.53 DCM 1,250 Water-soluble by micelles Cosco et al. (2017)
CX 3 1,089/1,135 0.082 DMSO 7 Water-soluble Lei et al. (2019)
BTC 1070 1,012/1,066 0.04 DMSO 31 Water-soluble by micelles Wang et al. (2019)
BTC 982 948/986 1.26 DMSO 2,520 Water-soluble by micelles Wang et al. (2019)
LZ 1055 1,058/1,100 3.89 DMSO 5,700 Water-soluble Li et al. (2020)
IR 1061 1,061/1,100 0.59 DCM 1,400 Water-soluble by micelles Tao et al. (2013)
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quantum yield of the dye, which is attributed to the reduction of
non-radiative energy dissipation (Cosco et al., 2021).

PHARMACOKINETICS IMPROVEMENT
AND IN VIVO IMAGING OF NIR-II CYANINE
DYES
Although NIR-II dye have not been approved for clinical use,
small animal experiments have repeatedly shown that NIR-II-
peak dyes and NIR-I-peak dyes with NIR-II tail emission has
commendable performance including real-time vascular imaging
and tumor recognition. To address the short-blood-circulation
issue of current NIR-I-peak dyes, bovine serum albumin (BSA)
was used to self-assemble with cyanine dyes (e.g., IR-783) into IR-
783@BSA complex, which efficiently prolonged NIR-I/II
bioimaging window (Tian et al., 2019). A NIR-II-peak dye
(LZ-1105) was also developed to specifically bond with
fibrinogen, providing the long blood circulation time for real-
time angiography (Li et al., 2020). In addition, an anti-quenched
fluorophore BTC1070 was synthesized with response to pH
through the process of nitrogen protonation/deprotonation,
realizing non-invasive and accurate ratiometric imaging of
gastric pH in vivo (Wang et al., 2019). Sletten’s group further
rationally changed the substituents of Flav7 to screen two dyes
MeOFlav7 and JuloFlav7, which can match the 980 and 1,064 nm
commercial lasers, respectively. By coupling with ICG as the third
channel, they finally achieved three-color, high-speed and real-
time bioimaging (Figure 1D,E) (Cosco et al., 2020). With the
added companion of chromenylium dyes to flavylium dyes, they
performed the four-channel bioimaging (ICG, JuloChrom5,
Chrom7 and JuloFlav7) (Cosco et al., 2021).

PERSPECTIVE AND CHALLENGES

NIR-II organic dyes are relatively facile to synthesize, easily
modifiable, and have low biological toxicity, providing great
potential for clinical translation. ICG and IRDye800CW are by
far the most critical dyes to display NIR-II emission given their
widespread use in modern medical imaging (Hu et al., 2020). In
particular, the cyanine NIR-II fluorophore can effectively
optimize its spectroscopic properties by changing the
methylene groups and heterocyclic donor, thus overcoming
the color-barrier for multichannel biological imaging and
improving bioimaging quality to the longer NIR-II wavelength
regions (Zhu et al., 2019). In addition to improving the molecular
structure, researchers also tried to increase the steric hindrance or
designed FRET-based fluorescent probes, effectively increasing
the emission wavelength and the quantum yield (Lei et al., 2019).
Imaging in the longer NIR-II sub-window (i.e. 1,500–1,700 nm
NIR-IIb) provides nealy “zero” background (reduced photon
scattering/autofluorescence and water absorbance) and even
better imaging quality, however, organic dyes with a
maximum emission wavelength beyond 1,200 and/or 1,500 nm
are still rare. This requires the design of a larger conjugated
system, and a more optimized molecular structure of the dye
molecules. All in all, strategies to improve the photophysical
properties, pharmacokinetics and in vivo imaging of NIR-II
cyanine dyes still remain to be explored.
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