
ll
OPEN ACCESS
Protocol
An expression-based variant impact
phenotyping protocol to predict the impact of
gene variants in cell lines
Alexis M. Thornton,

Manoj Tumu, Angela

N. Brooks

anbrooks@ucsc.edu

Highlights

A user-friendly

computational tool to

predict variant impact

Profiles many variants

across multiple genes

in a single run

Identification of

specific signaling

pathways affected by

each variant

Static and interactive

visualization of results
Thornton et al., STAR
We describe a bioinformatics protocol for eVIP2 (expression-based variant impact phenotyping).

eVIP2 can predict a gene variant’s functional impact by comparing gene expression signatures

induced by introduction of wild-type versus mutant cDNAs in cell lines. The predicted functional

outcomes of the variants include gain-of-function, loss-of-function, change-of-function, or

neutral. eVIP2 improves upon eVIP by being applicable to RNA-seq data and providing pathway-

level functional predictions for each mutation. Here, we detail how to run eVIP2 on RNA-seq data

from two RNF43 variants.

Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional

guidelines for laboratory safety and ethics.
Protocols 3, 101651

September 16, 2022 ª 2022

https://doi.org/10.1016/

j.xpro.2022.101651

mailto:anbrooks@ucsc.edu
https://doi.org/10.1016/j.xpro.2022.101651
https://doi.org/10.1016/j.xpro.2022.101651
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xpro.2022.101651&domain=pdf


Protocol

An expression-based variant impact phenotyping
protocol to predict the impact of gene variants
in cell lines

Alexis M. Thornton,1,2,3 Manoj Tumu,1,2 and Angela N. Brooks1,2,4,*

1Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA

2UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA

3Technical contact: althornt@ucsc.edu

4Lead contact

*Correspondence: anbrooks@ucsc.edu
https://doi.org/10.1016/j.xpro.2022.101651

SUMMARY

We describe a bioinformatics protocol for eVIP2 (expression-based variant impact
phenotyping). eVIP2 can predict a gene variant’s functional impact by comparing
gene expression signatures induced by introduction of wild-type versus mutant
cDNAs in cell lines. The predicted functional outcomes of the variants include
gain-of-function, loss-of-function, change-of-function, or neutral. eVIP2 improves
upon eVIP by being applicable to RNA-seq data and providing pathway-level func-
tional predictions for each mutation. Here, we detail how to run eVIP2 on RNA-seq
data from two RNF43 variants.
For complete details on the use and execution of this protocol, please refer to
Thornton et al. (2021).

BEFORE YOU BEGIN

Experimental validation of cancer-associated gene variants is costly, time-consuming, and requires

prior knowledge of a gene’s function. Due to these challenges, many cancer variants remain uninves-

tigated. eVIP2 requires no prior knowledge of the wild-type (WT) gene’s function to characterize if a

gene variant causes a gain, loss, or change in function, or if it is neutral.

In Berger et al. (2016), eVIP and the L1000 Luminex bead-based gene expression assay were used to

characterize 194 somatic mutations in 53 genes identified in primary lung adenocarcinomas (Subra-

manian et al., 2017; Berger et al., 2016). This work demonstrated the feasibility of high-throughput

systematic functional interpretation of variants using gene expression data.

However, because the L1000 assay only measures the abundance of 978 ‘‘landmark’’ genes, we

developed eVIP2 for use with RNA-seq data. With RNA-seq data we get a more complete profile

of the transcriptome which gives the opportunity for pathway analysis. We used eVIP2 to discover

two recurrent frameshift mutations in RNF43 (G659fs and R117fs) that have different effects on

gene function. In the RNF43 G659fs variant, we identified multiple cancer pathways to be impacted,

which we validated with reporter assays (Thornton et al., 2021).

To find a variant’s impact on pathways, we classify genes into WT-specific and mutant-specific. The

WT-specific genes are differentially expressed only in a control condition versusWT and not in a con-

trol condition versus mutant. Alternatively, mutation-specific genes are differentially expressed only

in a control condition vs mutation and not in a control condition versus WT. These genes represent a
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new function caused by the mutant. eVIP2 pathway analysis is performed separately on WT-specific

and mutant-specific genes.

The eVIP approach has recently been extended to functionally assess variant impact using single-cell

RNA-seq data (sc-eVIP) (Ursu et al., 2022). It has also been applied to features extracted from cell im-

ages for cell morphological profiling (cmVIP) (Caicedo et al., 2022). Additionally, the eVIP2 approach

cangeneralize to other data types beyondgene expression. Any generic table can be used as input to

get overall functional predictions. A gene variant may cause different effects on different aspects of

biology. For example, a mutation may not affect gene expression profiles (‘‘neutral’’), but have a

strong effect on splicing profiles (‘‘GOF’’). Pathway analysis has only been tested on gene expression

data and pathway-level functional prediction of other data types is an ongoing area of research.

This protocol describes the steps used for eVIP2 analysis for the two RNF43 frameshift variants

described in Thornton et al. (Thornton et al., 2021). Four replicates of RNF43 WT, RNF43 R117fs,

RNF43 G659fs, and GFP (control) cDNAs were overexpressed in HEK293T cells. However, other

genes, variants, and cell lines can be used for eVIP2 analysis. We first demonstrate eVIP2 overall

and pathway analysis on the Kallisto-processed RNA-seq gene expression of RNF43 (Bray et al.,

2016). In part two, we demonstrate using a gene expression table as input for overall eVIP2 predic-

tions. Finally, we demonstrate the use of quantification of alternative splicing events from JuncBASE,

to characterize the overall splicing impact of the RNF43 variants (Brooks et al., 2011).

Note: Before beginning, the user should have already performed RNA-seq or L1000 profiling

on at least 3 replicates of cell lines upon introduction of (1) the WT version of the gene, (2) the

variant, and (3) control (i.e., GFP or RFP) cDNAs. For best results, 4–8 replicates should be per-

formed (Berger et al., 2016; Thornton et al., 2021).

Installing prerequisites

Timing: 10 min

1. Install Docker https://docs.docker.com/get-docker/ (Merkel, 2014).

Note: Users are encouraged to use the provided Docker image which contains all required files,

tools, and libraries. However, the prerequisites canbe installed separately. The dependencies are

listed in https://github.com/BrooksLabUCSC/eVIP2/blob/master/misc/environment.yml.

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

RNA-seq upon overexpression of WT RNF43,
RNF43 G659fs, RNF43 R117fs, or GFP in HEK 293 cells

Thornton et al. (2021) https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE141963

GTF file ‘‘Homo_sapiens.GRCh38.87.gtf’’.
Any GTF file can be used.

Ensembl (Howe et al., 2021) http://ftp.ensembl.org/pub/release-
87/gtf/homo_sapiens

Hallmark gene set version 6.0 ‘‘h.all.v6.0.symbols.gmt’’.
Any gmt file with matching gene IDs can be used.

MSigDB (Liberzon et al., 2011) https://data.broadinstitute.org/gsea-
msigdb/msigdb/release/6.0/

Software and algorithms

eVIP2 Thornton et al. (2021) https://github.com/BrooksLabUCSC/eVIP2

Docker Merkel (2014) https://docs.docker.com/get-docker/

Kallisto Bray et al. (2016) https://pachterlab.github.io/kallisto/
download.html

(Continued on next page)
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MATERIALS AND EQUIPMENT

This protocol was tested on the following hardware: A 2018 MacBook Pro with 2.7 GHz Quad-Core

Intel Core i7 processor and 16 GB of RAM running MacOS Monterey; A Linux server with 160 cores

and 1.5 TB of RAM and running CentOS Linux 7; A Lenovo ThinkPad with 2.30 GHz Intel Core i7 pro-

cessor and 32 GB RAM running Windows 10.

STEP-BY-STEP METHOD DETAILS

eVIP2 characterization of RNF43 variants with Kallisto files as input

Timing: 30 min

Here, we describe how to run eVIP2 on RNA-seq gene expression data from two RNF43 variants. We

recommend using Kallisto, but gene quantification from other tools can be used as well, as shown in

the sections below. The use of Kallisto is required for eVIP2 pathway analysis.

We prepared a GitHub repository and Docker image containing all the necessary example inputs,

reference files, and scripts for the method presented below.

The repository is found on GitHub: https://github.com/BrooksLabUCSC/eVIP2.

The docker image is found at Docker Hub: https://hub.docker.com/r/althornt/evip2_env.

The Docker image contains all files needed to run the following tutorial commands below in the

directory named ‘‘docker_tutorial_files’’. Here we describe the files and how they are used.

1. Preparation of RNA-seq data.

Note: We recommend performing general quality control analysis on your data. For informa-

tion on quality control for raw RNA-seq reads, refer to Conesa et al. (Conesa et al., 2016).

Based on our analysis from subsampling read depth, we recommend having at least 20 million

reads per replicate.

a. Run Kallisto on the RNA-seq fastq files with default parameters, or the parameters of your

choice. Only default parameters have been tested. Kallisto creates an output directory for

each sample, which contains various files, including ’’abundance.tsv’’. A directory containing

a Kallisto subdirectory for each sample will be used as input to run_eVIP2.py. For this pro-

tocol, a folder of Kallisto outputs (docker_tutorial_files/RNF43_kallisto_out-

puts) is provided in the Docker image and can be used as a guide to structure directories

for new datasets.

2. Preparation of input files.

To run eVIP2, users need to provide the following required files, which are located within the Docker

image and in the GitHub repository:

a. –sig_info This tab delimited file indicates which samples are replicates of which conditions.

The sample names listed under distil_id must match the corresponding name of each Kallisto

output directory.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

juncBASE (Brooks et al., 2011) https://github.com/BrooksLabUCSC/
juncBASE

Other

Computer (see materials and equipment for more information) N/A N/A
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b. -r The reference file is a tab delimited file that describes whichWT tomutant comparisons to do.

c. -c The control file is a tab delimited file to list the controls in the experiment. The control name

should match the ‘‘sig_id’’ in the -sig_info file. There must be at least one control.

Note: When running eVIP2 Pathways (by declaring -eVIPP) the following additional files are

required and are provided on the Docker image:

d. -gmt Gene set file in .gmt format. These can be downloaded from MSigDB http://www.

gsea-msigdb.org/gsea/msigdb/collections.jsp (Liberzon et al., 2011). Custom gene sets

may also be created.

e. -gtf A gtf file used to convert transcript counts to gene counts. In this tutorial we use the En-

sembl GRCh38 version of the reference genome, but eVIP2 is compatible with any version

(Howe et al., 2021). The gtf file used with eVIP2 should be the same as the gtf used as input

to Kallisto.

3. Setting up eVIP2 repo and Docker container.

a. Clone the eVIP2 repo to the desired path on your machine:

b. Pull the Docker image.

c. Verify the Docker image installation.

Which should display the althornt/evip2_env repository name.

d. Run the Docker container:

i. -v mounts the locally cloned eVIP2 directory inside of the container.

ii. -ti makes the container interactive.

4. Running eVIP2 command from kallisto outputs.

wt mutant

RNF43_WT RNF43_R117fs

RNF43_WT RNF43_G659fs

GFP

> git clone https://github.com/BrooksLabUCSC/eVIP2.git

> docker pull althornt/evip2_env

distil_id sig_id pert_mfc_desc cell_id allele

RNF43_WT_4|RNF43_WT_3|RNF43_WT_2|RNF43_WT_1 RNF43_WT RNF43 293 RNF43_WT

GFP_4|GFP_3|GFP_2|GFP_1 GFP GFP 293 GFP

RNF43_R117fs_4|RNF43_R117fs_3|RNF43_R117fs_2|RNF43_R117fs_1 RNF43_R117fs RNF43 293 RNF43_R117fs

RNF43_G659fs_4|RNF43_G659fs_3|RNF43_G659fs_2|RNF43_G659fs_1 RNF43_G659fs RNF43 293 RNF43_G659fs

> docker image ls

REPOSITORY TAG IMAGE ID CREATED SIZE

althornt/evip2_env latest 8f9af2abd32e 1 h ago 4.9GB

> docker run -v /path/to/eVIP2:/eVIP2 -ti althornt/evip2_env
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a. Now, we demonstrate the first of three independent eVIP2 applications. The following eVIP2

command recreates the overall and pathway analysis of the RNF43 variants presented in

Thornton et al. (Thornton et al., 2021). Enter the eVIP2 directory and run eVIP2 with pathway

analysis. Table 1 provides an explanation of all parameters of the run_eVIP2.py command:

eVIP2 characterization of RNF43 variants with a gene expression table as input

Timing: 1 min

5. Running eVIP2 command from gene expression table.

a. For a second eVIP2 application, we demonstrate running eVIP2 using a gene expression ta-

ble as input as an alternative to using the Kallisto inputs. At this time, pathway analysis has

only been tested with Kallisto input; however, you can still run eVIP2 with a generic gene

expression table without pathway analysis. To run the eVIP2 pipeline without pathway anal-

ysis, the –input_gene_tpm or –input_table parameters can be used as input with run_-

eVIP2.py.

b. Sincewe are using the same data and experimental setup as in the previous application, we use

many of the same input files and parameters files as above. In the following command, we use a

gene expression table from the RNF43 experiment to get the overall eVIP2 predictions.

> cd eVIP2

> python2 run_eVIP2.py \

–input_dir ../docker_tutorial_files/RNF43_kallisto_outputs \

–out_directory tutorial_files/eVIP2_output_from_kallisto \

–sig_info tutorial_files/RNF43_sig.info \

-c tutorial_files/controls.grp \

-r tutorial_files/comparisons.tsv \

–gmt tutorial_files/h.all.v6.0.symbols.gmt \

–gtf ../docker_tutorial_files/Homo_sapiens.GRCh38.87.gtf \

–num_reps 4 \

–use_c_pval \

–eVIPP

python2 run_eVIP2.py \

–input_gene_tpm tutorial_files/RNF43_gene_exp.tsv \

––-out_directory tutorial_files/eVIP2_output_from_gene_exp_table \

––-sig_info tutorial_files/RNF43_sig.info \

-c tutorial_files/controls.grp \

-r tutorial_files/comparisons.tsv \

–num_reps 4 \

–use_c_pval
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eVIP2 RNF43 variants JuncBASE table

Timing: 1 min

6. Running eVIP2 command from JuncBASE table.

a. So far, we have used gene expression as input to predict variant impact. Now we demonstrate

how tables representing other biological measurements can be used as well. Junction Based

Analysis of Alternative Splicing Events (JuncBASE) is a tool to identify and quantify alternative

splicing in RNA-seq data (Brooks et al., 2011).

Table 1. Description of run_eVIP2.py parameters

Parameter Function

–out_directory Path to write the eVIP2 output directory

–input_dir Path to directory containing Kallisto outputs to use as input

–input_table A generic input table in .tsv format for eVIP2 overall prediction

–input_gene_tpm A gene expression table in .tsv format for eVIP2 overall prediction

–sig_info A tsv file with sample information for the following headers: distil_id,
sig_id, pert_mfc_desc, cell_id, allele. Each row must list a different group of replicates.
distil_id = replicate sample names;

sig_id = the replicates condition;
pert_mfc_desc = the associated WT gene;
cell_id = name of the cell type used;
allele = the version of the gene

For example:
distil_id = RNF43_R117fs_4|RNF43_R117fs_3|RNF43_R117fs_2|RNF43_R117fs_1;
sig_id = RNF43_R117fs;
pert_mfc_desc = RNF43;
cell_id = 293;
allele = RNF43_R117fs

-c .grp file containing allele names of control perturbations. If this file is given,
a null will be calculated from these

-r File explicitly indicating which comparisons to do. Assumes the file has a header and it
is ignored. The first column is the reference allele and the second column is the test allele.
Alleles must match the ‘‘allele’’ column from the –sig_info file

–num_reps Number of replicates expected for each allele.

–min_tpm When filtering the gene expression table given with –input_gene_tpm, this value is the minimum
TPM value for each gene. If a gene is expressed below this level in all samples, the gene is removed
from the table. DEFAULT=1

–conn_thresh P-value threshold for connectivity vs null. DEFAULT=0.1

–mut_wt_rep_thresh P-value threshold for comparison of WT and mut robustness. DEFAULT=0.1

–disting_thresh P-value threshold that tests if mut and wt reps are indistinguishable from each other. DEFAULT=0.1

–mut_wt_rep_rank_diff The minimum difference in median self replicate correlation between WT and mutation to
consider a difference. DEFAULT=0

–use_c_pval Use the corrected p-values instead of raw p-values

–cond_max_diff_thresh Threshold for maximum difference between condition correlation medians when determining
if a variant is not neutral. DEFAULT = 0.2

–pdf Create plots in pdf format instead of png.

–xmin Minimum value on sparkler plot x-axis. DEFAULT = 0

–xmax Maximum value on sparkler plot x-axis. DEFAULT = 4

–ymin Minimum value on sparkler plot y-axis. DEFAULT = -3

–ymax Maximum value on sparkler plot y-axis. DEFAULT = 3

–eVIPP Perform eVIP2 Pathway analysis. Must also provide –gmt and –gtf

–control If there are multiple controls in the controls file, designate which to use for DEseq2 when running eVIP2 Pathways

–gtf GTF reference file used to convert transcript counts to gene counts

–gmt Gene set file in .gmt format needed when running eVIP2 pathways with –eVIPP

–min_genes Minimum number of genes per pathway when running eVIP2 Pathways. DEFAULT = 10

–viz_off Skip creation of heatmaps and scatter plots

–sparkler_off Skip creation of sparkler plots
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b. Here we use a table of quantification of alternative splicing events generated by JuncBASE to

see how the RNF43 gene variants impact the splicing profiles using the run_eVIP2.py script.

We use the –input_table parameter to use the JuncBASE table as input.

EXPECTED OUTCOMES

The first run_eVIP2.py command above creates four output directories. The ‘‘kallisto_files’’ directory

contains the combined, filtered, and log-transformed Kallisto gene count file. The ‘‘eVIP_out’’ direc-

tory contains the results of the overall eVIP2 run for each variant. The ‘‘deseq2’’ directory contains the

outputs from the DESeq2 runs for each gene variant, which are used for the pathway analysis. The

‘‘eVIPP_out’’ directory contains results of the eVIP2 Pathway analysis run for each variant.

When using tables as input with –input_gene_tpm and –input_table only the eVIP_out directory is

created because pathway analysis is not performed. For overall prediction, the ‘‘predict.txt’’ file

within eVIP_out is the main result file. Figure 1 describes the eVIP2 decision-tree based algorithm

and its corresponding parameters and statistical values.

Table 2 provides explanations for each of the columns in ‘‘predict.txt’’. The most important calcula-

tion is the Benjamini-Hochberg false discovery rate corrected impact p-value, which is labeled

‘‘wt_mut_rep_vs_wt_mut_conn_c_pval’’ in the ‘‘predict.txt’’ file. When this p-value is below the cut-

off (0.05 or 0.1), the gene variant is considered impactful and is considered neutral when above the

cutoff. When using a low number of replicates, a p-value cutoff of 0.1 is suggested. For a more

detailed explanation, see Thornton et al. (Thornton et al., 2021).

For eVIP2 pathway analysis, the eVIP approach is run independently on each gene set for all gene

variants. Therefore, each gene set has a corresponding predict file and visualizations. The three

main visualizations are sparkler plots, impact prediction plots, and scatter plots.

Sparkler plots represent eVIP2 predictions where each variant or pathway is a point. The x-axis rep-

resents the Kruskal Wallis ‘‘impact test’’ -log10(adjusted p-value). The y-axis is the ‘‘impact direction

score’’, the absolute value of which is equal to the –log10 (adjusted p-value) of a Wilcoxon test

directly comparing wild-type andmutant ORF replicate consistency. The sign of the impact direction

score is positive if the mutant replicate consistency is greater than WT and negative if the mutant

replicate consistency is less than the WT replicate consistency.

Figure 2A shows a sparkler plot where both RNF43 mutations are predicted to be impactful but have

opposite trajectories. Figure 2B shows that the mutation-specific pathway results for the RNF43

G659fs variant has multiple change-of-function and gain-of-function pathways. When using the

JuncBASE table, we find both RNF43 variants to be neutral. Therefore, we can conclude while both var-

iants impact the gene expression profiles, they do not impact the splicing profiles (Figure 2C).

python2 run_eVIP2.py \

–input_table tutorial_files/RNF43_JuncBASE_PSI_infile.txt \

–out_directory tutorial_files/eVIP2_output_from_juncBASE \

–sig_info tutorial_files/RNF43_sig.info \

-c tutorial_files/controls.grp \

-r tutorial_files/comparisons.tsv \

–num_reps 4 \

–use_c_pval
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Interactive sparkler plot HTML files are also created in the directory declared with the –out_directory

parameter by using Plotly Dash (Plotly Technologies, Inc, 2015). The interactive sparkler plots are

particularly useful when looking at results from many gene variants or pathways, where labels may

be overlapping and hard to read.

Impact prediction plots are made for each WT gene and all of its corresponding gene variants. They

feature heatmap representations of WT replicate consistency or variant replicate consistency, where

the values correspond to Spearman rank correlation. The signature identity (WT vs variant) is repre-

sented by heatmaps in the second row. They also feature a dot-plot representation of replicate

Figure 1. eVIP2 decision-tree algorithm and the associated parameters and names of resulting output values

Schematic of eVIP2 decision-tree based algorithm. Each step of the tree is a statistical test where the p-value cutoff can be set by a parameter (orange)

and the test result can be found in the noted column of the predict.txt file (blue).
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consistency and signature identity measured by Spearman rank correlation . *, adjusted p < 0.1. n.s.,

adjusted p > 0.1 (Figure 3).

Lastly, scatter plot matrices aremade for each gene variant. The z-scores of gene expression for each

replicate of the WT and gene variant are compared to each other. This plot can help visualize com-

parisons of gene expression profiles among WT replicates, among mutant replicates, and between

WT and mutant replicates. For example, for the LOF RNF43 variant, the gene expression profiles of

mutant replicates are less self-correlated than the WT replicates (Figure 4).

LIMITATIONS

Due to eVIP2’s use of replicate self-correlation to determine the directionality of mutations

impact, with only 3 replicates it is likely that most calls will either be change-of-function or neutral.

It is unlikely to get any significant loss of function or gain of calls with only 3 replicates. It is recom-

mended that experiments should have 4–8 replicates (Berger et al., 2016; Thornton et al., 2021).

TROUBLESHOOTING

Problem 1

Using eVIP2 without Docker.

Potential solution

If the provided Docker image (which contains all required files, tools, and libraries) cannot be used, the

needed libraries can be installed separately. They are listed in https://github.com/BrooksLabUC

SC/eVIP2/blob/master/misc/environment.yml and https://github.com/BrooksLabUCSC/eVIP2/blob/

master/misc/Dockerfile. Additionally, the code and tutorial files are on the eVIP2 GitHub Repo:

https://github.com/BrooksLabUCSC/eVIP2.

Table 2. Explanation of columns in prediction file output (predict.txt)

Column name Explanation

gene Name of gene

mut Name of gene variant

mut_rep Wild-type replicate self-correlation

wt_rep Mutant replicate self-correlation

mut_wt_connectivity Wild-type vs mutant correlation

wt Name of associated WT gene

cell_line Name of the cell line used for the variant, which is taken
from the sig info file ‘‘cell_id’’ column.

mut_wt_rep_pval Result of a Wilcoxon test testing the null hypothesis that
there is no difference in self replicate correlation between
mutant and wildtype. Uses the wt_rep and mut_rep values.

mut_wt_conn_null_pval Result of a Wilcoxon test testing the null hypothesis there is
no difference between the wild-type vs mutant comparisons
and the null comparisons.

wt_mut_rep_vs_wt_mut_conn_pval Result of Kruskal-Wallis test testing the null hypothesis that
the mutant signature is the same as the WT signature. Uses
the ‘‘wt_rep’’, ‘‘mut_rep’’, ‘‘mut_wt_connectivity’’ correlation values.

kruskal_diff Difference between the max and minimum between the three
values used in the Kruskal-Wallis test ( ‘‘wt_rep’’, ‘‘mut_rep’’,
‘‘mut_wt_connectivity’’)

mut_wt_rep_c_pval mut_wt_rep_pval after Benjamini-Hochberg false discovery
rate correction

mut_wt_conn_null_c_pval mut_wt_conn_null_pval after Benjamini-Hochberg false
discovery rate correction

wt_mut_rep_vs_wt_mut_conn_c_pval wt_mut_rep_vs_wt_mut_conn_pval after Benjamini-Hochberg
false discovery rate correction

prediction Neutral, COF, LOF, GOF, NI
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Figure 2. eVIP2 sparkler plot results

(A) Overall impact of RNF43 variants using gene expression. The x axis represents the p value from the Kruskal

Wallis ‘‘impact test.’’

(B) RNF43 G659fs mutation-specific pathway impact using gene expression.

(C) Overall impact of RNF43 variants using quantification of alternative splicing events from JuncBASE.
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Also, a bash script (tutorial_files/setup.sh in the eVIP2 repo) can be used to download the Kallisto

‘‘abundance.tsv’’ files from GEO and formats them into the original Kallisto output directory struc-

ture so they can be used as input to run_eVIP2.py.

Problem 2

Using Singularity.

Potential solution

The eVIP2 docker image can be used with Singularity. We can create a Singularity image file (‘‘evi-

p2_env_latest.sif’’) by pulling the eVIP docker image. Then, we can run the eVIP2.py commands

described above. Unlike the Docker image, the created Singularity imagewill not contain the Kallisto

and gtf tutorial files, which must be downloaded separately.

Figure 3. eVIP2 heatmap and impact prediction result

Top, heatmap representations of WT replicate consistency or variant replicate consistency, where the values

correspond to Spearman rank correlation. The signature identity (WT vs variant) is represented by heatmaps in the

second row. Middle, dot-plot representation of replicate consistency and signature identity measured by Spearman

rank correlation. *, adjusted p < 0.1. n.s., adjusted p > 0.1. Bottom, the distribution of correlations of control

signatures in blue and the WT vs mutant in red.

> singularity pull docker://althornt/evip2_env:latest

> git clone <hyperlink refid="https://github.com/BrooksLabUCSC/eVIP2.git">https://gi-

thub.com/BrooksLabUCSC/eVIP2.git
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Problem 3

Using Windows.

Potential solution

We recommend Windows users use the PowerShell terminal program.

Problem 4

Key errors.

Potential solution

Key errors are likely due to the sample names in the –sig_info file not matching the corresponding

names of the kallisto directories. Incorrect formatting of the –sig_info file may also cause

issues. Refer to the example files provided in the git repo and check that files are formatted

properly.

Problem 5

Sparkler plots are cut off.

Potential solution

Rerun run_eVIP2.py and adjust the axis of the sparkler plot by changing the values for –xmin, –xmax,

–ymin, or –ymax.

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to and will be fulfilled by the lead contact, An-

gela N. Brooks (anbrooks@ucsc.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The eVIP2 code and tutorial data used in this study are available on GitHub eVIP2: https://github.

com/BrooksLabUCSC/eVIP2. The eVIP2 release used in this protocol is: https://doi.org/10.5281/

zenodo.6863716. The RNF43 RNA-seq dataset used in this study is available at GEO Accession:

GSE141963.

> cd eVIP2

> singularity exec /path/to/evip2_env_latest.sif python2 run_eVIP2.py \

–input_dir ../docker_tutorial_files/RNF43_kallisto_outputs \

–out_directory tutorial_files/eVIP2_output_from_kallisto \

–sig_info tutorial_files/RNF43_sig.info \

-c tutorial_files/controls.grp \

-r tutorial_files/comparisons.tsv \

–gmt tutorial_files/h.all.v6.0.symbols.gmt \

–gtf ../docker_tutorial_files/Homo_sapiens.GRCh38.87.gtf \

–num_reps 4 \

–use_c_pval \

–eVIPP
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Thorvaldsdóttir, H., Tamayo, P., and Mesirov, J.P.
(2011). Molecular signatures database
(MSigDB) 3.0. Bioinformatics 27, 1739–1740.
https://doi.org/10.1093/bioinformatics/
btr260.

Merkel, D. (2014). Docker: lightweight Linux
containers for consistent development and
deployment. Linux J. 239, 2.

Plotly Technologies, Inc (2015). Collaborative Data
Science (Plotly Technologies Inc.).

Subramanian, A., Narayan, R., Corsello, S.M.,
Peck, D.D., Natoli, T.E., Lu, X., Gould, J., Davis,
J.F., Tubelli, A.A., Asiedu, J.K., et al. (2017).
A next generation connectivity map: L1000
platform and the first 1, 000, 000 profiles. Cell
171, 1437–1452.e17. https://doi.org/10.1016/j.cell.
2017.10.049.

Thornton, A.M., Fang, L., Lo, A., McSharry, M.,
Haan, D., O’Brien, C., Berger, A.H., Giannakis, M.,
and Brooks, A.N. (2021). eVIP2: expression-based
variant impact phenotyping to predict the
function of gene variants. PLoS Comput. Biol. 17,
e1009132. https://doi.org/10.1371/journal.pcbi.
1009132.

Ursu, O., Neal, J.T., Shea, E., Thakore, P.I., Jerby-
Arnon, L., Nguyen, L., Dionne, D., Diaz, C.,
Bauman, J., Mosaad, M.M., et al. (2022). Massively
parallel phenotyping of coding variants in cancer
with Perturb-seq. Nat. Biotechnol. 40, 896–905.
https://doi.org/10.1038/s41587-021-01160-7.

ll
OPEN ACCESS

14 STAR Protocols 3, 101651, September 16, 2022

Protocol

https://doi.org/10.1016/j.ccell.2016.06.022
https://doi.org/10.1016/j.ccell.2016.06.022
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1101/gr.108662.110
https://doi.org/10.1101/gr.108662.110
https://doi.org/10.1091/mbc.E21-11-0538
https://doi.org/10.1091/mbc.E21-11-0538
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1093/nar/gkaa942
https://doi.org/10.1093/nar/gkaa942
https://doi.org/10.1093/bioinformatics/<?show $6#?>btr260
https://doi.org/10.1093/bioinformatics/<?show $6#?>btr260
http://refhub.elsevier.com/S2666-1667(22)00531-7/sref8
http://refhub.elsevier.com/S2666-1667(22)00531-7/sref8
http://refhub.elsevier.com/S2666-1667(22)00531-7/sref8
http://refhub.elsevier.com/S2666-1667(22)00531-7/sref9
http://refhub.elsevier.com/S2666-1667(22)00531-7/sref9
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1016/j.cell.2017.10.049
https://doi.org/10.1371/journal.pcbi.1009132
https://doi.org/10.1371/journal.pcbi.1009132
https://doi.org/10.1038/s41587-021-01160-7

	XPRO101651_proof_v3i3.pdf
	An expression-based variant impact phenotyping protocol to predict the impact of gene variants in cell lines
	Before you begin
	Installing prerequisites

	Key resources table
	Materials and equipment
	Step-by-step method details
	eVIP2 characterization of RNF43 variants with Kallisto files as input
	eVIP2 characterization of RNF43 variants with a gene expression table as input
	eVIP2 RNF43 variants JuncBASE table

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution
	Problem 5
	Potential solution

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	References



