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Purpose: To qualitatively and quantitatively compare the image quality and diagnostic
performance of turbo gradient and spin echo PROPELLER diffusion-weighted imaging
(TGSE-PROPELLER-DWI) vs. readout-segmented echo-planar imaging (rs-EPI) in the
evaluation of orbital tumors.

Materials and Methods: A total of 43 patients with suspected orbital tumors
were enrolled to perform the two DWIs with comparable spatial resolution on 3T.
The overall image qualities, geometric distortions, susceptibility artifacts, and lesion
conspicuities were scored by using a four-point scale (1, poor; 4, excellent). Quantitative
measurements, including contrast-to-noise ratios (CNRs), apparent diffusion coefficients
(ADCs), geometric distortion rates (GDRs), and lesion sizes, were calculated and
compared. The two ADCs for differentiating malignant from benign orbital tumors
were evaluated. Wilcoxon signed-rank test, Kappa statistic, and receiver operating
characteristics (ROC) curves were used.

Results: TGSE-PROPELLER-DWI performed superior in all subjective scores and
quantitative GDR evaluation than rs-EPI (p < 0.001), and excellent interobserver
agreement was obtained for Kappa value ranging from 0.876 to 1.000. ADClesion of
TGSE-PROPELLER-DWI was significantly higher than those of rs-EPI (p < 0.001). Mean
ADC of malignant tumors was significantly lower than that of benign tumors both in two
DWIs. However, the AUC for differentiating malignant and benign tumors showed no
significant difference in the two DWIs (0.860 vs. 0.854, p = 0.7448). Sensitivity and
specificity could achieve 92.86% and 72.73% for TGSE-PROPELLER-DWI with a cutoff
value of 1.23 × 10−3 mm2/s, and 85.71% and 81.82% for rs-EPI with a cutoff value of
0.99 × 10−3 mm2/s.
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Conclusion: Compared with rs-EPI, TGSE-PROPELLER-DWI showed minimized
geometric distortion and susceptibility artifacts significantly improved the image quality
for orbital tumors and achieved comparable diagnostic performance in differentiating
malignant and benign orbital tumors.

Keywords: diffusion weighted imaging, apparent diffusion coefficient, orbit tumor, turbo gradient and spin echo
PROPELLER diffusion-weighted imaging (TGSE-PROPELLER-DWI), readout-segmented echo-planar imaging
(rs-EPI)

INTRODUCTION

Diffusion weighted imaging (DWI) is an essential MR sequence
for diagnosing a broad spectrum of orbital diseases, enabling
characteristics on morphological features of tissues with
measurements of apparent diffusion coefficient (ADC). ADC
is an additional noninvasive parameter for differentiation of
malignant orbital tumors from benign lesions (Sepahdari et al.,
2010; Razek et al., 2011; Intven et al., 2014).

The common single-shot echo-planar DWI (SS-EPI-DWI)
collects k-space data with an echo-planar imaging (EPI)
trajectory and has advantages of fast acquisition. However, it
is very vulnerable to susceptibility artifacts, especially for the
structures with air-bone-tissue interfaces because of relative
long readout time and low bandwidth in phase-encoding
direction (Turner et al., 1990; Li et al., 2015). Thus, SS-EPI-
DWI usually results in unsatisfactory image quality with severe
geometric distortions, signal pile-up or ghosting artifacts, and
even misdiagnosis of anatomical structures/abnormalities, and
lesions with small and/or irregular contour are difficult to be
evaluated (White et al., 2006; Heidemann et al., 2010; Fu et al.,
2021). Readout-segmented echo-planar imaging (rs-EPI) is an
advanced DWI technique, in which the k-space is divided into
several segments along the readout direction, and echo spacing
and echo time were reduced (Porter and Heidemann, 2009).
The previous studies (Bogner et al., 2012; Koyasu et al., 2014;
Friedli et al., 2015; Xia et al., 2016; Zhao et al., 2016; Xu et al.,
2017) demonstrated that rs-EPI showed reduced susceptibility-
induced artifacts and T2∗ blurring compared with SS-EPI-DWI.
However, it is unavoidable to suffer from the image distortions
and susceptibility-induced artifacts (Bogner et al., 2012; Koyasu
et al., 2014; Zhao et al., 2016; Xu et al., 2017; Sheng et al.,
2020), challenging to distinguish small lesions from artifacts
(Sheng et al., 2020).

Turbo gradient and spin echo PROPELLER diffusion-
weighted imaging (TGSE-PROPELLER-DWI) is proposed
recently, and its basic imaging principles have been introduced
by Li et al. (2011); Zhou et al. (2018), and Hu et al. (2019).
The fast turbo-gradient and spin-echo (TGSE) readout method
in this technique helps reduce image distortions and magnetic
susceptibility-induced artifacts; the phase-insensitive preparation
module between diffusion preparation and the data acquisition
was used to eliminate non-CPMG signal component; the
gradient-spin echo is placed into each independent blade to
minimize dephasing artifacts; the data is collected by rotating
the blades, and the image is reconstructed with phase-error
correction, achieving better robustness to motion artifacts.

However, the signal-to-noise ratio (SNR) efficiency of TGSE-
PROPELLER-DWI maybe lower than that of rs-EPI. It might be
possible to reduce the acquisition time of TGSE-PROPELLER-
DWI by using coils with higher channels, higher magnet
field strength, and/or higher SNR (the parameters need to be
optimized accordingly).

In clinical practice, TGSE-PROPELLER-DWI has been
applied in the pediatric brain (Hu et al., 2019) and has also
been previously compared with rs-EPI in clinical applications
of middle ear (Sheng et al., 2020) and optic nerve (Yuan et al.,
2020). Hu et al. (2019) suggested that TGSE-PROPELLER-
DWI should be the first choice in patients where significant
magnetic susceptibility artifacts are foreseen in some specific
cases, for example, patients with orthodontia, postsurgical
resection cavity, or shunts which are more susceptible to
yield susceptibility artifacts. Sheng et al. (2020) and Yuan
et al. (2020) found that TGSE-PROPELLER-DWI significantly
improved image qualities by reducing geometric distortions,
susceptibility artifacts, and less blurring compared with rs-
EPI images in diagnosis of cholesteatoma and optic neuritis,
but with a lower signal-to-noise ratio (SNR) than that of rs-
EPI. However, the performance of TGSE-PROPELLER-DWI in
depicting orbital tumors is still unknown. Whether it could
decrease the geometric distortions and susceptibility artifacts
or not is important to depict some small lesions, the extent
of invasion and the diffusion characterization of orbital tumors
accurately, and is also essential for the clinical treatment planning
or even prognosis of the orbital tumors.

The purpose of the current study was to compare the clinical
utility of TGSE-PROPELLER-DWI for depicting orbital tumors
compared with rs-EPI. Specifically, image qualities of TGSE-
PROPELLER-DWI and rs-EPI were compared subjectively and
objectively, and their capacity for differentiating malignant from
benign tumors was also evaluated.

MATERIALS AND METHODS

Study Population
This current prospective study was approved by the local medical
ethics committee, and written informed consent was obtained
prior to the MRI examinations. One of the patients was only
4 years old, and written informed consent was obtained from his
legal guardians. Between September 1, 2020 and March 15, 2021,
43 patients (22 males and 21 females; mean age, 54.2 years; age
range, 4–75 years) with suspected orbital tumors were enrolled
in this study. Of those patients, 23 patients (10 males and

Frontiers in Neuroscience | www.frontiersin.org 2 November 2021 | Volume 15 | Article 755327

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-755327 November 24, 2021 Time: 13:38 # 3

Fu et al. TGSE-PROPELLER-DWI for Orbital Tumors

13 females; mean age, 49.3 years; age range, 4–69 years) with
malignant tumors and 14 patients (10 males and 4 females;
mean age, 60.6 years; age range, 49–71 years) with benign
tumors were identified by pathological results 1–5 days after MR
scanning. The remaining six patients were not found to have any
orbital abnormalities.

Twenty-three benign orbital lesions comprised inflammatory
pseudotumor (n = 5), cavernous malformation (n = 9), benign
cyst (n = 3), dermoid cyst (n = 1), schwannoma (n = 2),
meningioma (n = 2), and mucous cyst (n = 1). Fourteen
malignant orbital lesions comprised lymphoma (n = 10), adenoid
cystic carcinoma (n = 1), melanoma (n = 1), malignant solitary
fibrous tumor (n = 1), and inflammatory myofibroblastic tumor
(n = 1).

Magnetic Resonance Imaging Protocol
All MRI examinations were performed on a 3T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Germany) equipped
with a 45 mT/m achievable gradient strength and 200 T/m/s
maximum slew rate using a dedicated 20-channel head-neck coil.
Conventional MRI was required using the following sequences:
coronal, axial and sagittal turbo spin-echo (TSE) T2-weighted
imaging (T2WI) with fat suppression [repetition time/echo time
(TR/TE): 5,220/37 ms, FOV: 200 mm × 200 mm, bandwidth:
220 Hz/pixel, slice thickness: 3 mm, flip angle = 160◦, resolution
320× 320, acquired voxel size = 0.63 mm× 0.63 mm× 3.0 mm];
axial and coronal TSE T1-weighted imaging (T1WI) without
fat suppression (TR/TE: 600/6.4 ms, FOV: 180 mm × 180 mm,
bandwidth: 391 Hz/pixel, slice thickness: 3 mm, flip angle = 150◦,
acquired voxel size = 0.35 mm × 0.35 mm × 3.0 mm);
axial T1WI scanned by volume interpolated body examination
(VIBE) with fat suppression before and after administration of
contrast material (TR/TE: 18/3.69 ms, FOV: 180 mm × 180 mm,
bandwidth: 180 Hz/pixel, slice thickness: 1 mm, flip angle = 9◦,
acquired voxel size = 0.63 mm× 0.63 mm× 1 mm).

Before contrast injection, the prototype TGSE-PROPELLER-
DWI sequence and product rs-EPI were scanned with
comparable spatial resolutions and similar acquisition time
for all the enrolled patients. The detailed TGSE-PROPELLER-
DWI parameters were as follows: TR/TE: 4,400/59 ms, FOV:
230 mm × 230 mm, bandwidth: 650 Hz/pixel, voxel size:
1.2 mm × 1.2 mm × 2.5 mm, number of slices: 16, matrix
size: 192 × 192, PROPELLER coverage: 214.3%, PROPELLER
number: 30, EPI factor: 5, turbo factor: 11, echo spacing:
13.9 ms, diffusion encoding mode: 4-scan-trace, b-values:
0 and 1,000 s/mm2, averages: 1 for b = 0 s/mm2 and 3
for b = 1,000 s/mm2, turbo factor: 11, EPI factor: 5, and
acquisition time: 5 min 51 s. The detailed parameters for rs-EPI
were as follows: TR/TE: 6,670/68 ms, FOV: 200 mm × 200 mm,
bandwidth: 780 Hz/pixel, voxel size: 1.1 mm× 1.1 mm× 2.5 mm,
number of slices: 16, matrix size: 178× 178, echo spacing: 0.4 ms,
readout segments: 5, readout partial Fourier (Frost et al., 2012)
was used: 3 readout segments acquired of 5 total (readout
partial Fourier 5/8), generalized autocalibrating partially parallel
acquisition (GRAPPA) was implemented to save time and reduce
the effective echo-spacing, GRAPPA R:2, EPI factor: 89, diffusion
encoding mode: 4-scan-trace, b-values: 0 and 1,000 s/mm2,

averages: 1 for b = 0 s/mm2 and 3 for b = 1,000 s/mm2, and
acquisition time: 5 min 35 s. The phase-encoding directions for
the two DWI methods were both set to be left-right.

Subjective Evaluations
Two experienced radiologists (with 15 and 25 years of experience
working in neuroradiology) independently scored geometric
distortions, susceptibility artifacts, lesion conspicuities, and the
overall image qualities using a 4-point scale, as listed in Table 1.
All the conventional T1WI and T2WI images were shown to the
two radiologists, but images of TGSE-PROPELLER-DWI and rs-
EPI of each patient were shown blindly. The order of patients and
sequences (TGSE-PROPELLER-DWI or rs-EPI) was arranged in
a random manner.

Objective Evaluations
Quantitative measurements, including contrast-to-noise ratios
(CNRs), and apparent diffusion coefficients (ADCs), geometric
distortion rates (GDRs), and lesion sizes of the two DWI
sequences were calculated and compared.

The value of CNR was calculated by the following formula
(Bogner et al., 2012): CNR = SIlesion−SIWM√

(SDlesion)2+(SDWM)2
, SIlesion

and SIWM represent the mean signal intensities of lesions
and white matter.

In here, SDlesion and SDWM represent the standard deviation
of lesions and white matter.

Apparent diffusion coefficients of orbital tumors were
measured in ADC maps of both DWIs. The matching circular
region-of-interest (ROI) on orbital tumors in the rs-EPI ADC
map was copied to the corresponding region in the TGSE-
PROPELLER-DWI ADC map, and the placement of ROIs would
be moved slightly in order to achieve the matching region

TABLE 1 | Criteria for qualitative image quality comparisons between two DWIs.

Geometric distortion

1. Severe distortion

2. Moderate distortion

3. Mild distortion

4. No distortion

Susceptibility artifacts

1. Severe artifacts

2. Major artifacts

3. Only minor artifacts

4. No artifacts

Lesion conspicuity

1. Unable to evaluate

2. Acceptable for visualization

3. Obvious visibility

4. Excellent for visualization

Overall image quality

1. Poor, insufficient for diagnosis

2. Fair, adequate for diagnosis

3. Good for diagnosis

4. Excellent for diagnosis
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between the two DWI methods. Then, the mean ADC values were
generated automatically and recorded. All measurements were
performed, avoiding signals from adjacent air, bone, susceptibility
artifacts, and cystic or necrotic components of tumors.

Image fusions between the T2-weighted imaging (T2WI) and
the two DWI sequences (b = 0 s/mm2) were used as references
for grading the extent of geometric distortions which was similar
to strategies used by previous studies (Koyasu et al., 2014; Zhao
et al., 2016; Figure 1). The value of GDR (Yokohama et al., 2019)
was calculated as follows:

GDR = (|LDWI − LT2|)/LT2 × 100%

Where LT2 and LDWI represent the maximum length of the
vitreous body in T2WI and DWI, respectively. For lesion size,
the maximum transversal and longitudinal length of tumors were
measured in coronal T2WI, rs-EPI, and TGSE-PROPELLER-
DWI images. The phase-encoding directions for the two DWI
methods were both set to be left-right, so geometric distortion
was mainly shown in this direction (left-right anatomically)
especially in rs-EPI.

Statistical Analysis
Continuous variables were presented as the mean ± standard
deviation (SD). If the subjective and objective parameters of
the two DWIs conformed to normal distributions, paired t-test
was used; otherwise, the Wilcoxon signed-rank test was used.
Pearson correlation coefficients (r) were used to evaluate the
correlations of lesion size on the two DWIs with that of T2WI.
Inter-observer agreement between the two radiologists for the
scores was analyzed using Kappa statistic (<0.40, poor; 0.40–0.59,
moderate; 0.60–0.75, good; >0.75, excellent). Receiver operating
characteristics (ROC) curves were used to evaluate the diagnostic
performance of ADC values for differentiating orbital benign

and malignant tumors, and the method by DeLong et al. (1988)
was used to compare the area under curves (AUCs) of the two
DWIs with 95% confidence intervals (CIs). Statistical analyses
were performed with SPSS software (IBM SPSS 22, IBM Corp.,
Armonk, NY, United States) and MedCalc software (version
18.11.3; MedCalc Software, Ltd). A p-value <0.05 was considered
statistically significant.

RESULTS

All the orbital lesions were detected successfully by the
two DWIs. Mean lesion size was 1.93 cm × 1.86 cm in
T2WI, 1.88 cm × 1.89 cm in TGSE-PROPELLER-DWI, and
1.91 cm× 1.91 cm in rs-EPI.

Subjective Scores and Inter-Observer
Agreement Evaluations
As shown in Table 2 and Figure 2, scores in TGSE-PROPELLER-
DWI were significantly higher than those in rs-EPI for geometric
distortions (3.9 ± 0.21, 2.14 ± 0.71, z = −8.22, p < 0.001),
susceptibility artifacts (3.91 ± 0.36, 2.14 ± 0.60, z = −8.32,
p < 0.001), lesion conspicuity (3.80 ± 0.52, 3.09 ± 0.88,
z = −5.50, p < 0.001), and overall image quality (3.90 ± 0.31,
2.67 ± 0.52, z = −8.20, p < 0.001). No statistical difference
in the interobserver variability for the qualitative scores was
observed between the two radiologists (p-values >0.150). In
addition, the Kappa value was 0.876–1.000, thus indicating
excellent interobserver agreement.

Objective Analyses
As shown in Table 3, TGSE-PROPELLER-DWI showed
significantly reduced geometric distortions compared with
rs-EPI for quantitative GDR evaluation (p < 0.001) (Figure 3,

FIGURE 1 | T2-weighted imaging (T2WI, A), b0 images of TGSE-PROPELLER-DWI (B), and rs-EPI (C) were fused. Color- and gray-coated images were derived
from the T2WI and the two DWI b0 images (D,E), respectively. The T2WI and TGSE-PROPELLER-DWI b0 images matched well, showing the left orbital tumor (long
arrows in D) and ethmoid and maxillary sinuses (short arrows in D). The T2WI and rs-EPI b0 images were mismatched due to geometric distortions in the
corresponding structures (arrows in E).
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arrows); there was no significant difference in orbital tumor
CNRs and white matter ADCs between the two DWI sequences
(p = 0.085, p = 0.110, respectively); lesion ADC values of TGSE-
PROPELLER-DWI were significantly higher than those of rs-EPI
(p < 0.001). Figure 3 shows a left orbital tumor (identified as
solitary fibrous tumor by pathological result) which could be
visualized clearly using the two DWIs. TGSE-PROPELLER-DWI
showed minimized distortions and less susceptibility artifacts
compared to rs-EPI. GDR values on TGSE-PROPELLER-DWI
and rs-EPI were 0.036 and 0.171, respectively. ADC values of
solid components on TGSE-PROPELLER-DWI and rs-EPI were
1.24× 10−3 mm2/s and 1.11× 10−3 mm2/s.

Correlation of TGSE-PROPELLER-DWI with conventional
T2WI on the maximum transversal length and maximum
longitudinal length (r = 0.986, r = 0.969, respectively) were both
better than those of rs-EPI (r = 0.941, r = 0.960, respectively;
Table 4). There was no significant difference in tumor size
between TGSE-PROPELLER-DWI and rs-EPI (p > 0.30).

Apparent Diffusion Coefficient Analyses
for Differentiating Malignant From
Benign Orbital Tumors
Mean ADC value of malignant tumors was significantly lower
than that of benign tumors both in TGSE-PROPELLER-DWI
(0.88 ± 0.25 × 10−3 mm2/s, 1.46 ± 0.55 × 10−3 mm2/s,
z = −2.86, p = 0.004) and in rs-EPI (0.78 ± 0.26 × 10−3 mm2/s,
1.38 ± 0.59 × 10−3 mm2/s, z = −2.79, p = 0.005) (Figure 4).
Even though AUC value of TGSE-PROPELLER-DWI was slightly
larger than that of rs-EPI (0.860 vs. 0.854, Figure 5 and Table 5),
there was no significant difference in the AUCs for both DWIs
(z = 0.326, p = 0.7448). Sensitivity and specificity could achieve
92.86% and 72.73% for TGSE-PROPELLER-DWI (cutoff value:
1.23 × 10−3 mm2/s), and 85.71% and 81.82% for rs-EPI (cutoff
value: 0.99× 10−3 mm2/s) (Table 5).

DISCUSSION

This study demonstrated the feasibility and diagnostic
performance of TGSE-PROPELLER-DWI for orbital tumors in
clinical use. The data supported TGSE-PROPELLER-DWI to
be superior than rs-EPI with regard to improved image quality
and comparable capacity for differentiating malignant and
benign orbital tumors.

In orbital DWI, TGSE-PROPELLER-DWI presented with
minimized geometric distortions and susceptibility artifacts
when compared with rs-EPI. According to various comparison
studies between rs-EPI and SS-EPI-DWI, rs-EPI produced less
image distortions, image blurring, and susceptibility artifacts
in applications of orbital masses, sinonasal lesions, rectal
cancer, head and neck, breast cancer, renal DWI by using
semiquantitative scales or quantitative scores (Bogner et al.,
2012; Koyasu et al., 2014; Friedli et al., 2015; Xia et al., 2016;
Zhao et al., 2016; Xu et al., 2017), as well as increased sharpness
of rs-EPI (Friedli et al., 2015; Zhao et al., 2016; Xu et al.,
2017). However, partial volume effect, T2∗ blurring effect, and
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FIGURE 2 | Coronal T2-weighted imaging (T2WI) images (A–C), coronal TGSE-PROPELLER-DWI b1000 images (A1–C1), and coronal rs-EPI b1000 images
(A2–C2). (A,A1,A2): patient 1, male, 62 years old, left orbital lymphoma, scores of geometric distortions, susceptibility artifacts, lesion conspicuity, and overall image
quality of TGSE-BLADE-DWI were 4, 4, 4, and 4, respectively, while those of rs-EPI were 3, 2, 3, and 3, respectively. (B,B1,B2): patient 2, male, 50 years old, left
orbital fibroma, scores of geometric distortions, susceptibility artifacts, lesion conspicuity, and overall image quality of TGSE-BLADE-DWI were 4, 4, 4, and 4,
respectively, while those of rs-EPI were 3, 3, 4, and 4, respectively. (C,C1,C2): patient 3, female, 61 years old, left orbital hemangioma, scores of geometric
distortions, susceptibility artifacts, lesion conspicuity, and overall image quality of TGSE-BLADE-DWI were 4, 4, 4, and 4, respectively, while those of rs-EPI were 2,
3, 2, and 2, respectively.

TABLE 3 | Quantitative parameters between TGSE-PROPELLER-DWI and rs-EPI.

Quantitative parameters TGSE-PROPELLER-DWI rs-EPI Z-value P-value

ADC (×10−3 mm2/s)

White matter 0.78 ± 0.05 0.77 ± 0.05 −1.600 0.110

Lesion 1.23 ± 0.54 1.15 ± 0.56 −3.708 <0.001

CNR (b = 1,000 s/mm2) 5.36 ± 4.82 4.13 ± 4.04 −1.720 0.085

GDR (%) 3.61 ± 3.58 17.14 ± 15.31 −5.580 <0.001

Lesion size (mm)

Maximum transversal length 18.88 ± 9.21 19.13 ± 9.80 −0.770 0.441

Maximum longitudinal length 18.91 ± 10.07 19.08 ± 9.82 −1.001 0.317

geometric distortions could not be completely removed in rs-
EPI (Bogner et al., 2012; Koyasu et al., 2014; Zhao et al.,
2016; Xu et al., 2017; Sheng et al., 2020), which may lead
to the failure to detect some small lesions (<2.5 mm) such
as cholesteatomas (Sheng et al., 2020), because it was difficult
to distinguish the small-sized lesions with the interference of
susceptibility artifacts, especially in the air-tissue and bone-tissue
interfaces. While TGSE-PROPELLER-DWI was immune to those
artifacts in current study, subjective and objective assessments
showed the minimized distortions and susceptibility artifacts of
TGSE-PROPELLER-DWI for orbital DWI than rs-EPI, leading
to the improved ability for depicting anatomical structures and

lesions than rs-EPI. This result was consistent with a recent
study, which focused on TGSE-PROPELLER-DWI for middle ear
cholesteatoma with rs-EPI (Sheng et al., 2020) and another study
which focused on TGSE-PROPELLER-DWI for the pediatric
brain with SS-EPI-DWI (Hu et al., 2019). Different from the
previous studies (Hu et al., 2019; Sheng et al., 2020), we also
performed quantitative evaluations for geometric distortions.
GDR of TGSE-PROPELLER-DWI was significantly lower than
that of rs-EPI (0.036 vs. 0.171, p < 0.001) in the current study,
which was in agreement with the subjective scores, supporting the
superior performance of TGSE-PROPELLER-DWI with reduced
distortions than rs-EPI.
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FIGURE 3 | A 50-year-old male with left solitary fibrous tumor. Compared with the T2-weighted imaging (T2WI, A) images and contrast-enhanced T1WI (B), this
lesion could be visualized clearly with TGSE-PROPELLER-DWI b1000 (C) and ADC map (D); no geometric distortions were seen. Slight distortions were seen with
rs-EPI b1000 (E) and ADC map (F). More geometric distortions were observed in the frontal lobe and ethmoid sinus with rs-EPI.

TABLE 4 | Correlations of TGSE-PROPELLER-DWI and rs-EPI with conventional T2WI for evaluation of orbital tumor size.

Type Maximum transversal length Maximum longitudinal length

*r p *r p

TGSE-PROPELLER-DWI 0.986 <0.001 0.969 <0.001

rs-EPI 0.941 <0.001 0.960 <0.001

*r, Pearson correlation coefficient.

Even though DWI could observe and quantify biological
structures based on diffusion properties of water molecules and
improve lesion conspicuity (Prezzi et al., 2018), it has limited
role for MR-guided planning in clinical practice mainly due to
disadvantages in geometric integrity (Liney and Moerland, 2014).
Decreased geometric distortions and susceptibility artifacts
of DWI are essential for radiotherapy (RT) in matching
or image fusions with other anatomical images for external
beam planning, because high degree of accuracy is needed in
RT applications (Bergen et al., 2020). Minimized geometric
distortion is of critical importance to avoid excessive radiation
dose to healthy tissues (Bergen et al., 2020). According to
several published literatures (Chen et al., 2006; McPartlin et al.,
2016; Studenski et al., 2016; Bergen et al., 2020), approximately
3 mm distortion would increase the doses in RT, and it
would lead to significant dose errors if more than 1 cm and
even affects the treatment outcomes. Results of the current
study showed the superiority of TGSE-PROPELLER-DWI with
minimized distortions and susceptibility artifacts, indicating the
potential to be implemented in RT management. It would be
meaningful to validate its performance and accuracy in the
further research.

In orbital DWI, TGSE-PROPELLER-DWI was comparable in
depicting tumor size and showed better lesion conspicuity when

compared with rs-EPI. Even though the correlation of the lesion
size in TGSE-PROPELLER-DWI with conventional T2WI was
better than in rs-EPI-DWI, there was no significant difference in
lesion sizes between the two DWIs, providing additional evidence
of the new TGSE-PROPELLER-DWI for clinical use with the
equivalent performance in depicting lesion sizes. With the help of
the decreased artifacts and distortions mentioned above, lesions
with better conspicuity and comparable CNR were observed
in TGSE-PROPELLER-DWI, making a greatly improved image
quality of TGSE-PROPELLER-DWI to rs-EPI in orbital imaging.

In orbital DWI, TGSE-PROPELLER-DWI ADCs could
achieve comparable diagnostic performance for differentiation
malignant from benign orbital tumors than rs-EPI ADCs.
ADC value has been widely accepted as an effective biomarker
for differential diagnosis of malignant and benign tumors in
various body parts (Tsuruda et al., 1990; Yamasaki et al., 2005;
Maeda and Maier, 2008; Sepahdari et al., 2010). Malignant
tumors with restricted diffusion tend to have a lower ADC
value, which may be related to their larger nuclei, higher
cellularity, and decreased extracellular space, and benign
tumors tend to display higher ADCs than malignant tumors
(Tsuruda et al., 1990; Guo et al., 2002; EI Khouli et al.,
2010). Our results demonstrated that the mean ADC value
of malignant tumors was 0.88 ± 0.25 × 10−3 mm2/s in
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FIGURE 4 | Bar graph demonstrated the comparisons of ADC values between malignant and benign orbital tumors in two DWIs.

FIGURE 5 | ROC curve of the two DWI ADC values to differentiate malignant
and benign orbital tumors.

TGSE-PROPELLER-DWI and 0.78 ± 0.26 × 10−3 mm2/s in
rs-EPI, and benign tumor was 1.46 ± 0.55 × 10−3 mm2/s
in TGSE-PROPELLER-DWI and 1.38 ± 0.59 × 10−3 mm2/s

in rs-EPI. This finding was in good agreement with published
papers. Mean ADC of the two DWIs for malignant and
benign orbital tumors was 0.84 ± 0.34 × 10−3 mm2/s
and 1.57 ± 0.33 × 10−3 mm2/s, respectively, in Razek
et al.’s (2011) report and 0.77 ± 0.38 × 10−3 mm2/s and
1.23 ± 0.42 × 10−3 mm2/s, respectively, in Fatima et al.’s
(2014) report.

Several previous orbital DWI studies have reported different
threshold values with different sensitivities and specificities.
Razek et al. (2011) reported a cutoff value of 1.15× 10−3 mm2/s,
with 95% sensitivity and 91% specificity for differentiating
malignancy from benign lesions. Hemat (2017) reported
cutoff value of 0.93 × 10−3 mm2/s with 80% sensitivity,
83.3% specificity and 82% accuracy. Sepahdari et al. (2010)
reported a threshold value of 1.0 × 10−3 mm2/s with
63% sensitivity and 86% specificity. Bogner et al. (2012)
reported an ADC threshold of 1.25 × 10−3 mm3/s with
90% accuracy for discriminating malignant and benign
lesions. While in the current study, when TGSE-PROPELLER-
DWI ADC value of 1.23 × 10−3 mm2/s was used as a
cutoff value for differentiation of malignant from benign
orbital tumors, sensitivity and specificity could achieve
92.86% and 72.73%, respectively, and rs-EPI ADC cutoff
value was 0.99 × 10−3 mm2/s with sensitivity 85.71% and
specificity 81.82%.

Moreover, in the current work, the AUC value of TGSE-
PROPELLER-DWI (AUC = 0.860) was similar to that of rs-
EPI (AUC = 0.854) with no significant statistical difference
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(p > 0.700), indicating a comparable diagnostic performance of
the two DWIs for malignant and benign tumors differentiation.
This data validated TGSE-PROPELLER-DWI to be a potential
tool for characterizing orbital tumors as well as valuable
differentiation of malignant from benign orbital tumors.

Our study had several limitations. First, the level of geometric
distortion and susceptibility artifacts in rs-EPI is directly
controlled by the echo-spacing which was set to 0.40 ms in
this study where the scan time and number of averages were
matched. Depending on other protocol details, e.g., decrease
resolution or bandwidth, increase number of readout segment,
the echo-spacing can be decreased which would reduce distortion
and susceptibility artifacts. Second, we have set averages 1 for
b = 0 s/mm2 and 3 for b = 1,000 s/mm2 in two DWIs by
taking into account the specific characteristics of orbit for better
image qualities, and acquisition times of TGSE-PROPELLER-
DWI and rs-EPI were both 5–6 min. The longer examination
time may yield unnecessary patient motion, resulting in motion
artifacts and deterioration in image quality. Theoretically, TGSE-
PROPELLER-DWI has the potential to reduce the motion
artifacts to some extent due to the PROPELLER technique, but
this was not investigated in current study. Further optimization
of the sequence will be undertaken to decrease the scanning
time for faster scanning procedure and patients’ comfort, by
integrating simultaneous multislice (SMS) or compressed sensing
(CS) technologies if possible. Third, participant number was
relatively limited with various pathological results. We have not
discussed the capacities of two DWI ADCs for each tumor.
The relationship between ADCs and tumor grades was not
discussed either. Nonetheless, our preliminary data demonstrate
the feasibility and potential benefits of TGSE-PROPELLER-DWI
for orbital tumors in clinical practice. Moreover, further studies
with a larger sample size with a broad spectrum of pathologies
are still needed.

In conclusion, compared with rs-EPI, TGSE-PROPELLER-
DWI showed minimized geometric distortions and susceptibility
artifacts and significantly improved the image quality for
characterizing orbital tumors. TGSE-PROPELLER-DWI is
feasible for depicting orbital tumors and achieves comparable
diagnostic performance in differentiating malignant and
benign orbital tumors.
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