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Diabetes mellitus is a disease that has reached epidemic proportions globally in recent years. Consequently, the prevention and
treatment of diabetes have become key social challenges. Most of the research on diabetes risk factors has focused on correlation
analysis with little investigation into the causality of these risk factors. However, understanding the causality is also essential to
preventing the disease. In this study, a causal discovery method for diabetes risk factors was developed based on an improved
functional causal likelihood (IFCL) model. Firstly, the issue of excessive redundant and false edges in functional causal
likelihood structures was resolved through the construction of an IFCL model using an adjustment threshold value. On this
basis, an IFCL-based causal discovery algorithm was designed, and a simulation experiment was performed with the developed
algorithm. The experimental results revealed that the causal structure generated using a dataset with a sample size of 2000
provided more information than that produced using a dataset with a sample size of 768. In addition, the causal structures
obtained with the developed algorithm had fewer redundant and false edges. The following six causal relationships were
identified: insulin→plasma glucose concentration, plasma glucose concentration→body mass index (BMI), triceps skin fold
thickness→BMI and age, diastolic blood pressure→BMI, and number of times pregnant→age. Furthermore, the reasonableness
of these causal relationships was investigated. The algorithm developed in this study enables the discovery of causal
relationships among various diabetes risk factors and can serve as a reference for future causality studies on diabetes risk factors.

1. Introduction

With the steady increase in the number of diabetic patients
worldwide, diabetes mellitus has become the third most seri-
ous threat to human health after cerebro-cardiovascular dis-
eases and malignant tumours [1]. Diabetes is a chronic
metabolic disorder that can be caused by a wide variety of
risk factors. It leads to disturbances in fat and protein metab-
olism, resulting in chronic injury or failure of multiple organs
[2]. Diabetes severely impacts human health and imposes a
heavy burden on families and societies; hence, there is a
pressing need for effective prevention and treatment of dia-
betes. The analysis of the relationships among various risk
factors and between diabetes and risk factors is essential to
elucidate the pathogenesis of diabetes and is a precondition
for diabetes prevention and treatment. Previous research in
China and other countries has largely focused on two areas:

(1) the analysis of risk factors for diabetes onset and (2) the
construction of prediction models for diabetes onset.

(1) Research on the analysis of risk factors for diabetes
onset primarily comprises two activities: the explora-
tion of new risk factors and relationship analysis of
risk factors. The investigation of new risk factors
enables the discovery of potential factors for diabetes
onset, which is beneficial for understanding diabetes
aetiologies and may facilitate the effective prevention
of diabetes. As the pathogenesis of diabetes involves
multiple factors, the analysis of the relationships
among these risk factors is particularly important
and of practical and clinical significance. (i)
Researchers have discovered many new risk factors
of diagnostic and predictive significance. For
instance, Fizelova et al. [3] found that the
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apolipoprotein B/LDL cholesterol ratio and apolipo-
protein A1/HDL cholesterol ratio are the strongest
predictors of the worsening of glycaemia and inci-
dence of type 2 diabetes, respectively, in Finnish
men. Lankinen et al. [4] identified plasma fatty acids
as a potential predictor for glycaemia and a risk factor
for type 2 diabetes mellitus (T2DM) in Finnish men.
Further, Yazdanpanah et al. [5] found that glycated
albumin (GA) provides more accurate diabetes diag-
nosis than glycated haemoglobin. Another study by
Huang et al. [6] revealed that adiponectin (ADPN)
combined with fibroblast growth factor 21 (FGF-21)
and adipocyte fatty acid binding protein (A-FABP)
are of great clinical significance in the early diagnosis
and risk prediction of T2DM and could serve as key
markers for the prediction of T2DM onset in high-
risk populations. Bellia et al. [7] demonstrated the
clinical usefulness of GA in the diagnosis of diabetes
in a high-risk Caucasian population. In another
study, Tatsukawa et al. [8] found that the risk of dia-
betes in the Japanese population was significantly
positively correlated with trunk fat and significantly
negatively correlated with leg fat. Li et al. [9] revealed
that the age of alcohol onset and drinking duration
are risk factors for T2DM. (ii) Studies on relationship
among the various risk factors have provided a basis
and direction for the investigation of potential aetiol-
ogies of diabetes. Zhao et al. [10] explored the corre-
lations of trace elements in serum with serum glucose
and body composition indicators in T2DM patients
and concluded that the correction of trace element
metabolism disorders in T2DM patients may be of
great significance for diabetes treatment and the pre-
vention of complications. Tillin et al. [11] revealed
that branched chain and aromatic amino acids, par-
ticularly tyrosine, may be potential treatment targets
for diabetes in South Asian populations. In addition,
Cui and Feng [12] found that body mass index (BMI)
is positively correlated with body fat percentage and
abdominal-glute ratio, which indicates that body fat
percentage may be clinically significant for diabetes
diagnosis. Huang et al. [13] constructed a correlation
network with biomarkers related to T2DM, which
showed that the leptin system plays a key role in dia-
betes development. Meanwhile, Zhu et al. [14] stud-
ied the relationship between diabetes and body
composition and found that visceral fat content, total
fat content, total lean body mass, trunk lean mass,
and limb lean mass are influencing factors of glycated
haemoglobin. Therefore, glycaemic control in T2DM
patients may be associated with lean body weight.
Through Mendelian randomisation analysis, Liu
et al. [15] found that there is a causal relationship
between the genetically driven nonalcoholic fatty
liver disease (NAFLD) and central obesity, both of
which are risk factors for diabetes

(2) Early research on diabetes prediction models mainly
involved the use of statistical regression methods for

model construction, with typical examples including
a model developed by Chien et al. for predicting
T2DM risk in the Taiwanese population [16], a pre-
diction model for diabetes onset developed by Li
et al. [17], a classification tree model for diabetes pre-
diction in rural Chinese [18], a model for the predic-
tion of T2DM risk in Japanese Americans [19], the
Finnish Diabetes Risk Score tool [20], and a diabetes
risk prediction model for a mixed African American
and non-Hispanic white population [21]. In recent
years, rapid developments in artificial intelligence
techniques have led to the adoption of machine
learning methods to construct diagnostic and predic-
tive models of various diseases. Intelligent diagnosis
and prediction methods for different diseases can be
classified into two categories: one based on tradi-
tional single learner and the other based on multiple
learners, such as the diabetes diagnosis method based
on a single learner proposed by Rahman et al. [22]
and the congestive heart failure diagnosis method
based on multiple learners proposed by Isler et al.
[23]. In the diagnosis and prediction of diabetes mel-
litus, the approach based on a single learner can pro-
vide satisfactory results with higher efficiency. For
instance, Wang and Chen [24] utilised a support vec-
tor machine (SVM) with different kernel functions to
construct prediction models for T2DM risk and
found that the radial basis function-based SVM
model provided the best predictive effects. Song
et al. [25] and Chen et al. [26] reported the applica-
tion of back-propagation neural network models to
T2DM risk prediction. In addition, some researchers
have improved the traditional single learner
approach for better diagnosis and prediction. Erkay-
maz et al. [27] found that Newman-Watts small-
world feedforward neural networks have better accu-
racy in diagnosing diabetes, by comparing two differ-
ent small-world feedforward neural networks.
Geman et al. [28] used an adaptive neuro-fuzzy infer-
ence method to establish a diabetes classification and
prediction system, which provided good classifica-
tion and prediction accuracy. Further, several
scholars have committed to exploring diabetes pre-
diction methods based on multiple learners for better
accuracy. For example, Liu et al. [29] developed a dia-
betes prediction model through the integration of
SVM and the random forest (RF) technique and
found that the integrated model provided superior
classification performance compared with single clas-
sifiers. López et al. [30] used the RF technique to
identify single-nucleotide polymorphisms in T2DM
and to construct a decision-support tool for diabetes
risk prediction. Wu et al. [31] used deep neural net-
work and logistic regression models to predict gesta-
tional diabetes in the Chinese population, with better
prediction performance that previous methods

Research on relationship among risk factors may enable
the discovery of previously unknown physiological and
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pathological phenomena of diabetes, providing a theoretical
basis for the elucidation of diabetes pathogenesis. However,
existing studies on the relationships among risk factors
mostly reflect the correlations rather than causality among
these factors. Although diabetes prediction models are bene-
ficial for diabetes prevention and early diagnosis, they are
fundamentally statistical correlation models that do not
reflect causality. Therefore, there is a pressing need for
studies on the causality of diabetes risk factors, as the deter-
mination of the pathological and physiological causal rela-
tionships of diabetes is of great theoretical significance and
could provide clinical guidance for diabetes prevention and
treatment.

Randomised controlled trials (RCTs) [32] constitute a
traditional method of causality discovery. However, substan-
tial interventions are required for the experimental group in
an RCT, which are costly and may entail ethical and moral
violations. These issues can be avoided by using observa-
tional data-based causal discovery methods, but noise in the
data may influence the effects of causal discovery algorithms.
In situations with significant noise, functional causal likeli-
hood- (FCL-) based algorithms [33] can effectively discover
causal relationships. However, in the discovery of causal rela-
tionships among diabetes risk factors, numerous redundant
and erroneous causal edges are generated when using these
algorithms. To overcome this problem, we developed an
improved functional causal likelihood- (IFCL-) based diabe-
tes risk factor causal discovery algorithm to uncover causal
relationships among diabetes risk factors. Our study is the
first to use the causal discovery algorithm to explore the
causal relationship between diabetes risk factors.

The contributions of the present study are as follows:

(1) An IFCL model was developed by incorporating an
adjustment threshold value α, which reduces the
number of redundant and erroneous edges in the dia-
betes risk factor causal structures

(2) An IFCL-based diabetes risk factor causal discovery
algorithm was subsequently constructed and used to
generate optimised diabetes risk factor causal
structures

(3) A simulation experiment was performed for compar-
ative analysis of causal structures generated using dif-
ferent methods and sample sizes, and the significance
of the identified causal relationships was assessed

The remainder of this paper is organised as follows. Sec-
tion 2 provides the details of the IFCL model and diabetes
risk factor causal discovery algorithm. Section 3 describes
the experimental process and provides an analysis and dis-
cussion of the experimental results. Finally, Section 4 pre-
sents the study conclusions.

2. Materials and Methods

2.1. IFCL Model. The fundamental concepts of the FCL
model are the assumption that the noise term is independent
and is incorporated into the likelihood and that the likeli-

hood over observational data is converted into the likelihood
over the noise of the observational data and subsequently
solved. Let fX1, X2,⋯,XNg denote the variable set for diabe-
tes risk factors, whereN is the number of risk factor variables.
G denotes the causal graph of the subset X = fX1, X2,⋯,Xng,
PðXi = xÞ is the probability that Xi = x, and PðXi ∣ PiÞ indi-
cates the probability of observations on Xi with conditions
on the values of all its parents Pi, with 1 ≤ i ≤ n ≤N . Given
that G satisfies the causal Markov condition [32, 34] and
causal faithfulness condition [32], the joint distribution PðX
Þ can be expressed as follows:

P Xð Þ =
Yn
i=1

P Xi ∣ XPi

� �
, ð1Þ

where XPi
includes all parents of Xi. Given a group of obser-

vational data O = fo1!, o2!,⋯,oj!,⋯, om�!g, where oj
! is an n

-dimensional vector (i.e., oj
!= ðoj,1, oj,2,⋯,oj,nÞ, 1 ≤ j ≤m),

oj,Pi
can be used to denote the subvector of oj

! containing
the observational values of XPi

. By combining PðXÞ and G,
the log-likelihood of the observational data can be expressed
as follows:

L G ;Oð Þ = 〠
m

j=1
〠
n

i=1
log P Xi = oj,i ∣ XPi

= oj,Pi

� �� �
: ð2Þ

A search for causal networks by maximising the likeli-
hood calculated using Equation (2) may not return true cau-
sality structures owing to the possible existence of different
graphical structures providing exactly the same likelihood,
which are known as Markov equivalence classes. To over-
come the issues associated with Markov equivalence classes,
it is necessary to introduce the concepts of causal function
and noise.

Figure 1 shows a partial causal structure, with Ei and XPi
denoting the randomised noise corresponding to Xi and the
causal variable of Xi, respectively. An additive noise model
Xi = FiðXPi

Þ + Ei is adopted as the causal mechanism, with
Fi being the causal function of Xi and the randomised noise
variable Ei being independent of the causal variable XPi

.
Therefore, the following equation can be derived:

P Xi = oj,i ∣ XPi
= oj,Pi

� �
= P Ei = oj,i − Fi oj,Pi

� �
∣ XPi

� �
= P Ei = oj,i − Fi oj,Pi

� �� �
:

ð3Þ

From Equations (2) and (3), it can be seen that the likeli-
hood over the observational data is equivalent to the likeli-
hood over the noise of the observational data. Let S = hG, Fi
denote the causal structure. The likelihood over the noise of
the observational data can then be obtained as follows:

L S ;Oð Þ = 〠
m

j=1
〠
n

i=1
log P Ei = oj,i − Fi oj,Pi

� ��� �
: ð4Þ

Equation (4) shows the converted target function. For
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datasets with limited sample sizes, the equation must be reg-
ularised to avoid the generation of excessive redundant
causal edges. By introducing the Bayesian information crite-
rion penalty, the regularised likelihood can be expressed as
follows:

LB S ;Oð Þ = 〠
n

i=1
〠
m

j=1
log P Ei = oj,i − F oj,Pi

� �
i

� ��
−
di log mð Þ

2

 !
:

ð5Þ

Equation (5) represents the FCL model, with di being the
number of coefficients used to estimate Xi. By maximising
Equation (5), the causal graph structure can be obtained,
i.e., max LBðS ;OÞ =maxG supFLBðhG, Fi ;OÞ. This repre-
sents the solution process of the FCL-based causal discovery
algorithm, which involves two steps: (1) generation of initial
causal graphs by fitting and optimising the causal function
supFLBðhG, Fi ;OÞ; (2) searching for the causal graph with
the maximum likelihood maxGLBðhG, Fi ;OÞ using the hill-
climbing algorithm, with the local updating rule for Xi given
by the following equation:

LBi′ S ;Oð Þ = 〠
m

j=1
log P Ei = oj,i − Fi oj,Pi

� �� �� �
−
di log mð Þ

2 :

ð6Þ

The FCL of diabetes risk factors obtained after iteration is
denoted as L∗BðS ;OÞ. As the termination condition for the
hill-climbing algorithm in the search for the causal graph
with the maximum target likelihood is L∗BðS ;OÞ > LBðS ;OÞ,
where LBðS ;OÞ is the FCL of the initial causal structure,
excessive redundant or erroneous edges are present in the
generated diabetes risk factor causal structures. Therefore,
an adjustment threshold value is introduced into Equation
(5) for correction, resulting in the following corrected model:

�LB S ;Oð Þ = 〠
n

i=1
〠
m

j=1
log P Ei = oj,i − Fi oj,Pi

� �� �� �
−
di log mð Þ

2 + α

 !
:

ð7Þ

Equation (7) represents the modified diabetes risk factor
IFCL model, with α being the adjustment threshold value. In
the hill-climbing algorithm, Equation (6) remains the local
updating rule for Xi, whereas the termination condition
becomes L∗BðS ;OÞ > �LBðS ;OÞ. The likelihood without
updated nodes during the iteration process is given by the

following equation:

LBi S ;Oð Þ = 〠
m

j=1
log P Ei = oj,i − Fi oj,Pi

� �� �� �
−
di log mð Þ

2 + α:

ð8Þ

The diabetes risk factor FCL of the kth iteration can be
expressed as

L∗B S ;Oð Þ = 〠
n

i=1
〠
m

j=1
log P Ei = oj,i − Fi oj,Pi

� �� �� �
−
di log mð Þ

2

 !
+ αk

ð9Þ

where αk is the total threshold of the kth iteration. It can be
seen from Equation (7) that the total threshold of the initial
IFCL model is nα, which can be regarded as the likelihood
of each causal node increasing by the threshold α, namely,
LBiðS ;OÞ =∑m

j=1 log ðPðEi = oj,i − Fiðoj,Pi
ÞÞÞ − ðdi log ðmÞ/2Þ

+ α. After each iteration, the likelihood of updating the node
will decrease by α, and the total threshold will continue to
decrease, namely, αk < αl, k > l. Therefore, a causal node with
greater likelihood must be searched for in the iteration pro-
cess to reach the iteration termination condition L∗BðS ;OÞ
> �LBðS ;OÞ, which is the fundamental reason why the
IFCL-based diabetes risk factor causal discovery algorithm
can output a more optimised causal structure.

2.2. IFCL-Based Diabetes Risk Factor Causal Discovery
Algorithm. Figure 2 shows a flowchart of the IFCL-based dia-
betes risk factor causal discovery algorithm. The detailed
steps of the algorithm are as follows.

Step 1. The observational data for diabetes risk factors O =
fo1!, o2!,⋯,oj!,⋯, om�!g are input into the algorithm and sub-
jected to pretreatment and normalisation.

Step 2. Firstly, the regression method is adopted to estimate
the causal function Fi corresponding to the causal edges.
Next, the norm of the residual (noise) is calculated by regres-
sion. Kernel density estimation is subsequently employed to
approximate the noise distribution to obtain the optimised
causal function Fi, which is then used to generate the initial
causal graph G.

Step 3. The likelihood over noise �LB is initialised using Equa-
tion (7), and LB

∗ is set to zero.

Step 4. The hill-climbing algorithm is used to search for the
optimal causal graph. During each iteration, the addition,
deletion, or reversion operation is performed on a single
causal edge in G. The causal function Fi and causal graph
are updated, and the updated causal graph is stored in G∗.

Step 5. G∗ and G are compared, and the updating of local
likelihoods is performed for nodes with changes using Equa-
tion (6) to obtain LBi′ . The updated likelihoods ∑iLBi′ and

Xp
i

Xi
Ei

Figure 1: Partial causal structure consisting of XPi
and Xi.
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nonupdated likelihoods ∑iLBi are summed to obtain

L∗B =〠
i

LBi′ +〠
i

LBi: ð10Þ

Step 6. L∗B and LB are compared. If L∗B > �LB, then �LB = L∗B and
G =G∗, and the algorithm proceeds to Step 7. Otherwise,
Step 4 is executed.

Step 7. The maximum likelihood �LB and corresponding opti-
mal causal graph G are obtained as the output.

3. Results and Discussion

3.1. Experimental Data and Environment. Diabetes datasets
with sample sizes of 768 (denoted as the M = 768 dataset)
and 2000 (denoted as the M = 2000 dataset), which were
obtained from the National Institute of Diabetes and
Digestive and Kidney Diseases in the U.S.A. and Hospital
Frankfurt in Germany, respectively, were downloaded
from Kaggle (https://www.kaggle.com/uciml/pima-indians-
diabetes-database; https://www.kaggle.com/chirag9073/diab
etes-using-deep-learning/data) and used as the experimen-
tal data for this study. All subjects in the datasets were at
least 21 years old. The datasets consisted of nine variables:

number of times pregnant, plasma glucose concentration
at 2 h in an oral glucose tolerance test, diastolic blood
pressure (mmHg), triceps skin fold thickness (mm), 2 h
serum insulin (muU/ml), BMI, diabetes pedigree function,
age, and class variable for diabetes diagnosis. In particular,
the diabetes pedigree function contains genetic informa-
tion regarding diabetes history in the family of the subject.
Except for the class variable, all other variables were sub-
jected to causality analysis in this study. To maximise
the retention of information, mean imputation was
adopted to replace the missing values in the datasets. Z
-score standardisation was performed on the raw data,
and abnormal values were replaced by mean values.

The simulation experiment was carried out in the
RStudio environment, and the program was written in R
language. The computer used had an Intel (R) Core
(TM) i7-6500U CPU with main frequency 2.50GHz and
8GB of RAM.

3.2. Experimental Results

3.2.1. Scatter Plots and Correlation Coefficients of Variable
Pairs. To understand their correlation and provide a basis
for subsequent experiments to analyse their causality, the
scatter plots and correlation coefficients of variable pairs
among the eight variables were generated for the M = 768
dataset (Figure 3) and M = 2000 dataset (Figure 4).

Figures 3 and 4 show scatter plots of the variable pairs in
the bottom left corner, bar charts for each variable on the
diagonal line from top left to bottom right, and correlation
coefficients of the variable pairs in the top right corner.
Figures 3 and 4 both show the scatter plots and correla-
tion coefficients of 28 variable pairs. There are seven var-
iable pairs with correlation coefficients less than 0.1 in
Figure 3, while there are eight pairs of such cases in
Figure 4.

In general, if the correlation coefficient of two variables is
between 0 and 0.1, the relationship between the variables can
be considered nonlinear. Therefore, variable pairs with
correlation coefficients < 0:1 were discarded. Tables 1 and 2
show the variable pairs with correlation coefficients ≥ 0:1
and the corresponding P values. All P values are less than
0.01, which indicates the existence of significant linear rela-
tionships in the variable pairs.

3.2.2. Results of FCL-Based Causal Discovery. To better dem-
onstrate and analyse the causal structure of diabetes risk fac-
tors, we set no. of times pregnant, plasma glucose
concentration, diastolic blood pressure, triceps skin fold
thickness, insulin, BMI, age, and diabetes pedigree function
to the variables X1, X2, X3, X4, X5, X6, X7, and X8,
respectively.

To investigate the presence or absence of causality
among the eight variables, a causal discovery experiment
was performed with the M = 768 and M = 2000 datasets
using an FCL-based causal discovery algorithm reported
previously [33]. Figures 5 and 6 depict the resultant causal
structures (named structures 1 and 2) and show 7 and 8
pairs of causal relationships, respectively. In Figures 5

Start

Input observation data; pre-treatment and 
normalisation of data

Estimation and optimisation of causal function to
Fi obtain the initial causal graph G

Initialisation of likelihood over noise LB ; set LB = 0
−

−

−

−

− ⁎

⁎

⁎

⁎ ⁎

⁎ ʹ
ʹ

Addition, deletion or reversion is performed on a
single causal edge using the hill-climbing algorithm

Updating of causal structure and local likelihoods
to obtain G and LBi ; summation of local likelihoods:

LB = 𝚺 L Bi + 𝚺 LBi 

LB > LB 

LB = LB and G = G

The maximum likelihood LB and corresponding
optimal causal graph G are obtain as the output

End

Y

i i

N

Figure 2: Flowchart of the IFCL-based diabetes risk factor causal
discovery algorithm.
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and 6, green nodes represent the ancestor nodes, which
have only child nodes; yellow nodes represent the interme-
diate nodes, which have both parent and child nodes; and
orange nodes represent the child nodes, which have only
parent nodes. Table 3 shows the maximum likelihoods
for both structures.

(i) Similarities between structures 1 and 2: both struc-
tures exhibit six identical causal relationships: X1
→ X7, X7 → X3, X4 → X6, X5 → X2, X2 → X6, and
X6 → X3, with X1 → X7 indicating that the number
of times pregnant causes changes in age, X7 → X3
indicating that age causes changes in diastolic
blood pressure, X4 → X6 indicating that triceps
skin fold thickness causes changes in BMI, X5 →
X2 indicating that insulin causes changes in plasma

glucose concentration, X2 → X6 indicating that
plasma glucose concentration causes changes in
BMI, and X6 → X3 indicating that BMI causes
changes in diastolic blood pressure. There was an
absence of causal relationships between diabetes
pedigree function and all other variables in both
structures

(ii) Differences between structures 1 and 2: structure 1
exhibits the causal relationship X6 → X7, whereas
structure 2 shows the causal relationships X7 → X2
and X4 → X7, with X6 → X7 indicating that BMI
causes changes in age, X7 → X2 indicating that age
causes changes in plasma glucose concentration,
and X4 → X7 indicating that triceps skin fold thick-
ness causes changes in age

No. of times pregnant

0.10
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Figure 3: Scatter plots, bar charts, and correlation coefficients for the M = 768 dataset.
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Figure 4: Scatter plots, bar charts, and correlation coefficients for the M = 2000 dataset.
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Figure 3 shows that the correlation coefficient between
BMI and age is 0.07, and the corresponding P value is
0.072. Therefore, the absence of a linear relationship between
BMI and age can be deduced. Obviously, the causal function

obtained by the regression method fails the significance test
and has no statistical significance. On this basis, X6 → X7
can be regarded as an erroneous causal relationship. In
Figure 6, the erroneous causal edge X6 → X7 was eliminated

Table 1: Correlation coefficients and P values of variable pairs for the M = 768 dataset.

Variable pair Correlation coefficient P value

No. of times pregnant and age 0.56 0

No. of times pregnant and diastolic blood pressure 0.21 0

No. of times pregnant and insulin 0.14 0

No. of times pregnant and triceps skin fold thickness 0.11 0.003

No. of times pregnant and plasma glucose concentration 0.11 0.001

Plasma glucose concentration and insulin 0.38 0

Plasma glucose concentration and age 0.27 0

Plasma glucose concentration and BMI 0.23 0

Plasma glucose concentration and diastolic blood pressure 0.21 0

Plasma glucose concentration and triceps skin fold thickness 0.17 0

Plasma glucose concentration and diabetes pedigree function 0.10 0.005

Diastolic blood pressure and age 0.33 0

Diastolic blood pressure and BMI 0.28 0

Diastolic blood pressure and triceps skin fold thickness 0.20 0

Diastolic blood pressure and insulin 0.10 0.005

Triceps skin fold thickness and BMI 0.54 0

Triceps skin fold thickness and insulin 0.16 0

Triceps skin fold thickness and age 0.12 0.001

Insulin and age 0.19 0

Insulin and BMI 0.17 0

BMI and diabetes pedigree function 0.12 0.001

Table 2: Correlation coefficients and P values of variable pairs for the M = 2000 dataset.

Variable pair Correlation coefficient P value

No. of times pregnant and age 0.55 0

No. of times pregnant and diastolic blood pressure 0.21 0

No. of times pregnant and insulin 0.11 0

No. of times pregnant and triceps skin fold thickness 0.11 0

No. of times pregnant and plasma glucose concentration 0.11 0

Plasma glucose concentration and insulin 0.38 0

Plasma glucose concentration and age 0.26 0

Plasma glucose concentration and BMI 0.23 0

Plasma glucose concentration and diastolic blood pressure 0.19 0

Plasma glucose concentration and triceps skin fold thickness 0.18 0

Diastolic blood pressure and age 0.33 0

Diastolic blood pressure and BMI 0.28 0

Diastolic blood pressure and triceps skin fold thickness 0.21 0

Triceps skin fold thickness and BMI 0.53 0

Triceps skin fold thickness and insulin 0.17 0

Triceps skin fold thickness and age 0.13 0

Insulin and age 0.18 0

Insulin and BMI 0.17 0

BMI and diabetes pedigree function 0.12 0
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when causal discovery was performed with the M = 2000
dataset, but two additional causal edges X4 → X7 and X7 →
X2 were discovered. As shown in Table 3, the maximum like-
lihood of structure 2 is higher than that of structure 1, which
suggests that sample size influences the results of causal dis-
covery. Although a larger sample size favours the elimination
of erroneous causal edges and discovery of previously nonex-
istent causal edges, the increase in the number of discovered
causal edges may also lead to an increase in the number of
redundant edges. Figures 5 and 6 demonstrate that the causal
structures were complex with significant numbers of redun-
dant or erroneous edges, which necessitates the development
of new causal discovery algorithms.

3.2.3. Results of IFCL-Based Causal Discovery. The purpose of
this experiment was to compare the performance of the pro-
posed method with the FCL-based causal discovery method
and explore the optimal causal structure of diabetes risk fac-
tors. When the IFCL-based algorithm was adopted for causal
discovery in theM = 768 andM = 2000 datasets, it was found
that the results of causal discovery were closely associated
with the adjustment threshold value. In the experiment, α
values of 0:05 ≤ α ≤ 0:18 in intervals of 0.01 were adopted,
whereas α values < 0.05 were not used owing to the genera-
tion of excessive redundant causal edges.

(i) Causal structures for the M = 768 dataset: Figure 7
shows the generated causal structure with five pairs
of causal relationships (X1 → X7, X3 → X6, X4 → X6
, X5 → X2, and X2 → X6) when α = 0:05 – 0:06
(structure 3). In structure 3, X1, X3, X4, and X5 are
the ancestor nodes, X2 is the intermediate node,
and X6 and X7 are the child nodes. Compared with
structure 1, X6 → X7 (an erroneous edge) and X7
→ X3 are absent, and X6 → X3 is reversed to form
the X3 → X6 relationship in structure 3. Figure 8
shows the generated causal structure with four pairs
of causal relationships (X1 → X7, X2 → X6, X3 → X6
, and X4 → X6) when α = 0:07 – 0:14 (structure 4).
In structure 4, X1, X2, X3, and X4 are the ancestor
nodes, X7 and X6 are the child nodes, and there is
no intermediate node. Compared with structure 3,
the causal edge X5 → X2 is absent in structure 4.
Figure 9 shows the generated causal structure when
α = 0:15 (structure 5), which merely consists of two
causal edges, X1 → X7 and X4 → X6. In structure 5,
there are only the ancestor nodes (X1 and X4) and

child nodes (X7 and X6). Further simplification did
not occur in the causal structure when α was
increased beyond 0.15

(ii) Causal structures for theM = 2000 dataset: Figure 10
shows the generated causal structure with six pairs of
causal relationships (X1 → X7, X4 → X7, X3 → X6,
X4 → X6, X5 → X2, and X2 → X6) when α = 0:05 –
0:06 (structure 6). In structure 6, X1, X3, X4, and X5
are the ancestor nodes, X2 is the intermediate node,
and X6 and X7 are child nodes. Compared with struc-
ture 2, the causal edges X7 → X3 and X7 → X2 are
absent, and X6 → X3 is reversed to form the X3 →
X6 relationship in structure 6. Figure 11 shows the
generated causal structure with five pairs of causal
relationships (X1 → X7, X4 → X7, X4 → X6, X3 →
X6, and X2 → X6) when α = 0:07 – 0:15 (structure
7). In structure 7, X1, X2, X3, and X4 are the ancestor
nodes, X7 and X6 are the child nodes, and there is no
intermediate node. Compared with structure 6, X5
→ X2 is absent from structure 7. When α = 0:16 –
0:17, the algorithm could not find an optimal causal
structure. Figure 12 shows the generated causal struc-
ture when α ≥ 0:18 (structure 8), which merely con-
sists of two causal edges, X1 → X7 and X4 → X7. In
structure 8, there are only the ancestor nodes (X1
and X4) and a child node (X7). Additional changes
did not occur in the causal structure when α was
increased further

Table 4 shows the maximum likelihoods for structures 3–
8. It can be seen that the maximum likelihood increased with
increasing sample size.

The results presented above indicate that a larger sample
size leads to a reduction in the number of erroneous causal
relationships and the discovery of other potential causal rela-
tionships. During the causal discovery process, α must be
incorporated to reduce the number of redundant and errone-
ous edges. When α was increased, the causal structures gen-
erated using the improved algorithm proposed in this study
became increasingly simplified. In particular, when α was
set to 0.05 or 0.06, causal structures with the fewest redun-
dant edges and maximum information retention were
obtained. Therefore, it can be deduced that the optimal
adjustment threshold values for the discovery of causal rela-
tionships among the diabetes risk factors were 0.05 and 0.06.

4. Analysis and Discussion

As shown in Figures 7 and 10, a total of six causal relation-
ships (X5 → X2, X2 → X6, X4 → X6, X3 → X6, X1 → X7, and
X4 → X7), which are discussed in detail below, existed among
the various diabetes risk factors.

(1) X5 → X2, X2 → X6: these causal relationships are well
known among the general public. Insulin is the only
hormone that lowers blood glucose levels in the
human body. If insulin resistance occurs, abnormali-
ties will arise in glucose uptake in the body, which

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X5 = Insulin
X6 = BMI
X7 = Age

X3

X6

X7

X1 X4 X5

X2

Figure 5: Causal structure for the M = 768 dataset (structure 1).
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will lead to increased plasma glucose concentration
and result in a higher likelihood of diabetes onset.
Additionally, X5 → X2 and X2 → X6 can be com-
bined to form the causal relationship X5 → X2 → X6
. In a typical human body with normal insulin secre-
tion, blood glucose metabolism will be at a standard
level, which will lead to the maintenance of normal

BMI. In contrast, in diabetic patients with insulin
resistance, blood glucose cannot be effectively
absorbed and utilised, which leads to decreased body
weight and lower BMI. Therefore, the causal relation-
ship X5 → X2 → X6 also holds true

(2) X4 → X6: the triceps skin fold thickness reflects body
fat content, with a greater thickness indicating a
higher body fat percentage and body weight, which
leads to an increase in BMI and risk of diabetes onset.
When diabetes causes emaciation in patients, triceps
skin fold thickness and body weight are reduced,
causing a decrease in BMI. Therefore, the causal rela-
tionship X4 → X6 still holds true

(3) X3 → X6: when causal discovery was performed in
accordance with a previously reported method [33],

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X5 = Insulin
X6 = BMI
X7 = Age

X3

X6

X7

X1 X4 X5

X2

Figure 6: Causal structure for the M = 2000 dataset (structure 2).

Table 3: Maximum likelihoods of causal structures 1 and 2.

Causal structure Maximum likelihood

1 -8.34

2 -8.17

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X5 = Insulin
X6 = BMI
X7 = Age

X3

X6X7

X1 X4 X5

X2

Figure 7: Causal structure for theM = 768 dataset (α = 0:05 – 0:06)
(structure 3).

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X5 = Insulin
X6 = BMI
X7 = Age

X3

X6X7

X1 X4X2

Figure 8: Causal structure for theM = 768 dataset (α = 0:07 – 0:14)
(structure 4).

X1 = No. of times pregnant
X4 = Triceps skin fold thickness
X6 = BMI
X7 = Age

X6X7

X1 X4

Figure 9: Causal structure for the M = 768 dataset (α = 0:15)
(structure 5).

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X5 = Insulin
X6 = BMI
X7 = Age

X3

X6X7

X1 X4 X5

X2

Figure 10: Causal structure for the M = 2000 dataset
(α = 0:05 – 0:06) (structure 6).

X1 = No. of times pregnant
X2 = Plasma glucose concentration
X3 = Diastolic blood pressure
X4 = Triceps skin fold thickness
X6 = BMI
X7 = Age

X3

X6X7

X1 X4 X2

Figure 11: Causal structure for the M = 2000 dataset
(α = 0:07 – 0:15) (structure 7).

X1 = No. of times pregnant
X4 = Triceps skin fold thickness
X7 = Age

X7

X1 X4

Figure 12: Causal structure for the M = 2000 dataset (α = 0:18)
(structure 8).
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the discovered relationship between factors 3 and 6
was X6 → X3 (as shown in Figures 5 and 6), i.e.,
BMI influenced diastolic blood pressure. As people
with higher body fat contents have higher BMIs and
increased tendencies to develop hypertension, such
a causal relationship is consistent with common
medical knowledge and indicates that BMI is a trigger
for hypertension. However, when causal discovery
was performed using the modified method developed
in this study, the reverse relationship (X3 → X6) was
discovered (as shown in Figures 7 and 10). This find-
ing suggests the possible existence of a certain casual
factor that changed under the influence of BMI and
consequently influenced the risk of diabetes onset.
Notably, certain diabetic patients suffer from con-
comitant hypertension and emaciation. Medical pro-
fessionals generally believe that emaciation is caused
by diabetes, but it may also be jointly influenced by
diabetes and hypertension, resulting in changes in
BMI. Therefore, X3 → X6 may be a little-known rela-
tionship that exists in reality

(4) X1 → X7: this causal relationship indicates that the
number of times pregnant causes changes in age. In
a previous study [35], it was reported that an
increased number of pregnancies was associated with
higher physiological age, i.e., cellular ageing may be
accelerated, which in turn causes a higher probability
of developing certain diseases. Therefore, the causal
mechanism underlying X1 → X7 may be as follows:
an increased number of times pregnant causes accel-
erated ageing of pancreatic β cells, which leads to a
higher tendency to develop insulin resistance and
an increased diabetes risk

(5) X4 → X7: this causal relationship indicates that the
triceps skin fold thickness causes changes in age. As
the triceps skin fold thickness reflects the nutritional
status of an individual, the underlying causal mecha-
nism for X4 → X7 may be as follows: a triceps skin
fold thickness that is less than the standard value
indicates malnutrition, which affects physiological
age and causes pancreatic β cell ageing, thereby caus-
ing insulin resistance and an increased diabetes risk.
An excessively large triceps skin fold thickness indi-
cates obesity, which signifies the presence of an exces-
sive amount of glucose in the body. Consequently,
the pancreatic β cells become overworked for long

periods, which increases the tendency for ageing
and functional damage in the pancreas, resulting in
an increased risk of diabetes

In short, among the causal relationships identified
through the IFCL-based causal discovery method proposed
in this study, X5 → X2 → X6 and X4 → X6 are confirmed
relationships, whereas X3 → X6, X1 → X7, and X4 → X7
require further validation. These results suggest that the
improved algorithm possesses huge potential for the discov-
ery of causal relationships among diabetes risk factors and
may be beneficial for further elucidation of causality among
diabetes risk factors.

5. Conclusion

In the present study, we proposed an IFCL-based diabetes
risk factor causal discovery algorithm that effectively resolves
the issue of excessive redundant and erroneous edges in the
causal structures generated by the FCL-based algorithm.
Our experimental results demonstrate the efficacy of the pro-
posed algorithm and provide a scientific basis for uncovering
causal relationships among various diabetes risk factors. The
next step in our research efforts will be the exploration of
causality among the biochemical markers of diabetes and
physiological indicators of body composition, with the objec-
tive of elucidating the causal relationships between the path-
ological and physiological factors of diabetes and enhancing
diabetes prevention and treatment efforts.
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Table 4: Maximum likelihoods for causal structures 3–8.

Dataset Causal structure Maximum likelihood

M = 768
3 (α = 0:05 – 0:06) -8.18, -8.13

4 (α = 0:07 – 0:14) -8.09, -8.03, -7.97, -7.91, -7.86, -7.79, -7.73, -7.67

5 (α = 0:15) -7.63

M = 2000
6 (α = 0:05 – 0:06) -8.01, -7.96

7 (α = 0:07 – 0:15) -7.92, -7.86, -7.80, -7.74, -7.68, -7.62, -7.56, -7.50, -7.44

8 (α = 0:18) -7.26
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