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Abstract

Background: Recently, the availability of high-resolution microscopy together with the advancements in
the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging
methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume,
size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing
proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the
study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems
is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis
verification. Computer Science can efficiently address this task by providing software that facilitates handling,
analysis, and evaluation of biological data to the benefit of experimenters and modelers.

Results: The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct
spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules
to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user
interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi
concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based
on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either
as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and
can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user
manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE
design and workflow. We demonstrate it’s usefulness using the example of a signaling cascade leading to
formation of a morphological gradient of Fus3 within the cytoplasm of the mating yeast cell Saccharomyces
cerevisiae.

Conclusions: STSE is an efficient and powerful novel platform, designed for computational handling and
evaluation of microscopic images. It allows for an uninterrupted workflow including digitization, representation,
analysis, and mathematical modeling. By providing the means to relate the simulation to the image data it allows
for systematic, image driven model validation or rejection. STSE can be scripted and extended using the Python
language. STSE should be considered rather as an API together with workflow guidelines and a collection of GUI
tools than a stand alone application. The priority of the project is to provide an easy and intuitive way of
extending and customizing software using the Python language.
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Background
With the availability of high-resolution microscopy and
high-throughput technologies in molecular biology the
amount of cellular images in very good resolution quality
increases significantly. Such amount of available data con-
secutively demands for image analysis software adapted to
utilize the full capacity of these imaging advancements.
The state-of-the-art way of presenting, assessing and eval-
uating experimental images qualitatively is being increas-
ingly replaced by computational data evaluation.
Quantification of e.g. light intensities arising from fluores-
cent protein (FP) expression in different cellular compart-
ments can be ascertained in a spatially resolved manner
and enables us to mathematically verify the current under-
standing of biological systems.
Unambiguous and reproducible computational extrac-

tion increases the quality and exchangeability of informa-
tion for subsequent automatic processing steps such as
digitization, representation, analysis, and modeling. A vari-
ety of image processing-, analysis- or modeling-packages
addressing these tasks exist already, either on a commer-
cial basis or as open source software.
Recently, several eminent reviews have been published

which outline the most common methods and tools
addressing biological image processing, analysis and
modeling (see [1-3]). One of the key conclusions is that
these tasks are usually separately addressed. Cell segmen-
tation and property extraction, for example, are well
established and can be realized by dedicated software
such as CellProfiler [4], Cell-ID [5] or generic image pro-
cessing platforms like Labview (National Instruments,
Austin, USA) or Imaris (Bitplane, Zurich, Switzerland). A
widely used and freely available tool is ImageJ [6], which
comprises standard segmentation algorithms as well as
surface or profile plots. Also freely available are addi-
tional packages for R like EBImage [7], which can be
used for the segmentation and analysis steps. When it
comes to spatial modeling and simulation in microbiol-
ogy one can distinguish the following classes of dedicated
simulators i) spatially partitioned ODE systems (e.g. Vir-
tual Cell) ii) spatially partitioned Gillespie systems (e.g.
MesoRD [8], SmartCell [9]) iii) particle-based simulators
(e.g. Smoldyn [10], MCell [11], Meredys [12]). These
techniques differ mostly with respect to the mathematical
framework which changes the level of detail represented
in the system (e.g. spatially partitioned ODEs are giving
the overview of the system and can be used at tissue
scale and large time scale, whereas particle based simula-
tors are able to represent the molecule-scale details, how-
ever time scale needs to be importantly shortened).
All of these tools offer excellent solutions for the spe-

cific problems they were designed to solve. However, it
is still difficult to perform a contiguous and intuitive

workflow, starting with almost raw data images and
resulting in a running mathematical model, that enables
to directly compare the simulation results with biologi-
cal data (as presented in Figure 1).
The STSE platform intends to close the gaps between

various tools or software-packages that are in majority
specifically designed for these separate steps (i.e image
processing/analysis or modeling/simulation). By provid-
ing the workflow guidelines and the access to Python
language, it offers the advantage of stratifying the inter-
action with different data-structures and thus minimizes
the loss of time and information during the manual
export and conversion processes. Therefore, it should be
seen as a set of tools facilitating the intuitive workflow
between the image analysis tools and simulators.
Additionally, in its current implementation, it provides

examples of how to perform such a transition from seg-
menting tools to simulation engines implemented
internally in Python (spatially partitioned ODEs). For
these purposes STSE comprises modules for digitizing
and representing microscopy data, enables data analysis
as well as manipulation, and can be used for mathemati-
cal modeling and simulation of spatial distributions of
chemical species. It is a powerful, multifaceted tool for
interdisciplinary work.

Implementation
The tools are written in Python and have a modular
design which allows the modeler to extend their func-
tionality according to custom needs. The default STSE
workflow can be summarized as follows (see: Figure 1):

1. Preprocessing of microscopic images for the
studied object.
2. Definition of a discrete representation of the
images.
3. Automatic integration of the information from
images into the discrete representation.
4. Analyzing the digitized data.
5. Formulating a model: defining interactions
between regions of interest and molecules of
interest.
6. Running a model: previously digitized images
are used as initial conditions for the evaluation of
simulation results.

A detailed use case as well as comparative studies with
some of the above mentioned state-of-the-art tools is
provided in the additional file 1. Additionally, the web-
page of the project contains examples, video tutorials,
access to a discussion group and other helpful informa-
tion sources. In the following, we give a concise overview
of the fundamental methods used in STSE:
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Spatial Segmentation and Digitization
The process of digitization generates a data structure,
allowing for efficient analysis, representation and model-
ing. The classical approach is to decompose the micro-
scopy image into physiologically distinguishable
compartments (e.g. nucleus, cytoplasm, etc.) which is
called image segmentation [13,14]. Usually, image seg-
mentation results in a data structure linking the

compartments with pixels. STSE differs from this
approach by introducing an abstract, intermediate layer
composed of so-called subcompartments. To generate
this layer, each compartment is divided into subcompart-
ments which have the geometry of polygons and are
organized in such a way that they fill the entire compart-
ment and do not overlap with each other. The default
geometry is automatically composed of equilateral

Figure 1 Flow Chart. Sketch of the structure and the modules combined in STSE that allow for an uninterrupted workflow. Starting with
microscopy images (raw data) the framework allows for digitize, represent, analyze and mathematically model spatial distributions of species.
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hexagons. The purpose of introducing this abstract layer
is to allow for adjusting the digitization precision
separately for different compartments, which is useful
when it comes to analysis and modeling. To edit the geo-
metry of subcompartments a Voronoi 2D tessellation is
used [15]. With the help of the graphical user interface
(GUI) editor, the user may move subcompartment cen-
ters (corresponding to the vertices in the Voronoi graph)
for fine-tuning. This information implicitly specifies the
geometry of each subcompartment. Since these subcom-
partments share edges, the representation resembles a
polygonal mesh (PM).
Each subcompartment has an individual geometry as

well as other user-customizable properties such as cellu-
lar compartment affiliation, concentrations of specific
substances, etc. The GUI allows for user-friendly
inspecting and editing of these properties. Additionally,
due to the software implementation design, it is possible
to extend the GUI editor by adding custom actions as
well as to script the GUI with Python. One of the main
goals of STSE is to provide the possibility of framework
extension and customization to the users.
With STSE it is possible to acquire spatial luminosity

information from microscopic images, which can
correspond e.g. to the inhomogeneous distribution of
tagged molecules within the cell. This process is per-
formed on indexed color images (e.g. FP microscopic
images). This is an important feature, since it allows
for the comparison of simulation results with experi-
mental data.

Representation and Analysis
Image representation is performed implicitly by the
conversion of the Voronoi-based PM to an internal
STSE data structure. This design involves less con-
straints and thus allows for more latitude in defining
polygonal geometries (e.g. including non-convex ones)
as well as physiological information. It is realized by
storing the polygon corner coordinates explicitly in the
data structure instead of computing them using the
Voronoi algorithm. The datastructure may be easily
modified or inspected via Python. This allows for simu-
lating structures changing in time, which has been, for
instance, successfully used in the dynamic modeling of
meristem growth [16]. The analysis is effected via the
STSE-GUI as well as with Python scripts and enables a
comprehensive and differentiated overview of topologi-
cal, geometrical and physiological information. The rou-
tines provided by STSE allow for visualizing and
inspecting compartment properties and can be used for
computing different properties and for further, compu-
tational analysis of data from images. All structural
information can be exported and saved for persistence
and dissemination.

Modeling
The digitized data can be used directly to perform spatial
modeling (e.g. as initial conditions or evaluation). STSE
does not restrict the user with the simulation framework.
Instead, we suggest a workflow based on the so-called
“cell-centered” finite volume method [17]. According to
this scheme, a mechanistic model of a studied process
needs to be formalized using a set of ordinary differential
equations (ODEs) describing the interplay of different
actors (e.g. chemical molecules) and different cellular
compartments with specified kinetic rules on diffusion,
chemical reactions, transport, etc. In this case a SciPy
library [18] may be used to solve the system within the
STSE framework.
Due to its design STSE is fully extendable via Python.

The simulation engine can be freely connected with
multitude of solutions limited only by the accessibility
of these engines via Python.

Results
In the following, we demonstrate how to use STSE to
analyze and simulate biological systems. A typical STSE
workflow includes the modules for digitization, repre-
sentation, analysis and modeling is presented using the
running example of a mitogen-activated protein kinase
gradient formation (the double-phosphorylated Fus3
(Fus3PP) in a mating yeast cell [19].
Fus3 signaling is part of the yeast mating pheromone

pathways: upon stimulation with the pheromone a-factor,
an intracellular signaling cascade becomes activated,
which leads to the double phosphorylation of Fus3. The
Fus3PP gets released at the shmoo tip and can diffuse
within the cell, which results in an observable Fus3PP gra-
dient. When reaching the nucleus, Fus3PP is actively trans-
ported across the nuclear membrane and regulates
transcription factors that modulate mating-specific gene
expression. We would like to stress that the focus is set
rather on the software specifications and the application
scenario than on the biological results. To simplify the
analysis and to facilitate the usage of examples in a confir-
matory way, we work on test data, inspired by the experi-
ments and explanations presented by Maeder et al. [19].
An extended workflow comprising amongst others the

following examples is given and discussed in the addi-
tional file 1. Additionally, video tutorials covering this
subject and all Python scripts we use to produce the
here presented images and results are provided on the
project homepage.
In a first step we demonstrate the analysis and charac-

terization of the Fus3PP gradient. For this purpose we:

• Quantify the ratio of the average cytoplasm/
nucleus expression of Fus3PP based on fluorescence
signal intensity acquired from microscopy images,
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• Show gradient curves for Fus3PP along the x-axis
of the cell data image and around the nucleus,
• Simulate the process of Fus3PP diffusion in the
cytoplasm to determine the underlying conditions
that lead to the qualitative values captured in the
image.

We evaluate the results of the simulations and discuss
i) whether the appearance of a Fus3PP gradient through-
out the cell can be explained by simple diffusion and ii)
how to define plausible conditions and model para-
meters allowing to reproduce the experimental
observations.

Digitization
A major issue in this context is the task to adapted the
polygonal mesh. If, for instance the focus is on a parti-
cular protein like the Fus3PP in this case, the interesting
point is the protein gradient within the cytoplasm but
not outside the cell. Thus it is necessary and sufficient
to adapt the mesh size according to the area of interest.
Here, it is requested to keep a high precision within the
cytoplasmic compartment (but not within other com-
partments) in order to capture and depict the gradient
correctly. The analysis accounts the hypothesis that the
Fus3PP distribution is neither outside the cell nor in the
nucleus (motivation for this is discussed in the addi-
tional file 1). Therefore, we use varying “subcompart-
ment densities” in these compartments as presented in
Figure 2. The default geometry is automatically com-
posed of equilateral hexagons (see Figure 2a and 2b).
The geometry of the subcompartments can afterward be
fine-tuned using the GUI editor to match different ana-
lysis and modeling requirements (see Figure 2c).
Another task related to the digitization of image data is
the acquisition of subcompartment types (i.e. determin-
ing for each abstract subcompartment its affiliation to a

cellular compartment). This task can be performed via
the GUI or a Python script. Although a subcompartment
type can be set manually, in both cases the recommended
way is to use an automatic protocol based on binary
masks. These binary masks are based on original micro-
scopy images and can be prepared with 3rd party seg-
mentation algorithms (e.g. implemented in ImageJ). Each
subcompartment is associated with only one compart-
ment type. When a conflict occures (e.g. in the case of
overlapping binary masks) the user can influence sub-
compartment types by changing the order of application
of the binary masks or by defining subcompartment
types manually. Here, we use binary masks for localiza-
tion of the following cell types (see Figure 3): the cyto-
plasm (3a), the nucleus (3b), the cell membrane (3c), the
nuclear membrane (3d) and the shmoo tip (3e). These
mask files are used to acquire the subcompartment types
either by GUI (Figure 4) or a Python script. Both meth-
ods are covered in detail in the additional file 1.

Figure 2 Subcompartment Densities. Different “subcompartment density” variants (a) rough regular digitization (b) more refined, regular
digitization (c) refined, irregular representation edited with the STSE GUI.

Figure 3 Binary Masks. Binary masks created from raw data images.
The images present the binary masks for (a) the cytoplasm, (b) the
nucleus, (c) the cell membrane, (d) the nuclear membrane and (e) the
shmoo tip (a single pixel is sufficient to mark the shmoo tip).
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The automatic acquisition of the signal from the
microscopy image is another demanding task and pro-
vides the basis for the subsequent analysis and model-
ing steps. For this purpose we use indexed color
images (e.g. standard light/confocal microscopy
images) corresponding to molecular concentrations of
the molecules of interest. In the running example we

use test data images inspired by the experiments
described in Maeder et al. [19], in which the intracellu-
lar localization of Fus3PP has been reported by
fluorescence lifetime imaging microscopy (FLIM) (see
Figure 5). In this particular case, since we are inter-
ested only in one chemical species (Fus3PP), for each
time step we provide only one image (corresponding

Figure 4 Subcompartment Type Assignment. Subcompartment types assignment (a) mesh showing the geometry of subcompartments (b)
types of subcompartments acquired from the binary masks. Different sphere colors depict different compartment identities: white - outside,
black - the cell membrane, blue - the nucleus, red - the cytoplasm, pink - the nuclear membrane, yellow - the shmoo tip.

Figure 5 Signal Quantification. Signal quantification (a) indexed color image of Fus3PP localization (b) result of Fus3PP signal quantification
based on the indexed color image. Small spheres depict the compartment types.
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to a specific channel in fluorescent microscopy). In the
more general case, a number of images required for
each acquisition time step ideally should be equal to
the number of species of interests. To summarize the
previous steps: The necessary inputs for the digitiza-
tion procedure are i) the binary masks, and ii), the
indexed color images. The output of the digitization
step is a feasible amount of abstract sub-compartments
that cover the microscopic image. Each subcompart-
ment is allocated with a specific compartment type
and the average intensity of the protein(s) of interest
acquired from input data.

Representation and analysis
The analysis in STSE is realized via Python scripts. Our
running example demonstrates common tasks performed
with STSE such as inspecting geometrical, physiological or
topological properties of the subcompartments/

compartments and removing or resizing the subcompart-
ments. The following information on the Fus3PP gradient
can be extracted (see Figure 6):

• The distribution of Fus3PP in the cytoplasm along
the x-axis in a central part of the analyzed cell is
exponential (Figure 6c),
• The distribution of Fus3PP around the nucleus
reaches its maximum in the point closest to the
shmoo tip (Figure 6d),
• The average Fus3PP signal in the nucleus is 64.0 (a.
u.), which is ≈ 25% of the maximal signal measured
in the image,
• The average Fus3PP signal in the cytoplasm is 52.07
(a.u.) (which is ≈ 20% of the maximal signal mea-
sured in the image),
• The ratio of averaged Fus3PP signal in the cyto-
plasm to nucleus is equal to 0.81.

Figure 6 Fus3 Profile. Fus3PP profiles along the x-axis and around the nucleus. (a) subcompartment locations used to distinguish the curves in
(c); (b) subcompartment locations and ψphi definition used in (d); (c) Fus3PP profiles along the x-axis; (d) Fus3PP profiles around the nucleus.
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Comparative values computed with ImageJ showed an
average Fus3PP signal in the nucleus of 64.0 (a.u.) and
an average Fus3PP signal in the cytoplasm of 51.27 (a.u.),
resulting in a ratio of averaged Fus3PP signal in the cyto-
plasm to nucleus of 0.801. Which means the relative
error due to approximation (i.e. downsampling because
of using averaged values from PM instead of actual pixel
values) in our example is (0.81 - 0.801)/0.801 ≈ 1%.

Modeling
The previously acquired, quantified and structured data
can be used to create a dynamic model of the Fus3PP

diffusion. According to the STSE dataflow paradigm (see
Figure 1), the mechanistic model of the studied process
needs to be formalized. By focusing on the properties of
the Fus3PP gradient we can exclude processes such as i)
mechanisms of the stimulation of Fus3 and ii) different
mechanisms allowing Fus3PP to enter the nucleus. The
kinetic model of Fus3PP is now defined as follows:

• Fus3PP appears in the shmoo tip compartment,
• Fus3PP diffuses freely in the cytoplasm
compartment,
• Fus3PP gets dephosphorylated during the diffusion
in the cytoplasm,
• Fus3PP is unable to cross the cellular/nuclear
membrane compartments.

By applying this kinetic model it is next possible to
verify whether or not the qualitative properties of the
Fus3PP gradient observed in the digitized images can be
reproduced. As explained in the Background section,
STSE functionality can be modified and extended by
connecting various simulation engines via Python. Here,
for the purpose of simplification, we use a dedicated,
explicit simulation, written directly in Python. For this
purpose the model is translated into a system of differ-
ential equations (for details please see the additional file
1). An equation describing the changes of Fus3PP con-
centration is attributed to each subcompartment.

∂FUS3PP
i

∂t
= −

∑
n∈Ni

Si→n

Vi
γFUS3PP (FUS3PP

i − FUS3PP
n)i→n[n ∈ A, B]+

+αFUS3PP[i ∈ B] − βFUS3PP FUS3PP
i

where:

• FUS3PPi is the concentration of Fus3PP in the sub-
compartment i,
• g FUS3

PP is the diffusion constant for Fus3PP,
• aFUS3

PP is the rate of Fus3PP release in the shmoo
tip,
• bFUS3

PP is the rate constant of Fus3PP

dephosphorylation,

• Si®n is the area of contact surface between
subcompartments i and n,
• Vi is the volume of subcompartment i,
• i Î A /i Î B if i belongs to cytoplasm/shmoo tip
compartment,
• Ni is a set of neighbour subcompartments for
subcompartment i,

• [ψ] =
{

1 if ψ is True
0 otherwise

, (e.g. [n Î A ∪ B] evaluates to

1 when n is element of A or B) [20,21].

To complete the model it is required to define the rate
of Fus3PP release in the shmoo tip (aFUS3

PP), the rate
constant of Fus3PP dephosphorylation bFUS3

PP, the diffu-
sion constant gFUS3PP and the initial conditions. All values
can be estimated from the literature or chosen arbitrarily.
Additionally, initial conditions can be acquired from the
digitization step of the image data. An exemplary imple-
mentation of the Fus3PP model can be downloaded from
the project homepage. An animation showing the kinetics
of Fus3PP distribution obtained with the implemented
model is available as additional file 2.
Simulations in STSE can also be utilized to estimate

the values of Fus3PP model parameters based on the
image data. As an example, the steady state concentra-
tions for two different simulations are presented in
Figure 7 (for details see additional file 1).
A second animation (additional file 3) shows the

kinetics of Fus3PP evolution. This simulation differs by
changing the diffusion constant for Fus3PP from 50 to
100. For further illustration, Figure 8 presents the
contrast between different initial parameter sets. This
difference can be used to discriminate between different
parameter sets.

Discussion
We present STSE, a platform that facilitates execution of
spatial simulations based on microscopy images. The
application of the STSE is demonstrated on the example
of the yeast pheromone MAP kinase cascade, focusing in
particular on the distribution of the double-phosphory-
lated Fus3.
We demonstrate how to quantify the ratio of the aver-

age cytoplasm/nucleus expression of Fus3PP based on
fluorescence signal intensity acquired from microscopy
images, create gradient curves for Fus3PP along the x-
axis of the cell and around the nucleus, and simulate
the process of Fus3PP diffusion in the cytoplasm to
determine the underlying mechanism.
The result of the simulations allow us to confirm that

a set of hypothesis used in the model allows us to repro-
duce the experimental observations. We demonstrate
also how to use the STSE to discriminate between
model parameter sets.
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The running example model yields the highest error in
the nuclear compartment. This is consistent with our
expectations: the test data set images suggest that
Fus3PP is present in the nuclear compartment (Figure
4), but in the specification of the model we skipped the
mechanism of Fus3PP transport via membranes, which
results in the Fus3PP concentration in the nuclear

compartment being equal to 0. To correct this property,
the model should be extended by an assumption of
Fus3PP transport via the nuclear membrane.
In the additional file 1 STSE modules are also compared

with a selection of other available software tools which
allow to perform each of the workflow substeps separately
i.e. digitization, representation, analysis or modeling.

Figure 7 Steady State Distribution. Steady state distributions of Fus3PP for two different parameter sets (aFus3, bFus3, gFus3): (a) (0.1, 0.1, 100), (b)
(0.1, 0.1, 50). We observe that the gradients have different slopes, which is due to the difference in the diffusion constant gFus3. To visualize
Fus3PP concentrations, a colormap is used where blue depicts low values and red depicts high values.

Figure 8 Difference Concentration. Difference of Fus3PP concentration between F̄(0.01,0.001,50) and F̄(which approximates the error).
(a) shows an E =

∣∣F̄(0.01,0.001,50) − F̄
∣∣ (the overall error did not exceed 20% percent) (b) shows the E/max(E) (when 100% of error was

observed in the center; it is important to note, that the model did not allow the Fus3PP to enter the nucleus compartment). To visualize E, a
colormap is used where blue depicts low values and red high ones.
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Results from STSE are confronted with results
achieved by the use of the software ImageJ. Both tools
allow for computing the ratio between the Fus3PP signal
in the cytoplasm and the nucleus. Although STSE uses
the approximation with subcompartments (which are
very usefull when it comes to the simulation task) the
approximation error in this example is below 1%. Like-
wise, the exponential decrease of Fus3PP along the cell
center as well as the increase in the nucleus can be
captured reasonably well with both tools. Nevertheless,
if one is interested in the distribution of Fus3PP over the
whole cell, there is no constitutive way to do so in
ImageJ (however plugins allow to perform similar
actions). Furthermore, in STSE it is possible to plot var-
ious profiles for any selected subcompartments.
In ImageJ basic analysis is performed via the GUI, but

an extensive analysis again requires the usage of Macros,
Plugins or Scripts (via Java-like, Java or JavaScript).
STSE requires using Python in both basic and extensive
analysis. In the latter case the automatization of tasks
via Python allows for faster implementation.
Binary masks can be used for automatization in STSE.

The choice of the segmentation algorithm to generate
those binary masks depends highly on the particular
problem and there already exist a multitude of advanced
software packages dedicated to this task. Therefore in
the current version of the STSE we decided to use
already segmented images as the starting point of the
proposed workflow and leave the choice of the optimal
segmentation method to the user.
STSE conceptually differs from selection-based tools

by operating on abstract subcompartments rather than
on pixels directly. This approach results in the simplifi-
cation of further processing and it allows for inhomo-
genous precision in different cellular compartments.
The precision is regulated in STSE by decreasing the

subcompartment size. However, the increase in preci-
sion induces slower execution of the modeling routines.
It is the modeler’s choice to prepare the grid in such a
way that both, the precision and speed of modeling rou-
tines is optimal. Also it should be kept in mind that, by
using larger subcompartments, the assumption of homo-
geneously distributed molecules within one subcompart-
ment might be disregarded.
In the additional file 1 we also compare STSE with a

selected simulation engine, MesoRD [8], and discuss the
main differences, pros and cons. It is important to
understand that the scopes of these softwares are differ-
ent: MesoRD is a mesoscopic, stochastic simulation
engine, whereas STSE covers much broader area, but it
does not provide a sophisticated simulation engine as
such. Our future goal is to provide integration of STSE
with a selection of existing simulation software. This
would allow users to use state-of-the-art solutions for

simulation, keeping the ease of validating the models
with microscopy data, as demonstrated in our example.

Conclusion
STSE is a software platform, designed for constructing
microscopy image-based simulations. It allows for an
uninterrupted workflow including digitization, represen-
tation, analysis, and mathematical modeling. The main
benefit of STSE is that it acts as a “glue” between differ-
ent steps of the workflow, allowing the user to tailor the
platform to their specific needs. Due to its open, modu-
lar architecture and integration of Python language, the
software allows for full automatization (it applies also to
GUI) via scripts, which is usually not possible or very
limited with other stand alone applications.
Further versions of the STSE should provide integration

of selected 3rd party simulators and simulation paradigms
(e.g. stochastic, agent-based). It would be also crucial to
support import and export of SBML (Systems Biology
Markup Language) files. For the latter, a prior establish-
ment of a standard for spatial modeling would be required.
We strongly encourage the community to provide exam-
ples of various microscopy based simulation workflows,
which we would be glad to integrate into STSE framework.

Availability and requirements
Project name: STSE
Project home page: http://stse-software.org
Operating system(s): Linux (availability on other

systems depends on 3rd party libraries)
Programming language: Python
Other requirements: Openalea http://openalea.gforge.

inria.fr/, Mayavi2 http://code.enthought.com/projects/
mayavi/, Qhull http:// http://www.qhull.org/, NetworkX
http://networkx.lanl.gov/. It is also possible to use the
software directly from a live DVD Linux distribution,
SB.OS http://www.sbos.eu/, which comes with a com-
prehensive list of other systems biology software.
License: GNU GPL

Additional material

Additional file 1: Detailed description of a use case, including all
individual steps of the STSE workflow with examples as well as
comparative studies with state-of-the-art tools.

Additional file 2: Animation showing the dynamics of the
exemplary system described in the additional file 1.

Additional file 3: Animation showing the dynamics of the
exemplary system described in the additional file 1.
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