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Abstract: Tetrodotoxin (TTX) is widely distributed in marine taxa, however in terrestrial 
taxa it is limited to a single class of vertebrates (Amphibia). Tetrodotoxin present in the 
skin and eggs of TTX-bearing amphibians primarily serves as an antipredator defense and 
these taxa have provided excellent models for the study of the evolution and chemical 
ecology of TTX toxicity. The origin of TTX present in terrestrial vertebrates is 
controversial. In marine organisms the accepted hypothesis is that the TTX present in 
metazoans results from either dietary uptake of bacterially produced TTX or symbiosis 
with TTX producing bacteria, but this hypothesis may not be applicable to TTX-bearing 
amphibians. Here I review the taxonomic distribution and evolutionary ecology of TTX in 
amphibians with some attention to the origin of TTX present in these taxa. 
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1. Introduction 

One of the most intriguing natural toxins isolated and described in the twentieth century is the 
neurotoxin tetrodotoxin (TTX), a non-proteinaceous, low molecular weight toxin (M.W. = 319.3) with 
extremely high potency (Human LD50 = 10.2 μg/kg). Interest in TTX results from a number of 
striking circumstances, most significant of these is the vast array of taxa that are now known to possess 
TTX [1–3]. The presence of TTX in such a wide and disparate array of taxa has been taken as evidence 
that the ultimate origin of TTX in metazoans must be exogenous and there is good evidence that 
uptake of bacterially produced TTX is an important component of TTX toxicity in TTX-bearing 
marine metazoans [2–6]. However, this model has been questioned in regards to the TTX present in 
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terrestrial taxa [1,7–10]. Arguments against bacterially sourced TTX in terrestrial metazoans derive, in 
part, from two major lines of evidence: (1) unlike marine species in which TTX is found in a wide 
array of taxonomic groups, TTX in terrestrial metazoans appears to be limited to a single class of 
vertebrates (Amphibia) with limited distribution within this class, and (2) the presence of multiple 
analogs of TTX (or saxitoxin (STX)) that are present only within a single species (or genus) such as 
chiriquitoxin (CHTX) and zetekitoxin (ZTX) in Atelopus or those (e.g., 6-epiTTX) that are common in 
the TTX profiles of some TTX-bearing amphibians, but are absent, or a very minor components in the 
TTX profiles of marine taxa or TTX producing bacteria [11–20], see also [1]. This review will focus 
on the taxonomic distribution and evolutionary ecology of TTX in amphibians as well as a brief 
discussion of the structure and pharmacology of amphibian specific TTX analogs. 

2. Background 

Tetrodotoxin takes its name from the Teleost fish order Tetrodontiformes from which the toxin was 
first isolated and described. Tetrodontid fish, which include puffer fish or fugu, have long been known 
to be toxic [21]. In fact, there is evidence that early Egyptians (5th dynasty, ca 2500 BC) were aware of 
the toxicity associated with these fish [21]. Chinese herbal medical writings from the first or second 
century BC also describe pharmacological effects associated with the flesh and eggs of these fish [22]. 
Although little formal research was done on TTX until the late 1800's, European natural historians 
were aware of these toxic fish through historical texts (e.g., Kaempfer's History of Japan, from [22]). 
The earliest example of formal research into the pharmacology of TTX appears to have been Charles 
Remy's work in which he described the symptoms of TTX poisoning and documented the high 
concentrations of TTX present in the gonads of puffers (Remy, 1883, from [21]). Later work in the 19th 
century included a comprehensive pharmacology of TTX by Takahashi in 1889, from [21]. 

Tetrodotoxin was first formally named in 1909 by Tahara, from [23], who prepared a crude extract 
from puffer fish. Pure, crystalline TTX was not isolated until 1950 when A. Yokoo isolated TTX from 
the ovaries of Fugu rubripes and described it as spheroidine after a genus of puffer fish [23]. The 
nomenclature of TTX was solidified in 1952 when K. Tsuda and M. Kawamura isolated an identical 
toxin using chromatographic methods and named it tetrodotoxin (from [23]). 

The complete molecular structure of TTX was first described in 1964 at the Natural Products 
Symposium of the International Union of Pure and Applied Chemistry by a total of 4 different lab 
groups including K. Tsuda, T. Goto, R. B. Woodward, and H. S. Mosher [21]. It is important to note 
that while three of these groups had been working on toxin isolated from puffer fish, the Mosher group 
was reporting on compound they named tarichatoxin isolated from eggs of the newt Taricha torosa 
[24–26]. Since the 1960’s the chemistry, pharmacology, and synthesis of TTX has been the subject of 
a voluminous body of work, see [27], as well as [1,3,21,23,28–31] for partial reviews. 

The pharmacology of TTX is well studied and will not be detailed here, see [27] for recent review. 
The gross pharmacological effects of TTX (i.e., muscle paralysis and/or death) have long been 
recognized [22,32–35], also see [21], but it was not until the 1950’s that a more detailed understanding 
of the pharmacological properties of TTX began to emerge. Tetrodotoxin was shown to block sodium 
currents in excitable membranes (e.g., nerve and muscle tissue) [36–38]. It is now understood that 
TTX binds and blocks voltage-gated sodium (Na+) channels with remarkably high specificity thereby 
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prevented in the influx of Na+. These ion channels are, in part, responsible for the initiation and 
propagation of action potentials in most metazoans [28,36,39–41]. The current model of the interaction 
between TTX and voltage-gated Na+ channels is that the positively charged amino end of TTX forms 
complex electrostatic bonds with two charged rings of amino-acid residues in the outer pore of the 
sodium channel (the selectively filter) [29,30,42]. The remainder of the TTX molecule then blocks the 
outer pore preventing the influx of Na+ ions and the associated currents required for membrane 
depolarization and action potential initiation. 

3. TTX and TTX Analogs in Amphibians 

Tetrodotoxin is a guanidium ion with a complex oxygenated cyclohexane framework with both 
guanidine and ortho-acid functional groups (Figure 1) [27,43,44]. Numerous natural, semi-synthetic, 
and synthetic analogs of TTX have been reported, reviewed in [15]. A detailed review of these TTX 
analogs is beyond the scope of this review, but these analogs can be broadly grouped as either 
hemilactal, or lactone variants [15,44]. Amphibians have been an especially plentiful source of TTX 
analogs [11,12,14,16,19,45–47]. The hemilactal forms of TTX are the more common naturally 
occurring analogs (Figure 1). Many of the commonly seen analogs (e.g., 4-epiTTX and anhyrdoTTX) 
are likely conversion or equilibrium products of TTX and are commonly seen in all TTX-bearing taxa 
[44]. As such they are of interest to biochemists and may shed light on the synthesis of TTX but may 
not be informative in regards to possible differences in the TTX toxicity of marine versus terrestrial 
taxa. However, other analogs (e.g., CHTX, Figure 1) appear to be present only in amphibians and 
restricted to one or two closely related species (e.g., CHTX and ZTX are found only in the toad genus 
Atelopus) [16,19,46,48]. These analogs are extremely potent and have toxicities equivalent or greater 
than TTX itself [11,14,47,49]. Understanding their distribution and origin are critically important in 
the exploration of TTX in Amphibians. The unique structure of these analogs does not inherently 
support an endogenous origin of TTX in amphibians. Multiple alkaloid toxins unique to species or 
genera of dendrobatid frogs are now known to come from precursors present in arthropod prey of these 
frogs [50]. It is possible that the presence of CHTX and ZTX in Atelopus results from similar 
processes but there is little evidence that supports this hypothesis (but see, [19] for recent work). 

Other analogs present in amphibians are not as potent as TTX (e.g., 6-epiTTX, Figure 1), but are of 
interest because they do not appear to be cross convertible with TTX and appear to form as a result of 
stereo-specific reactions [12, 44]. One of these analogs (6-epiTTX) was first described in the newt 
genus Cynops [12]. This analog can represent a significant portion of the total TTX present in TTX-
bearing salamanders but appears to be relatively rare in marine taxa [12,13,17,18,51–53]. In 
populations of Taricha the relative levels of TTX to 6-epiTTX are invariant within a population, but 
display significant variation among population [54]. Similar patterns have also been documented in 
populations of Cynops pyrrhogaster in Japan [55]. In Taricha this variation in toxin profiles can occur 
over very short distances (<20 km) and among populations that occupy the same watershed as well as 
similar habitats (unpublished data). Spatial variation in analog profiles has been seen as an additional 
argument in favor on an exogenous origin for TTX in metazoans [3], but can also be seen to favor an 
endogenous origin if seen in the context of generic variation associated with the genes that comprise 
the biosynthetic pathway of TTX amphibians versus marine bacteria. 
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Figure 1. The structure of TTX as well as some TTX analogs associated with amphibians 
(from Yostu-Yamashita 2001) [15]. 

 
 R1 R2 R3 R4 R5 

TTX H OH OH CH2OH OH 
4-epiTTX OH H OH CH2OH OH 
6-epiTTX H OH CH2OH OH OH 
11-deoxyTTX H OH OH CH3 OH 
CHTX H OH OH CH(OH)CH(NH3+)COO- OH 

4. Taxonomic Distribution of TTX and TTX Analogs in Amphibians 

Although TTX is broadly distributed across taxonomic classes in aquatic species (reviewed in [3]), 
in terrestrial taxa TTX appears to be limited to two orders (Anura, and Caudata) of a single class 
(Amphibia) of vertebrates [1]. Tetrodotoxin (or TTX analogs) have been identified in a total of  
28 species representing 10 genera and six (or five, see below) families (Anura: Bufonidae, 
Rhacophoridae, Brachycephalidae, Dendrobatidae; Caudata: Ambystomatidae, Salamandridae)  
(Table 1), but appear to be absent in a total of 38 examined species (Table 2), reviewed in [1]. 

The earliest confirmation of TTX in amphibians was in eggs of the California Newt Taricha torosa 
(Order: Caudata, Family: Salamandridae) [24–26]. However, the presence of a neurotoxin in skin and 
flesh of this species that had functional similarities to TTX had been known since the 1930's  
[33–35,56,57]. The discovery of TTX, the TTX analog CHTX and the saxitoxin analog ZTX in the 
toad genus Atelopus (Order: Anura, Family: Bufonidae) was the first evidence of TTX in a non-
salamandrid [46], but see also [58] for earlier work. 
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Table 1. Distribution and levels of TTX and TTX analogs in amphibians. 

Order Family, Species Primary 

Toxin 

Estimated amount of 

TTX (or equivalents) 

per individual (ug) 

Additional Analogs References 

Caudata Ambystomatidae     

 Ambystoma tigrinum TTX 12.6–17.6 6-epiTTX, 11-deoxyTTX [13] 

 Salamandridae     

 Cynops ensicauda TTX 9.6–1540 6-epiTTX, 11-deoxyTTX [12,13,26,59] 

 Cynops pyrrhogaster TTX 8–616 6-epiTTX, 11-deoxyTTX [13,26,55,59–61] 

 Notophthalmus 

viridescens 

TTX 9.6–220 6-epiTTX, 11-deoxyTTX [17,18,26,51,59,60,62] 

 Paramesotriton 

hongkongensis 

TTX 8–11  [13,60] 

 Taricha granulosa TTX <1–14,000 6-epiTTX, 11-deoxyTTX [8,9,13,24–26,45,54,59,60,63–67] 

 Taricha rivularis TTX 96–550  [56,59,60,68] 

 Taricha torosa TTX <1–3000 6-epiTTX [59,60,66,67] 

 Triturus alpestris TTX 0–41 6-epiTTX [13,18,59] 

 Triturus cristatus TTX 0–9 6-epiTTX [18,59] 

 Triturus helveticus TTX 0–8 6-epiTTX [18] 

 Triturus marmoratus TTX 0.16–0.66  [26,59] 

 Triturus vulgaris TTX 0–8 6-epiTTX, 11-deoxyTTX [13,18,59] 

Anura Brachycephalidae     

 Brachycephalus 

ephippium 

TTX <1–22.4 6-epiTTX, 11-deoxyTTX [20,52,53,69] 

 Brachycephalus pernix TTX 5  [53] 

 Dendrobatidae     

 Colostethus inquinalis TTX 0.1–1.4  [70] 

 Bufonidae     

 Atelopus chiriquiensis CHTX 33 (TTX), 77 (CHTX) TTX [14,19,46,47,71] 

 Atelopus glyphus CHTX 34–79  [19] 

 Atelopus ignescens TTX <1.0–1.5  [70] 

 Atelopus limosus CHTX 8–19  [19] 

 Atelopus oxyrhynchus TTX 32–198  [48,72] 

 Atelopus peruensis TTX 3.2–4.4  [73] 

 Atelopus spumarius TTX 1.6–3.5  [70] 

 Atelopus spurelli TTX <1–1.1  [70] 

 Atelopus subornatus TTX 3.2–17.6  [73] 

 Atelopus varius TTX 16–26  [19,46,70,74] 

 Atelopus zeteki ZTX <1–264  [19,46,58,70,75] 

 Rhacophoridae     

 Polypedates sp.  TTX 4.8–198  [76] 
a Estimates of per individual TTX in μg are based, in part, on conversion from mouse units (MU) taken from Daly 2004 [1]. A mouse 

unit corresponds to 0.16–0.22 μg of TTX. CHTX and ZTX are based on TTX equivalents. b Only the presence of 6-epiTTX and  

11-deoxyTTX are identified here for additional congeners see Daly 2004 [1]. 
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Since Daly's review [1], TTX has been identified (or confirmed) in two additional species of 
Brachycephalus (B. ephippium, and B. pernix [53]), four species of the European newt genus Triturus 
(Tr. vulgaris, Tr. alpestris, Tr. cristatus, and Tr. helveticus, [18]), three species of Atelopus (A. varius, 
A. chiriquiensis, and A. zeteki, [19]) (Table 1). Recent work has also confirmed the presence of  
6-epiTTX and/or 11-oxoTTX in Triturus [18] and Brachycephalus [53] as well as the presence of 
CHTX in an Atelopid species other than A. chiriquiensis (e.g., A. limosus and A. glyphus [19])  
(Table 1).  

The identification of TTX in two families of Caudata is somewhat problematic. Although TTX has 
been identified in both the Salamandridae and Ambystomatidae (Table 1), I would argue that in 
Caudates, TTX is likely limited to a subset of related genera (Taricha, Notophthalmus, Triturus, 
Cynops, and Paramesotriton) in the family Salamandridae (see also [1]) and that reports of the 
presence of TTX in the Ambystomatidae are likely erroneous. With the exception of two reports (both 
apparently based on results from the same specimen) of TTX in Ambystoma tigrinum [12,13], there is 
no evidence of the presence of TTX in a non-salamandrid Caudate (Table 1, Table 2). Earlier 
investigations specifically examined A. tigrinum for the presence of TTX and did not detect any 
evidence of TTX of a TTX-like toxin [59] nor did an additional examination of a single Ambystoma 
tigrinum using HPLC-FLD by this author (unpublished data). More significantly, species of 
Ambystoma are highly sensitive to TTX [26,33,57,63], yet other TTX-bearing salamanders (as well as 
other TTX-bearing vertebrates) are highly resistant to TTX [22,25,26,32,60,63,77,78]. Given that the 
report of TTX in this species is based on a single animal with questionable provenance [12], a 
reexamination of the presence of TTX in Ambystoma seems to be in order.  

Table 2. Species of Amphibians that do not appear to possess TTX. 

Order Family, Species Reference 
Caudata Ambystomatidae  
 Ambystoma tigrinum [59] 
 Amphiumadae  
 Amphiuma means [59] 
 Cryptobranchidae  
 Cryptobranchus alleganiensis [59] 
 Plethidontidae  
 Batrachoseps attenuatus [59] 
 Ensatina eschscholtzi [59] 
 Aneides lugubris [59] 
 Proteidae  
 Necturus maculosus [59] 
 Salamandridae  
 Salamandra salamandra [59] 
 Echinotriton andersoni From Miyazawa, 2001[2] 
Anura Bufonidae  
 Atelopus certus [19] 
 Bufo boreas [59] 
 Bufo regularis [70] 
 Dendrophyryniscus minutus [70,73] 
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Table 2. Cont. 

 Melanophryniscus moreirae [70] 
 Melanophrynicus stelzneri [73] 
 Oreophrynella sp. [73] 
 Denrobatidae  
 Aromabates nocturnus [70] 
 Dendrobates pumilio [70] 
 Phyllobates bicolor [70] 
 Hylidae  
 Cyclorana australis [70] 
 Hemiphractus fasciatus [70] 
 Hyla cinera [59] 
 Litoria albuguttata [70] 
 Nyctimystes tympanocryptis [70] 
 Osteocephalus taurinus [70] 
 Phrynohyas venulosa [70] 
 Leptodactylidae  
 Eleutherodactylus gollmeri [70] 
 Microhylidae  
 Otophryne robusta [70] 
 Phrynomerus bifasciatus [70] 
 Scaphiophryne marmorata [70] 
 Mantellidae  
 Mantella aurantiaca [70] 
 Myobatrachidae  
 Heleioporus albopunctatus [70] 
 Notaden nichollsi [70] 
 Pseudophryne corroboree [70] 
 Pipidae  
 Xenopus laevis [59] 
 Ranidae  
 Rana pipiens [59] 
 Rana rugulosa [70] 
 Rana septentrionalis [70] 

5. Ecology and Evolution of TTX Toxicity in Amphibians 

The ecological role of TTX in metazoans (both marine and terrestrial) is of critical importance, yet 
it is understudied and poorly understood. Bioaccumulation of TTX (whether through synthesis, 
symbiosis with bacteria, or dietary uptake and processing) likely results in a significant cost to  
TTX-bearing taxa [79]. Additionally, there is evidence that TTX resistance (a necessary trait for 
accumulation of TTX in TTX-bearing vertebrates) may also come with its own cost [29,80,81]. As a 
result, metazoans that possess TTX must gain some benefit from their TTX toxicity that outweighs 
these costs [79].  

Amphibians are present on every continent except for Antarctica and occupy a diverse array of 
habitats [82]. Their slow speed, soft bodies, and habitat choices make them attractive targets of 
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predators. In response, amphibian species worldwide have evolved a pharmacopeia of toxic and 
noxious compounds [83]. These compounds protect amphibians from predation [7,84–87] as well as 
infection from pathogens (both fungal and bacterial) [88–90]. The TTX present in TTX-bearing 
amphibians is also assumed to play a defensive role and there is good data to support the  
hypothesis [1,83]. 

The presence of TTX is associated with aposematic coloration in TTX-bearing amphibians. Species 
of Atelopus, Brachycephalus, and Colostethus that possess TTX (or CHTX) also possess aposematic 
coloration, but non-TTX bearing species of Brachycephalus do not appear to have TTX [7,53,83]. In 
one study aposematic efts of Notophthalmus were found to be more toxic than non-aposematic adults 
[59], but another found the opposite pattern [51]. Salamandrid newts are well known for an array of 
defensive warning postures [84,91]. TTX-bearing salamandrid newts (e.g., Taricha, Cynops, and 
Notophthalmus) engage in a well-documented warning pose in which they display orange, red, or 
yellow present on their ventral surface [92]. In Taricha, at least, this warning posture is frequently 
associated with secretion from dorsal glands that contain TTX (pers. obs.).  

Defensive compounds of amphibians are typically associated with secretory skin glands  
[82,84,93–97]. In TTX-bearing amphibians levels of TTX are typically much higher in skin than in 
other tissues (except for eggs see below) [8,13,17,18,20,46,53,59,64]. Furthermore there is direct 
evidence than TTX is contained and sequestered in granular skin glands of TTX-bearing salamanders 
[61,64,98]. Taricha and Cynops newts actively secrete TTX when directly stimulated or when they 
encounter a snake predator [8,61,99]. Skin secretions from Taricha [25,60,63,100–102], and 
Notophthalmus [103–109], are known to be lethal to (or deter predation by) potential predators. 
Reports associated with the toxicity of Polypedates also indicate that secretions from this species 
appear to be toxic to potential predators [76]. These results are not surprising given the high levels 
(and potency) of TTX present in these taxa are further support for a defensive role of TTX  
in amphibians. 

The best-documented example of the defensive role of TTX is the coevolutionary interaction 
between Taricha newts and snake predators. Newts of the genus Taricha have long been known to 
possess a TTX resistant predator (garter snakes of the genus Thamnophis) [56,57,63]. In some 
populations that co-occur with newts, garter snakes have evolved resistance to TTX allowing them to 
prey on toxic newts. This predation by snakes has generated a coevolutionary arms race centered on 
TTX levels in newts and TTX-resistance in garter snakes [67,110–113]. Although the strength of 
coevolution between these species is spatially variable, these arms races have generated elevated (and 
extreme) levels of TTX and TTX resistance in some populations of Taricha and Thamnophis 
[54,64,67,110,111,113–116]. Tetrodotoxin levels present in Taricha (and other TTX-bearing 
Salamandridae) are significantly higher than TTX-bearing anurans (Table 1, also see [1]). Individuals 
from some populations of Taricha granulosa have been measured to possess up to 14 mg of TTX [67]. 
In Taricha, these elevated levels of TTX result from coevolution with garter snakes [67,111]. There is 
no direct evidence that similar predator-prey interactions have driven elevated TTX levels in other 
species of Salamandridae, but populations of both Triturus in Germany and Cynops in Japan show 
patterns of spatial variability in TTX levels [18,55] and environmental factors alone seem an unlikely 
explanation for these differences or the elevated levels of TTX seen in salamanders. 
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Tetrodotoxin also serves to defend the eggs of TTX-bearing amphibian species. Ecologically 
relevant levels of TTX have been found in the eggs of TTX bearing salamanders and Atelopus 
[1,25,46,59,65,71,100]. In Taricha, individual eggs can possess upwards of 2 µg of TTX and the 
investment of TTX in eggs appears to be an active process [65]. Recent evidence indicates that Caddis 
Fly larva are possible predators of Taricha eggs and that increased levels of TTX in the eggs of newts 
may deter predation by these insect predators [117].  

The presence of TTX in adult newts (and possibly in Anurans) has far reaching ripple effects in the 
communities in which these animals exist [118]. There are at least two mimicry systems associated 
with the presence of TTX in N. American newt genera (Taricha and Notophthalmus, [119–122]). 
Developing evidence suggests that garter snake predators of newts may be capable of sequestering 
TTX obtained from newts as defense against their own predators [79, 99]. Tetrodotoxin also seems to 
serve as warning chemical; allowing larval Taricha to sense and avoid cannibalistic predation by 
adults [118,123,124]. 

6. Conclusions in Regards to the Origin/Biosynthesis of TTX in Amphibians 

The ultimate origin or biosynthesis of TTX in amphibians is still a source of some controversy 
[1,3,8,18,19,67,125]. A compelling argument has been made that TTX present in marine metazoans is 
derived from bacterial sources (reviewed in [3] but see [126]). However little progress has been made 
in directly elucidating the genes and enzymatic pathways responsible for the biosynthesis of TTX in 
bacteria. Studies of TTX biosynthesis in amphibians are mixed and evidence favoring an endogenous 
origin of TTX in these taxa is indirect at best. In the only study to directly look at TTX synthesis in 
Taricha, animals fed a series of radioactive-labeled (potential) TTX precursors and small molecules 
did not show evidence of uptake of the radioactive-label [66]. Adult Atelopus varius raised in captivity 
did not possess measurable levels of TTX or TTX like toxins nor did captive Cynops pyrrhogaster 
[3,74]. However Taricha granulosa kept in captivity and feed earthworms were capable of maintaining 
(or increasing) high levels of TTX over multiple years and captive T. granulosa also regenerate large 
amounts (up to 3 mg) of TTX in relatively brief periods when fed a non-toxic diet [8,9,45]. Similar 
maintenance of TTX levels over 3 years in captivity has been seen in Atelopus oxyrhynchus [48] An 
examination of the skin and glands of T. granulosa did not yield any evidence of symbiotic TTX 
producing bacteria in granular secretory glands associated with TTX in salamanders [10]. More 
compelling, perhaps, is the limited distribution of TTX analogs in various species of amphibians  
[1,7–9,83]. Chiriquitoxin and ZTX have only been described in species of Atelopus [1,19]. The  
6-epiTTX stereoisomer of TTX is common in amphibians and can make up a substantive portion of the 
total TTX's present in some species (and/or populations) [12,13,17,18,44,54], yet it appears to be very 
rare in marine species. In Taricha the ratio of 6-epiTTX to total TTX show little (or no variation) 
within a locality, but can vary dramatically across localities; a pattern that is difficult to understand in 
the context of a dietary or symbiotic source of TTX [54]. Finally, evidence from 40 years of study 
coevolution between Taricha and Thamnophis strongly suggest that the elevated (and extreme) levels 
of TTX seen in the genus likely results from coevolution with snakes and that the evolution of extreme 
toxicity may have occurred over a relatively short time frame [67,111,127]. These results suggest, in 
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turn, that TTX levels in this genus (and possibly in other salamanders or amphibians) are (to some 
degree) under genetic control. 

7. Future Directions 

A century after its formal naming interest in TTX is still strong and the molecule is still the focus of 
extensive research. Although much progress has been made, fundamental questions associated with the 
synthesis and taxonomic distribution of TTX still remain. The central question facing workers 
interested in the chemical ecology and evolutionary biology of TTX toxicity in amphibians is still that 
of an endogenous versus exogenous origin of TTX. Compelling, yet indirect, evidence exists for either 
position. Any convincing resolution to this problem will have to address the following issues: (1) The 
presence of TTX analogs that are limited to a single species (or genus) of amphibian, (2) the apparent 
abundance of TTX analogs such as 6-epiTTX and 11-deoxyTTX in the toxin profiles of TTX-bearing 
amphibians and their corresponding paucity in marine taxa, (3) the extreme spatial variation in toxin 
profiles and TTX levels seen within populations of some terrestrial TTX-bearing species, (4) the 
longevity of TTX in (some) captive TTX-bearing species, and (5) the extremely limited taxonomic 
distribution of TTX in terrestrial vertebrates. 
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