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Therapeutic hypothermia (TH) is considered to improve survival with favorable neurolog-
ical outcome in the case of global cerebral ischemia after cardiac arrest and perinatal
asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS) and traumatic brain
injury (TBI), however, is not well studied. Induction of TH typically requires a multimodal
approach, including the use of both pharmacological agents and physical techniques. To
date, clinical outcomes for patients with either AIS or TBI who received TH have yielded
conflicting results; thus, no adequate therapeutic consensus has been reached. Neverthe-
less, it seems that by determining optimalTH parameters and also appropriate applications,
cooling therapy still has the potential to become a valuable neuroprotective intervention.
Among the various methods for hypothermia induction, intravascular cooling (IVC) may
have the most promise in the awake patient in terms of clinical outcomes. Currently, the
IVC method has the capability of more rapid target temperature attainment and more pre-
cise control of temperature. However, this technique requires expertise in endovascular
surgery that can preclude its application in the field and/or in most emergency settings.
It is very likely that combining neuroprotective strategies will yield better outcomes than
utilizing a single approach.
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INTRODUCTION
The use of therapeutic hypothermia (TH) as a treatment option
for acute neurological injury has evolved over the past century
(Krieger et al., 2001). In the 1930s, successful resuscitation fol-
lowing prolonged cold water asphyxia in drowning victims was
reported (Gunn and Thoresen, 2006; Linares and Mayer, 2009),
which raised the possibility that hypothermia provided a neuro-
protective effect in the case of anoxic brain injury (Linares and
Mayer, 2009). The first report of TH as a treatment for patients
with traumatic brain injury (TBI) was published in 1943 (Fay,
1943), and that was followed by reports from several other investi-
gators touting its potential neuroprotective effects in acute neuro-
logical injuries (Metz et al., 1996; Krieger et al., 2001; Schwab et al.,
2001; Polderman, 2004; Kollmar et al., 2009). In 1952 at the Uni-
versity of Minnesota, Dr. John Lewis closed an atrial septal defect
in a 5-year-old girl using total-body hypothermia. The child’s body
was cooled to 28˚C with a cooling blanket and rewarmed in a tank
of warm water (Gott, 2005). Currently, clinical application of TH
is utilized in during open-heart surgery and after global cerebral
ischemia associated with cardiac arrest and prenatal asphyxia (Laz-
zaro and Prabhakaran, 2008; van der Worp et al., 2010). Although
TH is instituted after other acute neurological injuries such as
stroke and TBI, the efficacy of its routine use for these conditions
remains unproven (Miyazawa et al., 2003). Additionally, compli-
cations including a high risk of infection, cardiac arrhythmias,

thrombocytopenia, hypotension, hypokalemia, pancreatitis, gas-
trointestinal ulcer, liver dysfunction, coagulopathy, and acute heart
failure have been reported (De Georgia et al., 2004; Alty and Ford,
2008; Varon and Acosta, 2008; Yenari et al., 2008; Den Hertog et al.,
2009). The focus of this review will be to discuss the pathophysio-
logical rationale and evidence-based literature supporting the use
of TH in treatment of patients with acute ischemic stroke (AIS)
and TBI.

PATHOPHYSIOLOGY OF HYPOTHERMIA
Hypothermia exerts complex effects on human physiology. In con-
scious, non-intubated patients it can be difficult to induce TH
without pharmacological interventions because the human body
mounts vigorous thermoregulatory defenses. These thermoregu-
latory mechanisms substantially increase metabolic activity within
the body, which may be harmful or at least counter productive as
they impede the induction of TH (Busto et al., 1989a; Bandschapp
and Iaizzo, 2011).

Thermoregulatory mechanisms can be divided into behavioral
and hypothalamic controlled autonomic responses. The behav-
ioral components of these responses (e.g., protection by clothes,
shelter, shade, or air conditioning) are ultimately under our con-
scious control. In clinical settings these behavioral controls are
often usurped by healthcare providers (Busto et al., 1989a; Band-
schapp and Iaizzo, 2011). The effects or responses governed by the
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autonomic nervous system are the primarily activated responses to
cold include arteriovenous shunting or induced vasoconstriction
and shivering. In general, cutaneous vasoconstriction is initiated
once core temperature decreases to about 36.5˚C, and significant
shivering starts at around 35.5˚C. It should be noted that while
most blood vessels constrict in response to regional hypothermia,
arteriovenous shunting is relatively resistant to local temperature
changes and seems to be mainly controlled by central mechanisms
(Sessler, 2008). In infants, non-shivering thermogenesis of “brown
fat” follows as the next elicited effector response. Interestingly,
however, thermogenesis via shivering is totally absent in the new-
born and not fully effective until several years of age (Brooke et al.,
1973). In contrast, non-shivering thermogenesis is considered to
have a relatively minor or marginal physiological role in adults
(Jessen, 1980). By definition, shivering is involuntary, oscillatory
muscle activity that greatly increases metabolic heat production
to counteract hypothermia (Iampietro et al., 1960). Notably, in
a hypothermic patient, the elicitation of forceful shivering can
increase metabolic heat production several-fold, which exacer-
bates the patient’s condition. Therefore, one needs to consider
modulating this response either with muscle paralysis and/or low-
ering the shivering threshold (Busto et al., 1989a; Bandschapp
and Iaizzo, 2011). Muscle paralysis is the most effective way to
stop shivering, but increases risk of many adverse events (AEs)
including inability to detect changes in the neurological exam,
high risk of pneumonia, and prolonged ventilation. Thus, using
a pharmacological approach to lower the shivering threshold in
awake patients may considerably reduce the need for heavy seda-
tion, paralytics and, therefore, the need for ventilatory support
(Guluma et al., 2006). Some pharmacological agents that are
used to inhibit shivering include buspirone, meperidine, cloni-
dine, magnesium, and dexmedetomidine (Xue and Huang, 1992;
Karibe et al., 1994; Bandschapp and Iaizzo, 2011; Kallmünzer et al.,
2011). Several reported pharmacological anti-shivering protocols
have allowed investigators to achieve the target temperature (TT)
without using heavy sedation or paralytics, often obviating the
need for mechanical ventilation (Xue and Huang, 1992; Karibe
et al., 1994; Bandschapp and Iaizzo, 2011; Kallmünzer et al., 2011).
In some studies, buspirone and meperidine in combination syner-
gistically decreased the shivering threshold to 33˚C, with, notably,
minimal sedation or respiratory depression (van Breda et al., 2002;
Bandschapp and Iaizzo, 2011). Based on these findings, Lyden
et al. (2005) suggested that prophylactic administration of oral
buspirone plus intravenous (IV) meperidine could effectively pre-
vent shivering to achieve the TT in awake patients. Another useful
technique to reduce shivering is surface counter warming using
heating blankets (Guluma et al., 2008). Bandschapp and Iaizzo
(2011) combined surface counter warming of the hands and/or
face with the use of anti-shivering drugs.

Classically, the primary neuroprotective benefit of TH has been
attributed to a reduction in the cerebral metabolic rate of oxygen
(CMRO2), which is related to neuronal glucose and oxygen con-
sumption and lactate production. In other words, TH may reduce
energy depletion by lowering the CMRO2 and improving glucose
utilization (Yenari et al., 2008; Liu and Yenari, 2007). Reportedly,
brain oxygen consumption decreases by 5% per 1˚C decrease in
body temperature. Additionally, slowed metabolism following TH

reduces interstitial lactate accumulation and maintains physio-
logical tissue PH balance. It has been shown that for every 1˚C
decrease in temperature, the pH increases by 0.016 (Varon and
Acosta,2008). This lends support to the notion that TH may reduce
cerebral injury by reducing acidosis. However, in another study,
no decrease was detected in cerebral lactate level following TH
(Busto et al., 1989a). Therefore, one can conclude that TH pro-
duces neuroprotective effects through other mechanisms (Busto
et al., 1989a).

Beyond reduction of CMRO2, the other neuroprotective mech-
anisms of TH include: (1) preservation of high-energy organic
phosphates; (2) slowed accumulation of lactic acid and other neu-
rotoxins; (3) enhanced glucose utilization; (4) modulation of gene
expression; (5) facilitation of anti-inflammatory responses and
anti-apoptotic pathways; (6) reduction of intracranial pressure
(ICP); (7) stabilization of the blood–brain barrier; (8) inhibition
of free radical productions; and (9) reduction of excitotoxic neuro-
transmitters such as glutamate (Jiang et al., 1992; Miyazawa et al.,
2003; Olsen et al., 2003; van der Worp et al., 2007; Varon and
Acosta, 2008; Yenari et al., 2008).

In patients presenting with cerebral ischemia, TH may mini-
mize the extent of injury (Figure 1) by modulating several steps
of the ischemic cascade (Lazzaro and Prabhakaran, 2008; Linares
and Mayer, 2009). More specifically, in an experimental study
using positron emission tomography scan to evaluate the effect

FIGURE 1 | Primary and secondary brain injuries following neurologic

events.
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of TH after AIS, reduction in CMRO2 was coupled with decreases
in cerebral blood flow (CBF) and minimization of brain tissue
necrosis volume (Sakoh and Gjedde, 2003). Furthermore, TH may
reduce neuronal excitotoxicity following ischemic depolarization
by blocking glutamate and dopamine release (Nakashima and
Todd, 1996). For example, in an experimental study, Busto et al.
(1989b) demonstrated that mild hypothermia, with a TT between
35 and 36˚C, significantly reduced cerebral dopamine and gluta-
mate release, thus attenuating neurotoxicity. In addition, decreased
glutamate accumulation leads to reduced calcium influxes and
lipid peroxidation, which then attenuates free radical production
(Nakashima and Todd, 1996). Furthermore, TH may inhibit free
radical activity following cerebral ischemia by enhancing levels of
endogenous antioxidants (Maier et al., 2002). Hashimoto et al.
(2004) evaluated the effect of TH on free radical production in
a rodent model of cerebral ischemia by cerebellar microdialy-
sis measurements. The experiment revealed temperature-related
reduction of free radical production associated with attenuated
neuronal damage in both the ischemic and reperfusion phases
(Maier et al., 2002; Hashimoto et al., 2004). Finally, TH may
favor up-regulation of stress responsive genes, which produce
anti-apoptotic proteins such as β-catenin, which translocate into
the nuclei and regulate gene expression, favoring cell survival
(Akaji et al., 2003; Lazzaro and Prabhakaran, 2008; Zhang et al.,
2008).

It is suggested that CBF is reduced through arteriolar vaso-
constriction during TH, resulting in decreased ICP (Bernard and
Buist, 2003; Varon and Acosta, 2008; Yenari et al., 2008). However,
in a clinical study of patients with severe TBI, inducing moder-
ate TH (32–33˚C) resulted in decreased ICP, though CBF was not
changed significantly during the therapy; this suggests restoration
of blood brain barrier (BBB) function and subsequent reduction
in cerebral edema as an underlying mechanism for drop in ICP
(Metz et al., 1996). More specifically, pericyte migration from the
microvasculature following reperfusion injury normally results
in disruption of BBB (Liu and Yenari, 2007; Lazzaro and Prab-
hakaran, 2008). In the rodent model, however, the induction of TH
in ischemic brain injury inhibited the separation of pericytes from
basement membrane, thereby preserving BBB integrity (Duz et al.,
2007). Therefore, the intact BBB prevents the leakage of plasma
proteins into the brain interstitium post-ischemia possibly reduc-
ing cerebral edema formation and the associated rise in ICP. In
summary, TH mounts a multi-faceted cascade of neuroprotective
mechanisms after cerebral ischemia and TBI (see Figure 1).

THERAPEUTIC HYPOTHERMIA INDUCTION
The optimal induction method of TH is currently unknown.
Desirable characteristics of the TH method include safety, rapid
cooling speed, easy implementation, widespread availability, and
low financial costs. It is almost certain that a multimodal approach
will be required, likely combining pharmacological agents and
physical techniques, and keeping in mind the transition from the
prehospital to hospital setting (Den Hertog et al., 2009).

PHARMACOLOGICAL COOLING
Pharmacological agents include antipyretics and non-steroidal
anti-inflammatory agents. Unfortunately, the use of non-steroidal

anti-inflammatory drugs (i.e., ibuprofen) or antipyretic drugs (i.e.,
acetaminophen) for TH has shown only a modest reduction in
temperature (Dippel et al., 2001, 2003; Koennecke and Leistner,
2001; Kasner et al., 2002; Aiyagari and Diringer, 2007; Linares
and Mayer, 2009), and therefore is insufficient alone to produce
clinically significant hypothermia.

MECHANICAL COOLING
There are many options available for systemic or regional body
cooling. Systemic methods include either surface cooling or
intravascular cooling (IVC). Surface cooling techniques such as
water-circulating cooling blankets, ice-packs,water mattresses, ice-
water and alcohol baths, whole body ice rubs, electric cooling
fans, and/or forced air cooling have been studied in numer-
ous small clinical trials (Schwab et al., 1998, 2001; Kammers-
gaard et al., 2000; Krieger et al., 2001; Abou-Chebl et al., 2004;
Mayer et al., 2004; Jordan and Carhuapoma, 2007; Den Her-
tog et al., 2009). Endovascular cooling includes intravenous ice-
saline infusion into peripheral or central veins, and active cool-
ing catheters intra-arterially or intravenously (Lenhardt et al.,
2009).

SURFACE COOLING
Surface cooling is easy to implement, but usually induces severe
shivering which may require heavy sedation and/or paralysis with
neuromuscular blockade (Lazzaro and Prabhakaran, 2008). In
addition, it is often challenging to maintain body temperature
at a desired level via surface cooling. In one study, surface cool-
ing induced hypothermia led to overcooling in 9 of 10 subjects
(Zweifler et al., 2003; Guluma et al., 2006). However, active surface
cooling using the Arctic Sun Temperature Management System
(Medivance, Louisville, CO, USA) was more effective than con-
ventional surface cooling methods, such as the cooling-blanket,
for controlling fever in critically ill neurologic patients (Mayer
et al., 2004). This device has a feedback mechanism to actively
regulate the body temperature to a specific target. The main limi-
tation of this device is that it is somewhat labor intensive, and the
disposable cooling pads are expensive.

Based on the limitation of general surface cooling, interest has
focused on regional cooling, such as by using selective head and/or
neck cooling (Wang et al., 2004; Qiu et al., 2006). In one study, head
cooling lowered temperature to 34˚C, but took several hours to
reach, likely related to low skull thermal conductivity (Harms et al.,
2008). Additionally, while selective head cooling may reduce the
superficial cortical temperature, it may not cool deeper brain struc-
tures to the same level (Chen et al., 2009). However, concurrent
neck cooling was found to increase cooling efficiency of lower-
ing core body temperature (Keller et al., 2009). A novel method
of prehospital trans-nasal evaporative cooling has been applied
in patients with witnessed cardiac arrest recently. In this method,
a liquid coolant–oxygen mixture is sprayed into the nasal cavity,
which rapidly evaporated with high-flow oxygen, results in signif-
icant cooling of the nasal passages and brain. This trial presented
the feasibility of this method with improvement in the time inter-
vals required to cool patients. However, some device-related AEs
including nasal whitening, epistaxis, and peri-orbital emphysema
have been occurred (Castren et al., 2010).
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INTRAVASCULAR COOLING
Intravascular cooling has some advantages to surface cooling, but
also carries certain risks as it is usually an invasive technique. In
general, as no surface equipment such as cooling blanket or pads
are needed, one can institute surface counter warming, resulting
in the attenuation of the shivering response while concurrently
allowing for efficient cooling of the core blood volume (Polder-
man et al., 2005; Lazzaro and Prabhakaran, 2008). The average
time to achieve the TT has been shown to be considerably shorter
(∼70 min) using IVC compared to surface cooling (3–8 h; Keller
et al., 2003). A possible explanation for this is that surface cool-
ing triggers cutaneous vasoconstriction which reduces conduction
surface area (Guluma et al., 2006). In contrast, a local intra-arterial
infusion of cold saline may achieve TT within a few minutes. The
rapid attainment of the TT may enhance neuroprotection and also
expand the therapeutic time-window for other treatment strate-
gies, but further data is needed to confirm this (Konstas et al.,
2007). However, the required experience with endovascular tech-
niques prevents an easy widespread application (van der Worp
et al., 2010). Some possible specific adverse effects of IVC include
a higher risk for infection, deep venous thrombosis (DVT), and
vascular dissection (Schwab et al., 2001). Simosa et al. (2007) eval-
uated the risks of DVT with duplex sonogram in TBI patients who
underwent intravascular TH. They observed a DVT rate of 33% if
the catheter were removed within 4 days but the rate was increased
up to 75% when the catheter was removed after 4 days. There-
fore, it may be prudent to monitor patients closely with duplex
ultrasonography for DVT if an IVC method is used. Some novel
techniques of invasive cooling induction are currently under inves-
tigation. A few experimental studies have evaluated the technical
feasibility of epidural surface cooling induction. The outcomes
were promising in attaining the rapid TT with unchanged physio-
logic and hemodynamic variables (Zweifler et al., 2003; Qiu et al.,
2006).

CORE BODY TEMPERATURE ASSESSMENT
The best method for assessing core body temperature is uncer-
tain. Currently, core body temperature is estimated using a vari-
ety of probes, including rectal, tympanic, bladder, esophageal,
or vaginal probes (Nolan et al., 2003). Unfortunately, the tem-
peratures recorded in these different sites may vary by up to
several degrees, and it is not clear how they correlate with brain
or core body temperature. For example, in one study it was
observed that rectal or bladder temperatures were 1–2˚C lower
than monitored brain temperatures, and at temperatures above
38 or below 36˚C, the differences became even greater (Henker
et al., 1998). Thus, further investigations are needed to determine

clinically applicable, non-invasive, accurate ways to approximate
brain temperature.

THERAPEUTIC HYPOTHERMIA IN STROKE
The use of TH has been well established to improve survival
with favorable neurological outcome in the case of global cerebral
ischemia after cardiac arrest or perinatal hypoxia-ischemic insult;
however, the efficacy of TH for treating focal cerebral ischemia
has not yet been well studied (Abate et al., 2008). However, in
reported animal studies, TH has consistently reduced infarct sizes
when applied before or early after the onset of cerebral ischemia
(Xue and Huang, 1992; Karibe et al., 1994).

In the last decade, various clinical trials have attempted to eval-
uate the potential benefits of utilizing pharmacological and/or
physical TH in AIS (Tables 1 and 2). More specifically, in such
pharmacological trials, the efficacies of low- and high-dose admin-
istration of paracetamol, metamizole, or ibuprofen have been
assessed (Dippel et al., 2001, 2003; Koennecke and Leistner, 2001;
Kasner et al., 2002; van Breda et al., 2002; Kallmünzer et al., 2011).
A pooled analysis showed only a modest reduction of 0.2˚C tem-
perature 24 h after administration. Therefore, as expected, clinical
trials did not show any significant clinical benefit with these agents
(Den Hertog et al., 2009).

Given the lack of efficacy of the aforementioned pharmaco-
logical cooling protocols, we now turn our attention to physical
cooling trials. In one such report, Schwab et al. (1998) applied sur-
face cooling for TH in 25 patients with malignant middle cerebral
artery infarction and observed beneficial reduction of ICP. Fur-
thermore, the treated patients showed more favorable outcomes
and reduced mortality rates than historical controls with similar
stroke severity. Notably, nearly half of the deaths in TH-treated
patients occurred during the rewarming phase, possibly in rela-
tion to a rebound in ICP. It was suggested that a longer rewarming
period may be needed to diminish the rebound ICP elevation
(Schwab et al., 2001).

Other clinical trials have evaluated the optimal duration of
TH once the TT is achieved. In the Copenhagen stroke study,
investigators assessed the efficacy of 6 h of surface cooling in 17
AIS patients (Kammersgaard et al., 2000). Unfortunately, no ben-
efit in terms of outcome was observed. It has been suggested,
however, that a longer hypothermia duration of 48–72 h may be
required to reduce the formation of cerebral edema which occurs
the most during the first 72-h after symptom onset (Georgiadis
et al., 2001). Concerns, however, include the correlation between
increased duration of TH and increased number of AEs; there-
fore, limiting TH to 24 h may be better (Kammersgaard et al.,
2000).

Table 1 | Published studies on the role of pharmacologicalTH in stroke patients.

Investigator Year No of cases Intervention Mean ˚C reduction

Kallmünzer et al. 2011 77 Paracetamol, Metamizole, calf packing NA

Dippel et al. 2003 75 6000 mg Paracetamol/day, 2400 mg Ibuprofen/day 0.3˚C

Kasner et al. 2002 39 3900 mg Paracetamol/day 0.22˚C

Dippel et al. 2001 75 6000 mg Paracetamol/day, 3000 mg Paracetamol/day 0.4˚C

Koennecke and Leistner 2001 42 4000 mg Acetaminophen/day NA
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Table 2 | Published studies on the role of surface and intravascularTH in stroke patients.

Study Year No of

cases

Intervention Target (˚C) Time to

target (˚C)

Rewarming

time

Side effect Outcomes

Hemmen et al. 2010 28 Intravascular hypother-

mia + fibrinolysis

33 67 min 0.3˚C/h Pneumonia in

cases

No difference

Kollmar et al. 2009 10 Iced cold saline

infusion

35.4 52 min NA Well tolerated NIHSS improved (4 scores)

Guluma et al. 2008 18 Intravascular cooling 33 – 12 h Higher NIHSS

in the case

group

Reduction of edema

Guluma et al. 2006 10 Intravascular cooling 33.4 1.7 h 0.3˚C/h NA No shivering

Lyden et al. 2005 16 Intravascular

cooling + fibrinolysis

33 7 h 12 h DVT NA

De Georgia et al. 2004 18 Intravascular cooling 35 77 min NA NA Decreased mean diffusion-

weighted imaging lesion

growth in cases

Schwab et al. 2001 50 Surface cooling 33 6.5 h 17 h Pneumonia,

secondary rise

of ICP

Relatively decreased mor-

tality

Georgiadis et al. 2001 6 Intravascular cooling 32.2–33.4 3 h NA Bradycardia

infection

NA

Krieger et al. 2001 10 Cooling

blanket + fibrinolysis

32 3.5 h 0.21˚C/h Sinus

bradycardia

NA

Kammersgaard et al. 2000 17 Surface cooling 35.5 6 h NA Pneumonia Insignificant lower mortal-

ity rate and improved clini-

cal outcomes in cases

Schwab et al. 1998 25 Surface cooling 33 3.5–6.2 h 18 h Pneumonia Reduction of ICP

Georgiadis et al. (2001) evaluated the feasibility of IVC in six
patients with AIS. The clinical outcomes were considered equal to
those obtained by surface cooling, demonstrating IVC as a viable
option for TH (De Georgia et al., 2004; Lyden et al., 2005; Guluma
et al., 2006). Moreover, it should be mentioned again that IVC
allows for concurrent use of surface warming to reduce shivering
(Guluma et al., 2006). For example, in a pilot study by Kollmar
et al. (2009), rapid infusion of ice-cold saline combined with anti-
shivering pharmacological therapy in 10 AIS patients significantly
improved discharge NIH stroke scale scores without increasing
major side effects. Similarly, Lyden et al. (2005) evaluated several
anti-shivering methods in 10 awake patients who underwent IVC
after AIS. They reported that a combination of oral buspirone
with IV meperidine (load and maintenance) in addition to sur-
face warming blankets allowed for the efficient induction of TH
while minimizing shivering.

Recently, the COOL AID study evaluated the feasibility of IVC
in 18 AIS patients compared to 22 control AIS patients (De Georgia
et al., 2004). It was reported that there was less diffusion-weighted
imaging volume growth in the hypothermic patients compared
to the control group, but the long-term clinical outcomes were
not significantly different. Nevertheless, this pilot study was not
powered for efficacy, and therefore a larger-scale trial may be war-
ranted. In another clinical study, Guluma et al. (2008) evaluated
the role of TH using IVC in 18 AIS patients. They found that
patients who were effectively cooled to a temperature of less than

34.5˚C within 8 h of cooling initiation had a decreased amount of
cerebral edema compared to control patients or those who did not
achieve the TT. In contrast, Hemmen et al. (2010) studied the fea-
sibility and safety of TH combined with IV t-PA after AIS among
patients who were randomized to t-PA and TH (n = 28), or t-PA
(n = 30) alone. They reported that there were no significant dif-
ferences in symptomatic ICH rates, modified Rankin Scale scores,
or mortality at 3 months; however, more patients in the TH group
developed pneumonia (p = 0.001). The relative lack of efficacy in
the TH group may be related to relatively long induction times
(median 7 h) required to achieve the TT and the small sample size
in the study.

It looks as though TH could be an appropriate adjuvant ther-
apy to t-PA for AIS. It also has a potential for utilization in
combinational therapeutic strategies with other neuroprotective
medication such as caffeinol or hemicraniotomy in malignant
supratentorial infraction (Els et al., 2006; Martin-Schild et al.,
2009). However, based on the relatively small clinical trials avail-
able in the literature, it is apparent that much work is needed to
clarify many issues for AIS patients. These include the optimal
depths and durations of cooling, improved techniques to reach
TT in an optimized time-window, clinically safe rewarming rates,
and/or the best anti-shivering measures as discussed previously
(MacLellan et al., 2009). Only once the practical aspects of TH
in AIS patients are worked out can the efficacy of TH possibly be
determined in a large, multicenter clinical trial.
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THERAPEUTIC HYPOTHERMIA IN TBI
From a historical perspective, TH for TBI patients was first intro-
duced by Fay (1943) and Marion et al. (1997). Since then, several
case series have reported heterogeneous outcomes for patients with
TBI receiving TH (Rosomoff and Holaday, 1954; Lazorthes and
Campan, 1958; Hendrick, 1959; Sedzimir, 1959; Drake and Jory,
1962; McIntyre et al., 2003). Nevertheless, despite numerous suc-
cesses of TH in animal models, the efficacy of routine TH for
TBI patients in the clinical setting is not definitely established
(Buchan and Pulsinelli, 1990; Minamisawa et al., 1990; Clifton
et al., 1991; Dietrich et al., 1994). In 1993, three different TBI trials
demonstrated the feasibility and efficacy of TH to improve clin-
ical outcomes in small trials (Clifton et al., 1993; Marion et al.,
1993; Shiozaki et al., 1993). In 1997, a clinical trial evaluated the
impact of surface cooling on 40 TBI patients (Marion et al., 1997).
Although there was no efficacy for the cohort of patients with
the most severe TBI [i.e., Glasgow Coma Scale (GCS) of 3–4 on
admission], TH was found to benefit patients with initial GCS of
5–7 in terms of their long-term clinical outcome and mortality.
This clinical trial showed that the interleukin-1b and glutamate
levels in CSF were significantly reduced in the hypothermic group
even after rewarming. Interestingly, the glutamate levels in the
patients who did not benefit from hypothermia (GCS of 3 or 4)
were similar to those with corresponding GCS scores in the nor-
mothermic group. Subsequently, in a larger study performed by
Clifton et al., 2001; n = 392), fewer patients in the hypothermia
group had elevated ICP. They did, however, have more complica-
tions and longer hospital stays, especially in patients older than
45-years. Similarly, Marion et al. (1997) found no improvement in
neurological outcomes or survival in TH patients with initial GCS
of 5–8. It should perhaps be considered that initial differences in
the baseline characteristics of the patients in these separate stud-
ies might be a primary underlying factor influencing the differing
results. For example, in the study by Marion et al. (1997) a high
proportion of patients in normothermic group were described as
being in a hypothermic state at the time of admission and were
thus actively warmed after admission, which itself may have led to
a poorer outcome (Clifton et al., 2001).

In an effort to clarify the heterogeneous and conflicting results
regarding the efficacy of TH for patients with TBI, a systematic
review was performed in 2003 which pooled data from 12 pub-
lished clinical trials. Overall, this analyses included 1069 patients
who were split into a hypothermia group (n = 543) and a control
group (n = 526; McIntyre et al., 2003). From this retrospective
analysis, it was suggested that inducing TH for 24 h significantly
reduces the risk of poor neurological outcome. Furthermore,
patients who received TH for more than 48 h had increased sur-
vival. In addition, this analysis suggested that greatest clinical
benefits were derived when patients were cooled to a TT of 32–
33˚C. Subsequent to this report, Tokutomi et al. (2009) evaluated
the clinical outcomes and systemic complications of TH in two
different groups of patients with TBI who were cooled to either
35 or 33˚C. Despite the findings from the previous systematic
review (McIntyre et al., 2003), Tokutomi and co-workers’ study
paradoxically showed lower systemic complication and mortal-
ity rate in the milder hypothermia (35˚C) group. These outcomes
were similar to those observed by Shiozaki et al. (2003) who did

not find any benefit in cooling TBI patients from 34 to 31˚C with
refractory ICP, defined as being higher than 40 mmHg despite first
line treatments.

It should be considered that severe TBI patients may have phys-
ical restrictions imposed on their clinical management by systemic
trauma, potentially making surface cooling difficult to implement
in such individuals (Sahuquillo et al., 2009). With this scenario
in mind, Harms et al. (2008) applied a cooling helmet in TBI
patients. This approach was considered to have failed, however,
as it was not effective in reaching the target brain temperature
in most patients. Table 3 summarizes other approaches of using
TH in TBI patients. In the IntraCool study in which therapy was
applied to IVC patients with severe TBI and refractory elevated
ICP (n = 28), a significant reduction in ICP and mortality rate
was observed (Sahuquillo et al., 2009). Likewise, a study by Puccio
et al. (2009) showed that even an induced normothermia proto-
col utilizing IVC ameliorated secondary brain injuries, perhaps
by reducing the ICP. In 2010, a comprehensive review evaluating
23 clinical trials including results from 1614 randomized patients
reported that the TH group had better neurological outcomes
and reduced mortality rate (Sydenham et al., 2009). Significant
benefit was only found in trials with open label or uncertain
masking designs, however, which, notably, may have led to exam-
iner bias. Importantly, in the nine of these trials with adequate
masking procedures, no significant benefit in clinical outcomes
was observed. Similarly, a meta-analysis of six clinical trials of
TBI patients revealed that treated individuals with hypothermia
had a 46% increased likelihood of favorable neurological out-
come, defined as a Glasgow Outcome Score of 4–5 (Bratton et al.,
2007). Despite this increased likelihood of favorable neurologi-
cal outcome, no significant reductions in all-cause mortality were
observed in TH patients. As such, the aforementioned results are
in contrast to the 2003 systematic review (McIntyre et al., 2003)
that suggested reduced mortality when cooling was maintained
for more than 48 h. In response to such reported inconsistencies
in the effects of TH on TBI patients, Clifton et al. (2011) recently
designed a multicenter, double-blind study to specifically assess
the potential neuroprotective effects of early induction of TH on
the outcomes of TBI. In this study, the mean time to reach core
temperature of 35˚C in the patients in the hypothermic group was
2.6 h after injury. Nevertheless, their results did not show any sig-
nificant superiority in clinical outcomes in the TH group (n = 119)
when compared to normothermic patients (n = 113). Also, inex-
plicably, a significantly higher proportion of patients in the TH
group had episodes of increased ICP. Therefore, there remains a
need for further clarification through well-designed clinical trials
in such TBI patients to determine which or whether any patient
subgroups may benefit from TH.

DISCUSSION
Currently, protocols to administer TH are well established for
patients who suffer out-of-hospital cardiac arrest or for neonates
with hypoxic-ischemic encephalopathy (Abate et al., 2008). Clin-
ical outcomes for patient populations with either AIS or TBI
that had received TH therapy have yielded conflicting results and
therefore no adequate clinical consensus for use in these types of
patients has been reached (Abate et al., 2008; Arcure and Harrison,
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Table 3 | Published studies evaluating the role of therapeutic hypothermia inTBI patients.

Study Year No of

cases

Cooling

method

Target (˚C) Time to

Target

(˚C)

Duration

of hypo-

thermia

Rewarming Outcomes Side effect

Clifton

et al.

2011 52 Surface

cooling

33 4.4 48 h 0.5˚C/2 h Improved clinical outcomes in

patients with evacuated

hematoma

ICP rise

Harms

et al.

2008 12 Cooling

cap

33 NA 24 h 24 h Cooling cap was not capable to

reach the target temperature

Higher mortality

rate in cases

Tokutomi

et al.

2009 30 vs. 31 Surface

cooling

35 vs. 33 NA NA NA The mortality rate and the

incidence of systemic

complications tended to be

lower in the 35 degree group

than 31 degree

–

Sahuquillo

et al.

2009 24 Intravascular

cooling

32.5 3 h 155.3 h 1˚C/day ICP reduction in refractory cases Rebound ICP rise

arrhythmia

Puccio

et al.

2009 21 Intravascular

cooling

36.5 NA 72 h NA Reduce fever burden –

Adelson

et al.

2005 23 Surface

cooling

32–33 4.99 h 48 h 1˚C/3–4 h TH decrease mortality Arrhythmia

rebound ICP rise

Shiozaki

et al.

2003 22 Surface

cooling

31 vs. 34 3 h NA NA Moderate hypothermia is not

effective in improving clinical

outcomes in TBI with refractory

ICP after mild hypothermia

More sever compli-

cation in 31˚C

Zhi et al. 2003 198 Surface

cooling

32–35 NA 62.4 h NA TH reduce mortality and improve

prognosis

Less sever compli-

cation in TH group

Clifton

et al.

2001 199 Surface

cooling

33 8 h 48 h 0.5˚C/h Decreased ICP crisis More hospital stay

critical hypotension

Shiozaki

et al.

2001 45 Surface

cooling

34 NA 48 h 1˚C/day No advantage in TH over

normothermia

Pneumonia menin-

gitis

2009). It is noteworthy that recently several systematic reviews,
which pooled data from heterogeneous clinical trials with differ-
ent cooling methods, failed to show any significant improvement
in clinical outcomes after induction of hypothermia (Den Hertog
et al., 2009; Sydenham et al., 2009). It is important to note, however,
that in more recent trials using IVC in awake patients, the reported
outcomes are more promising (Guluma et al., 2008; Puccio et al.,
2009; Sahuquillo et al., 2009). More specifically, the application of
IVC elicited both the capability of more rapid TT attainment and
more precise control of temperature (Guluma et al., 2006).

Early intra-ischemia cooling induction is supposed to modify
ischemia-induced as well as post-reperfusion cellular abnormal-
ities, but delayed TH induction is thought to target only the
post-reperfusion cell death and inflammatory signaling pathways
(Lampe and Becker,2011). In experimental studies, the best chance
of neurological recovery has been achieved by inducing hypother-
mia within 15 min following initiation of ischemia (Kim et al.,
2009). This shows that reaching the optimal core body tempera-
ture early in the therapeutic window can have a principal impact on
the outcome. Typically, the systems to provide IVC are not portable
and the therapy can only be initiated after the patient arrives at
the hospital. Thus, the imposed delay in treatment may reduce
the possibilities for achieving optimal outcome. To overcome this
problem, in a pilot study, Kim et al. evaluated the feasibility of IV
infusion of up to 2 L of 4˚C normal saline by paramedics in the

field after cardiac arrest. The clinical outcomes were promising,
showing an effective lowering of the core temperature in patients
without any remarkable side effects (Kim et al., 2007). Kollmar
et al. (2009) also assessed the impact of infusing 25 mL/kg of ice-
cold saline within the first 3 h after AIS. They demonstrated that
ice-cold saline might be useful to deliver hypothermia within a
neuroprotective treatment window in stroke. Therefore, one could
potentially apply a portable ice-cold saline method before arriving
at the hospital, where subsequent classical IVC intervention would
take place (Harms et al., 2008; Clifton et al., 2011).

Earlier studies expressed that the induction of moderate TH
induces the optimal benefit in reducing neurological injury (Maier,
1998; McIntyre et al., 2003). In an experimental study, Kollmar
et al. (2007) demonstrated that the greatest histological and func-
tional benefits were achieved with a TT of 35˚C. Consistent with
this finding, several recent clinical trials also did not report any
clinical benefits in cooling their patients to TTs lower than 35˚C
(Shiozaki et al., 2003; Tokutomi et al., 2009). Furthermore, it seems
that the induction of mild TH may produce good clinical outcomes
while also minimizing the occurrences of some AEs (Schubert
et al., 2008; MacLellan et al., 2009).

In addition to shivering, TH can encounter the patient to a
wide range of many other adverse effects including infection,
hemodynamic instability, and electrolyte imbalance (Lampe and
Becker, 2011). The most common infectious complication is
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pneumonia, which happens frequently in proportion to duration
and degree of hypothermia (Lampe and Becker, 2011). In patients
with space-occupying hemispheric infarction treated with induced
hypothermia, pneumonia rates reach up to 83% following cooling
induction (van der Worp et al., 2010). To overcome this compli-
cation, Harms et al. (2008) have suggested prophylactic antibiotic
therapy that can have a considerable impact on the subsequent
morbidities and mortalities in TH patients. Hemodynamic AEs
following cooling induction includes hypotension, bradycardia,
and arrhythmia (Froehler and Ovbiagele, 2010). Among them,
bradycardia has been observed in up to 50% of subjects following
cooling induction (De Georgia et al., 2004; Froehler and Ovbi-
agele, 2010). However, it tends to be well tolerated and has not
been reported to cause any clinical sequel (Froehler and Ovbiagele,
2010). Furthermore, cooling induction can shift the electrolytes
out of the intravascular space, leading to deep hypokalemia,
hypomagnesemia, and hypophosphatemia. Opposite electrolyte
derangements can also occur during the rewarming phase (Nohl
and Jordan, 1986; Turrens et al., 1991; Lampe and Becker, 2011).
Therefore, for detecting these cooling-induced AEs in the earlier
stages, the patient’s vital signs, cardiac rhythm, and serum elec-
trolytes levels should be monitored during hypothermic states
(Froehler and Ovbiagele, 2010). In the subsequent rewarming
phase, most patients have a tendency to become hyperthermic with
rebound rises in ICP (Lampe and Becker, 2011). It has been sug-
gested that controlled slow rewarming within 24 h can minimize
or prevent rebound rises in ICP and thus associated, subsequent
adverse neurological effects (Schwab et al., 2001; McIntyre et al.,
2003). It should be mentioned, however, that in the latest guide-
lines for the management of TBI, a subgroup of analyses did not
suggest any clear relationship between cooling durations or rates
of rewarming and improved clinical outcomes (Bratton et al.,
2007).

We also consider here that careful evidence-based selection
of TH candidates will help the ultimate neuroprotective effects
to become more apparent in future trials. More specifically, it

appears that patients older than 45 years and those with various
co-morbidities have more reported complications and longer
hospital stays after induced hypothermia; thus, they may not bene-
fit from this treatment option as much as a younger patient should
(Clifton et al., 2001; De Georgia et al., 2004). It has also been
shown that TH leads to significantly better clinical outcomes with
reduced mortality rates in patients with a GCS of 5 or higher on
admission (Marion et al., 1997). In general, promising indicators
for successful TH include younger patients and those that have
undergone a thorough neurological exam on admission. Further-
more, those patients with TBI who undergo surgical removal of
intracranial hematomas should have a better outcome relative to
diffuse brain injury cases after hypothermia induction (Clifton
et al., 2011). Finally, another group of patients who can benefit
from TH are patients with refractory high ICP values. To date,
many trials have presented satisfactory effects of TH in reducing
ICP in patients who may have suffered a stroke or TBI (Schwab
et al., 2001; Sahuquillo et al., 2009). Evidently, clinical trials are cur-
rently conducted to better clarify the evidence-based indications
(Table 4) to better clarify the evidence-based indications.

The application of TH for other acute neurological injuries
such as subarachnoid hemorrhage, spinal cord injury (SCI), and
drug resistant epilepsy has been reported (Levi et al., 2009, 2010;
Anei et al., 2010; Motamedi et al., 2011), but awaits further study
before the routine use can be recommended. In preclinical set-
tings, institution of TH has led to reduced gray and white matter
damage and improved motor function in rodent models of SCI
(Basso et al., 1996; Yu et al., 2000; Dietrich, 2009). In 2010, atten-
tion was brought to a case report of a professional NFL football
player who sustained a complete cervical SCI during game-related
trauma. The patient received experimental TH along with other
routine medical and surgical interventions. The marked neurolog-
ical improvement in this case made TH a hotly debated topic for
management of SCI patients (Cappuccino et al., 2010). A phase I
clinical trial evaluated the possibility of applying systemic TH in
14 patients with complete cervical SCI. The clinical outcomes were

Table 4 | Ongoing clinical trials for evaluating the possible role of therapeutic hypothermia in stroke andTBI*.

Study title Design Intervention Target enrollment

Intravenous thrombolysis plus hypothermia for acute treatment of

ischemic stroke

Phase I, randomized, case–control TH + t-PA 130

The intravascular cooling in the treatment of stroke 2/3 trial Phase II/III, randomized, case–control TH + t-PA 400

Mild hypothermia in acute ischemic stroke Phase II, randomized, case–control Mild TH 36

Caffeinol hypothermia protocol Phase I/II, non-randomized, case–control TH + caffeinol 30

Hypothermia in children after trauma Phase II, randomized, case–control Moderate TH 340

Hypothermia in traumatic brain injury in children (HiTBIC) Phase II/III, randomized, case–control TH 50

The prophylactic hypothermia trial to lessen traumatic brain injury Phase III, randomized, case–control TH 512

Discrete hypothermia in the management of traumatic brain injury Phase III, randomized, case–control TH 25

Mild hypothermia and supplemental magnesium sulfate infusion in

severe traumatic brain injury (TBI) subjects

Phase II, randomized, case–control TH + magnesium

sulfate

105

Hypothermia in children after trauma Phase III, randomized, case–control TH 340

Therapeutic hypothermia for severe traumatic brain injury in Japan Phase III, randomized, case–control Mild TH 300

*Data adapted from www.clinicaltrials.gov
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promising and the complication rate was similar to normothermic
group (Levi et al., 2010). Nevertheless, larger prospective trials for
TH in SCI are needed before its routine use can be recommended.

In conclusion, it seems that by determining optimal TH para-
meters and appropriate clinical applications, cooling therapy has
a strong potential to become a valuable neuroprotective inter-
vention in many neurological events. In addition, it is very likely
that combining neuroprotective strategies, both invasive and non-
invasive, will yield better outcomes than a single approach could.
Therefore, the rapid induction of hypothermia to alter deep brain

temperatures seems to be a promising candidate to be a component
of multimodal clinical strategies.
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