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DNA signatures are nucleotide sequences that can be used to detect the presence of an organism and to distinguish
that organism from all other species. Here we describe Insignia, a new, comprehensive system for the rapid
identification of signatures in the genomes of bacteria and viruses. With the availability of hundreds of complete
bacterial and viral genome sequences, it is now possible to use computational methods to identify signature sequences
in all of these species, and to use these signatures as the basis for diagnostic assays to detect and genotype microbes
in both environmental and clinical samples. The success of such assays critically depends on the methods used to
identify signatures that properly differentiate between the target genomes and the sample background. We have used
Insignia to compute accurate signatures for most bacterial genomes and made them available through our Web site. A
sample of these signatures has been successfully tested on a set of 46 Vibrio cholerae strains, and the results indicate
that the signatures are highly sensitive for detection as well as specific for discrimination between these strains and
their near relatives. Our approach, whereby the entire genomic complement of organisms are compared to identify
probe targets, is a promising method for diagnostic assay development, and it provides assay designers with the
flexibility to choose probes from the most relevant genes or genomic regions. The Insignia system is freely accessible
via a Web interface and has been released as open source software at: http://insignia.cbcb.umd.edu.
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Introduction

Modern health and security concerns have raised interest in
the real-time detection and identification of pathogenic
microbes. Bacterial and viral pathogens have always repre-
sented one of the greatest threats to human health, and in
recent times this threat increased due to the possibility of
engineered biological agents. For these and other reasons, the
genome sequencing field has targeted and sequenced the
complete genomes of hundreds of bacteria and thousands of
viruses over the past decade, with many more sequences
expected to appear in the near future. These sequences now
make it possible to develop probe-based assays capable of
identifying any of hundreds of organisms in environmental
and clinical samples. Such assays rely on detecting a DNA
sequence that distinguishes the target organism from all other
known bacteria and viruses and from background material,
which could include DNA from humans, other animals,
plants, or other species. A probe that accurately distinguishes
between a target genome—or set of genomes—and all other
background genomes is termed a signature sequence.

By our definition, a signature sequence must be conserved
among a set of target genomes and dissimilar to any sequence
in the surrounding environment. To detect a target with
existing technology such as qPCR assays, signatures must be
relatively short; however, if they are too short, they will not be
unique. For example, because there are only 4'% ~ 1 million
10-bp (base-pair) sequences, and a typical bacterial genome is
more than 1 million bp in length, most 10-mers will be shared
by many genomes and therefore make unsuitable signatures.
Increasing the length, k, of the signature alleviates this
problem, but if % is too large, it may not be possible to find

@ PLoS Computational Biology | www.ploscompbiol.org

a signature shared by a set of target genomes. Therefore,
there is a tradeoff between signature sensitivity (the number
of genomes that share the signature) and specificity (the
number of genomes that do not possess the signature). For
instance, a long signature may be highly specific to a
particular strain or isolate, but it may not be sensitive
enough to detect closely related strains that might cause the
same disease or have other shared phenotypic characteristics.
Because genomic sequence is nonrandom, and only a small
sample of genomes has been sequenced, it is difficult to
estimate an optimal signature length. In practice, signature
length is usually determined by the constraints of the
detection technology (e.g., ~20 bp for PCR primers).
Current probe-based technologies are generally based on
either PCR or microarray hybridization. These methods are
beginning to replace traditional gel-based fingerprinting
because they can more effectively differentiate between
closely related microbes [1]. Microarray methods are partic-
ularly promising because of their ability to multiplex many
probes on a single chip [1-3], improving both the redundancy
and capabilities of the diagnostic. PCR does not multiplex as
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nicely; however, it remains popular because of its robustness,
speed, and low cost [4-6]. Unlike restriction fingerprinting,

both PCR and microarray methods require explicit knowl-
edge of the underlying DNA sequence, therefore necessitat-
ing probe design.

Traditional probe design strategies have focused on single
genes or other loci that are determined a priori to be useful in
distinguishing one target organism from another. Examples
include genes that are associated with phylogenetic distance
(e.g., 16S rTRNA genes) and variable number tandem repeats
(VNTRs). In the former case, where the gene or locus is
conserved among target and nontarget organisms, gene
sequence alignments would be used to aid in probe design.
Probes would then be manually designed and screened for
sensitivity and specificity to the target. Those assays failing to
identify all target organisms, or producing false positives,
would be invalidated and the design revised. This manual
screening made diagnostic assay design expensive and only
worth doing for a few select pathogens. Alternatively, variable
number tandem repeats (VNTRs) have proven very useful in
classifying and distinguishing many closely related strains of
bacteria, such as Bacillus anthracis whose 16S TRNA sequences
are identical [7,8]. Although these methods are effective, they
only provide a limited number of signatures, which are not
always sufficient to identify bacteria or viruses in a new
sample; in particular, if the sample contains an unknown
strain, it might contain genetic variability in precisely the
region for which assays are designed. Thus, in general, one
would like to have as many assays available as possible. Insignia
addresses this by using the complete genome to generate all
unique signatures, from which the assay designer can choose
those that are best-suited for a particular application.

Prior Work

Recent increases in the amount of available genomic
sequence have made it possible to largely automate the
design and screening of probes via computational search
algorithms. Large-scale computational prediction of DNA
signatures was first undertaken for the Biological Aerosol
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Insignia

Sentry and Information System (BASIS), deployed at the Salt
Lake City Olympic Games in 2002 [9,10]. The related
BioWatch project operates by collecting and analyzing
airborne microbial samples for known pathogens, using
PCR probe-based detection methods. Newer aerosol detec-
tion systems, such as the Autonomous Pathogen Detection
System (APDS) [11], automate the process, and can identify a
known bioweapon in 0.5 to 1.5 hours [12]. Similar techniques
are not limited to aerosols, and can be used in clinical or
agricultural settings [13].

The success of these assays depends on both the available
sequence databases and the computational methods used to
identify signatures that differentiate the threat organisms
from the background. Signature design for both BASIS and
BioWatch was handled by Lawrence Livermore National
Laboratories (LLNL), and what began as a simple proof-of-
concept BLAST search at LLNL evolved into the sophisti-
cated KPATH signature pipeline [14]. KPATH identifies
sequences shared by a collection of target genomes, yet
unique with respect to all other microbial genomes, and is
notable for its ability to handle such a large search space.
Other methods for probe selection more rigorously address
hybridization efficiency (binding energy, self-hybridization,
etc.), but do not scale well for large target and background
sets [15-18]. Most notable are the approaches that promise
the scalability of KPATH combined with the hybridization
considerations of the other methods [19,20].

Because of its history of use in real-world diagnostic
systems, a more detailed description of KPATH is warranted.
It consists of four major components. First, a whole-genome
multi-alignment is performed on a set of target genomes. This
produces a “consensus gestalt,” which represents the sequen-
ces that are conserved in all the target genomes. Next, this
consensus is matched against a database of background
sequences using Vmatch [21]. This step computes all exact
matches between the target consensus and the background.
Matching sequences are masked out to create a “uniqueness
gestalt,” which represents all sequences that are shared
between target genomes and unique with respect to the
background. Third, signature sequences are supplied to the
Primer3 program [22], which designs PCR assays based on
those sequences. Primer3 produces a set of oligos suitable for
testing by a TagMan PCR assay: a forward primer, a reverse
primer, and an intervening probe oligomer [23]. Finally, assay
candidates are screened using BLAST [24] for near matches
that might disrupt the hybridization process, and ranked
according to their satisfaction of PCR experimental con-
straints. The result of this four-stage process is a set of ranked,
prescreened assays, which are then subjected to rigorous
laboratory validation. The transition to these computational
methods from previously manual design methods has resulted
in greatly increased design efficiency by limiting the number
of assays that fail during laboratory validation.

Insignia

While highly innovative, the KPATH pipeline is not
publicly available, and many of the sequences and signatures
remain secret. In addition, KPATH requires significant
computing resources (hours of computing time on a 24-
CPU server [14]), which are beyond the means of many
investigators. In contrast, Insignia is a transparent, highly
accessible signature pipeline, with the entire system being
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Figure 1. Inclusive TagMan Assay Displaying Increased Fluorescence due to Target Amplification for All 46 V. cholerae Strains Tested, and No

Fluorescent Activity among the E. coli Negative Controls

Relative florescence intensity for 40 PCR cycles is shown.
doi:10.1371/journal.pcbi.0030098.g001

controlled by a Web interface and all supporting software
released under an open source model. Additionally, Insignia
dramatically accelerates the discovery process by precomput-
ing exact sequence matches for all genomes and storing this
information in a specialized data structure for rapid retrieval.
Using the Insignia Web interface, users select a desired
signature length and a set of target genomes. After query
submission, the system analyzes the stored match informa-
tion, and identifies signature candidates in less than one
minute. Candidates may then be further screened using
experimental constraints (melting temperature, GC content,
etc.), or using further computational criteria, such as the
existence of near matches that may cause cross-hybridization.
The integrated Gemina database (http://gemina.tigr.org),
which includes detailed annotation and supplementary
epidemiological information for major pathogens, provides
further support for signature selection. This rich metadata
allows the formulation of complex queries such as “find
signatures shared by all enteric Escherichia coli,” and it allows
the user to search for signatures in the context of the
surrounding annotation. Insignia can compute signatures for
any microbial genome in GenBank (both draft and complete),
and screens signatures against a comprehensive background
including all bacterial, archaeal, and viral sequences, plus
additional eukaryotic sequences from the National Center for
Biotechnology Information (NCBI) RefSeq database [25].

Results

Insignia was used to develop assays for the identification of
V. cholerae at the species level using a TaqMan Real-Time
qPCR format. The initial version of Insignia queried a
database that was populated with ~300 bacterial genomes,
including one strain of V. cholerae (O1 biovar El Tor strain
N16961), and four near neighbors in the family Vibrionaceae
(three Vibrio and one Photobacterium species). Thus the
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question for Insignia was: among all available DNA sequences,
what sequences are unique to V. cholerae? The Insignia Web
interface was used to retrieve all 20-mers unique to V. cholerae,
from which 50 TagMan assays were designed. A similar query
with the current version of Insignia takes 10 s and returns
34,122 signatures of varying lengths.

To test whether the signature assays were broadly inclusive
of V. cholerae strains, the 50 assays were tested against a panel
of 46 strains of V. cholerae comprising a global distribution of
both clinical and environmental strains from all major
serotypes. To test whether they excluded non-cholera vibrios,
the assays were additionally tested against a panel of 22
nearest-neighbor species in the family Vibrionaceae, along with
one E. coli control. Figures 1 and 2 show example inclusive
and exclusive qPCR results, respectively.

Figure 3 summarizes the validation results for the 50 assays,
covering 69 organisms, and totaling 3,450 experiments. Each
square in Figure 3 represents one experiment, with color
indicating the qPCR Ct value (the number of PCR cycles
before amplification is detected). Green and yellow squares
indicate relatively rapid amplification while orange and red
indicate delayed or failed amplification. (For a grayscale
version of Figure 3, see Figure S1.) As Figure 3 makes clear,
most assays detected all V. cholerae strains, with approximately
half of the assays providing strong detection capability for
every one of these diverse strains. The effectiveness of some
assays deteriorated slightly for the non-O1/0139 serotypes,
although they still provided positive results. This was to be
expected, however, given that only a single V. cholerae strain
(of serotype O1) was available to Insignia. Additional genomic
sequences from the other serotypes would have undoubtedly
removed many of these less-efficient signatures from the
Insignia output. Gardner et al. explore this phenomenon
further in the context of viral signature development [26].

In addition to successful detection of a wide variety of
V. cholerae strains, all but one of the tested assays (98%) were
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Figure 2. Exclusive TagMan Assay Displaying Increased Fluorescent Activity for the Reference Strain of V. cholerae and No Fluorescent Activity among
the 23 Non-Cholera Strains

Relative florescence intensity for 50 PCR cycles is shown.
doi:10.1371/journal.pcbi.0030098.9g002

able to successfully discriminate between V. cholerae and its Assay signature sequences are provided in Table S1,
near neighbors. Furthermore, 1,115 of the 1,150 exclusive inclusive and exclusive strain information in Table S2, and
tests (97%) had Ct values >50, indicating that all of the tested detailed qPCR results for all 3,450 validation experiments in
V. cholerae signatures are either absent or significantly Table S3. This information is also available from the Insignia
divergent from the other members of Vibrionaceae. Web site.

Signature Assays
5 10 15 20 25 30 35 40 45 50

V. cholerae
serotype O1

V. cholerae
serotype 0139

V. cholerae
non-01/non-0139

V. cholerae
non-01
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Figure 3. TagMan Validation Results for the 50 Assay Designs Tested on 46 V. cholerae, 22 Near Neighbors, and One E. coli Control

Organisms are grouped vertically, and assays are sorted horizontally by effectiveness. Each colored box represents the Ct value for one of the 3,450
validation experiments. For example, assays 1-5 show strong amplification for all V. cholerae strains and heavily delayed or failed amplification for all
other organisms.

doi:10.1371/journal.pcbi.0030098.g003
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Figure 4. A Match Cover (M,,) Constructed from the Exact Matches between a Target (t) and Background (b) Genome
My, intervals (red boxes) represent regions of the target with a contiguous match to the background (gray boxes).

doi:10.1371/journal.pcbi.0030098.g004

Discussion

Our validation results indicate that whole genome signa-
ture discovery, whereby the entire genomic complement of
organisms are compared to identify probe targets, is a
promising new tool for diagnostic assay development. This
approach provides assay designers with the flexibility to
choose probes of the proper length from the most relevant
genes or genomic regions, while avoiding sequences known to
contain no suitable signatures. Insignia also achieves un-
matched scale by screening all microbial genomes in
GenBank against a comprehensive background, while provid-
ing rapid access to DNA signatures through its Web interface.

Insignia outputs signature candidates, rather than high
confidence, laboratory-validated signatures. However, our
results demonstrate that most of these candidates can work
quite well as laboratory assays. Due to the limited availability
of genomic sequence in public databases (relative to the
diversity of all organisms), and the possibility of near-match
cross-hybridization, it is difficult to validate a genomic
signature via purely computational methods. Instead, Insignia
provides a computational screening regimen that eliminates
many invalid signatures, so that laboratory validation may
focus on the most likely candidates. Additional sequencing will
help overcome the computational limitation, and future work
on Insignia will be focused on screening signature candidates
for near matches that may result in cross-hybridization.

In addition to the computational restrictions, limitations of
TagMan PCR have been demonstrated for rapidly diverging
target genomes, such as hepatitis and HIV viruses [26,27].
However, for typical bacterial targets, TagMan assays remain
one of the most rapid and sensitive methods for signature
detection. In the case where TaqMan is inadequate, different
detection technologies, such as chip-hybridization methods,
could be used to remove the TagMan requirement for three
adjacent probes and to provide greater signature redun-
dancy. Insignia would easily support the design of such assays.

Viruses pose significant challenges for all detection
methods because of their small genomes and high mutation
rates. The Insignia database contains thousands of viral
genomes; however, for large target sets there are often no
conserved signatures. To address highly divergent targets,
future Insignia versions may include the ability to identify
signatures with degenerate bases, for cases where no exact
signature is shared between them. An alternative is to
compute the minimum signature set, where each signature
might not identify every target, but the set contains at least
one identifying signature for each target. This approach is
particularly suited for chip assays where signatures can be
multiplexed. A related approach selects combinations of non-
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unique probes, such that certain viral strains can be identified
by their hybridization pattern [28]. Insignia support for
specialized viral diagnostics is left for future work.

Materials and Methods

Insignia provides real-time signature retrieval for an arbitrary set
of target and background genomes. This requires the vast majority of
computational work to be done in advance and cached, so that a
minimum amount of computation is necessary at the time of the
query. To accommodate this, Insignia is designed as two separate
components: the match pipeline and the signature pipeline. This
distinction separates the computationally intensive matching step
from the much simpler signature generation step, and allows
sequence matches to be recomputed offline as new genomes become
available. While the matches may take days to compute, the signatures
can be extracted from this cached information in seconds.

Match pipeline. The function of the match pipeline is to identify
exact matches between all pairs of target and background sequences
in the database. The size of the Insignia sequence database is
currently about 60 billion nucleotides, and even with the linear-time
algorithms described below, this is too large to search in real time.
Some computational effort is saved by limiting targets to microbial
genomes only, but the process of matching all pairs of target and
background genomes remains expensive.

To complete the matching phase within a reasonable amount of
time, all exact matches of 18 bp or longer are first identified using
MUMmer [29-31], a linear time and space suffix tree matching
algorithm. To expedite the process, MUMmer searches are parti-
tioned across a 192-node Linux cluster. Even with the use of an
efficient search algorithm, however, the size of the database and the
high repeat content of many genomes cause the size of the output—
the number of matches between all pairs of genomes—to reach
unmanageable levels (e.g., the number of matches can be quadratic
with respect to the size of the genomes). To combat this problem,
matches are converted to a minimalized “match cover” data
structure, described next. This structure saves substantial space and
later provides a convenient mechanism for computing signatures.

The match cover, My, of a target genome ¢, with respect to some
background genome b, is simply the list of intervals on ¢ that are
covered by contiguous, exact matches to genome b. To eliminate
redundancy, all intervals contained within larger intervals are
removed, but overlapping intervals are not merged. This assures that
every subinterval matches contiguously to some portion of the
background sequence, and every maximal match to the background is
contained by a single interval (Figure 4). After construction of the
match cover, the intervals are sorted by their start position, and
stored as a list of (start, length) pairs. Because this structure only
stores the target “half” of the match data, space requirements are
reduced by eliminating irrelevant background match coordinates.
What remains is a minimal set of intervals on genome ¢ that exactly
match some part of genome b.

In addition to storing only the target half of the matches, the
match cover eliminates redundant information caused by repetitive
sequences. Take for instance, two potential target genomes ¢ and u.
Because all target genomes are, by default, part of the background,
two match covers will be created, M,, and M,,. Now assume an
identical repeat occurs x times in ¢, and y times in u. A list of exact
matches (start ¢, start u, and length) would require 3xy integer values
to represent the repeat, while the match covers would require only
2(x+y) combined values. Therefore, even when storing both halves of
a match set (¢ — u and u — t), the match cover is more efficient in
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Figure 5. Shared k-mers (Red Lines) Obtained from an Intersection (/,) of Three Match Covers M, M,, M,,

I, intervals (red boxes) represent regions of the reference r shared with all other target genomes s, t, u as derived from the match covers between the
reference and each target (gray boxes). k-mers not contained by /, are not shared by all targets (dotted gray lines).

doi:10.1371/journal.pcbi.0030098.9g005

dealing with repeats. This behavior was empirically tested for an all-
versus-all comparison of ~300 bacterial genomes, and the match
cover reduced the match list from its original size of 78 GB to just 2
GB. This 39-fold space reduction demonstrates the prevalence of
repetitive matches in real data and the utility of the match cover
structure. Considering the match cover is simply a list of intervals,
standard data compression could be applied to obtain further space
savings.

The match cover is not a lossless conversion, however, because it
discards information about where a match occurred in the back-
ground. The information is nonetheless sufficient for signature
computation, where it suffices to know which regions of a target are
unique. Furthermore, by excluding irrelevant background match
positions, large background databases can be accommodated without
drastically increasing the match cover size, and draft quality genomic
sequences can be incorporated without difficulty. As the next section
will show, the match cover encapsulates all the necessary information
for signature discovery and allows for the rapid construction of
signatures for any set of target and background genomes in linear
time.

For perspective, it is worth mentioning that the match cover is an
equivalent, interval representation of matching statistics [32,33]. Both
formalizations represent the longest contiguous match beginning at
any position of a sequence, but our interval representation is space-
efficient and easier to interpret in the context of signature discovery.
Rahmann also leverages the properties of matching statistics in
describing a “jump list” for the discovery of DNA probes [20], and it
is interesting to note that although the match cover and jump list
were arrived at independently, they are analogous given their shared
utilization of matching statistics.

Signature pipeline. The function of the signature pipeline is to
generate valid signatures for any set of target and background
genomes. Because there are thousands of possible targets and many
more backgrounds, combinatorics rules out the pre-computation of
all signatures; however, it is possible to generate signatures from the
match information with minimal overhead. The pipeline for doing so
is divided into two parallel stages, corresponding to the two primary
criteria a valid signature must meet: 1) a signature must be shared by
all genomes in the target set; and 2) a signature must not exist in any
genome in the background set.

The first stage computes a list of k-mers (DNA sequences of length
k) shared by the set of target genomes. This could be determined by
computing a whole-genome multi-alignment among the targets;
however, multi-alignment algorithms are too slow for a real-time
application (e.g., 30 min to align three E. coli strains [34]).

U,

Mm . e

Alternatively, shared k-mers could be identified by intersecting k-
mer tables for each target genome, but these tables would have to be
constructed on the fly for each k (since £ is specified by the user at run
time), which would also be costly. Instead, Insignia utilizes the pre-
computed match cover to quickly infer shared k-mers for any length %
greater than the minimum match length (currently 18 bp) used to
build the match covers.

To determine which k-mers are shared between a set of target
genomes, one target is chosen as the reference r, and all match covers,
M,,, are intersected for each ¢ in the target set. This intersection yields
all matches shared by the target genomes relative to the sequence of
the reference genome. Given the resulting match cover intersection I,
for a collection of targets, a k-mer in r is shared by all other target
genomes if, and only if, it is entirely contained within a single interval
of I, (Figure 5).

A parallel stage of the signature pipeline computes a list of k-mers
unique to a target genome with respect to some background. Once
again, the match cover information is leveraged to efficiently identify
these k-mers. Assuming the same target reference 7, all match covers,
M,;, are merged for each b in the background set. This produces a
consolidated set of matches to the reference from the background.
Matches smaller than k, and matches entirely contained by another
interval, are irrelevant and can be removed. Given the resulting
match cover union U, for a collection of backgrounds, a k-mer in 7 is
unique with respect to the background if, and only if, it is not entirely
contained within a single interval of U, (Figure 6). It is sufficient to
compute unique k-mers with respect to a single target, because a
sequence will only be reported as a signature if it is also shared by all
target genomes. Thus, any single target is guaranteed to contain all of
the ensuing signature sequences.

The interval set operations for signature detection are extremely
efficient. For Mpgs-sorted reference-target match intervals and T
target genomes, the time complexity for finding shared-mers is
O(Mpg log T), with the log component incurred by a priority queue of
overlapping interval end points. Given the bounded number of
possible target genomes, this component can be treated as a constant
and the complexity becomes linear. The time complexity for finding
unique-mers is also linear: O(Mgp) for Mgp reference-background
intervals. The results of these two operations are then intersected to
identify sequence signatures, i.e., k-mers that are both shared by the
targets and unique with respect to the background. Because all three
of these operations are linear with regard to the number of match
intervals and there cannot be more than [ intervals for a sequence of
length [, the complexity of extracting signatures from a match cover
database is linear with regard to the size of the search space O(l). For a
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Figure 6. Unique k-mers (Red Lines) Obtained from a Union (U,) of Three Match Covers M,,, M,p, M,

U, intervals (red boxes) represent regions of the reference r matching some background genome g, b, ¢ as derived from the match covers between the
reference and each background (gray boxes). k-mers contained by U, match the background and are not unique (dotted gray lines).

doi:10.1371/journal.pcbi.0030098.g006
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typical target and background set, this translates to about one minute
of processing, given the current database size and computational
processing speeds.

Web interface. The Insignia signature pipeline is accessible by a
Web interface, hosted at the University of Maryland Center for
Bioinformatics and Computational Biology (http://insignia.cbcb.umd.
edu). This interface affords signature queries for any set of target
genomes in the database, and displays results in the context of
genome annotations for enhanced understanding and analysis. In
addition, Insignia is closely coupled with the Gemina database (http://
gemina.tigr.org), which provides sequence and annotation data for all
bacterial, archaeal, and viral genomes available from GenBank, along
with genotypic and epidemiological information for all NIAID
category A,B,C pathogens.

To perform a signature query, the user specifies a reference
genome, a set of target genomes, and a desired signature length. All
reported signatures will be perfectly conserved among all genomes in
the target set and absent from all other genomes. The reference
genome, which is by definition one of the targets, serves as the
coordinate system on which all signatures and genes (annotation) are
based. Selection of the target genomes is carried out either through a
list-based, tree-based, or query-based interface. In the list version,
users are presented with a full listing of all genomes in the database,
while the tree view arranges genomes in a taxonomy tree. The query
interface available at the Gemina Web site facilitates text-based,
controlled vocabulary queries of pathogen, host, disease, symptom,
anatomy, transmission method, and geographic location attributes.

After computing all signatures for a given query, users may filter
and display the results based on various experimental constraints. For
instance, hybridization probes may require a certain GC content and
melting temperature, so signatures falling below some user-specified
thresholds can be screened out. Results may also be limited to specific
genes, genes with specific functions, or intergenic sequence. After
specifying the desired filters, signatures can be displayed and down-
loaded in tabular format or displayed in a genome browser, along with
annotation data, to highlight each signature’s position context.

To further support assay design, Insignia provides users with the
ability to screen signatures for near matches and design signature-
based primers. To search quickly for near matches, Insignia screens
signature candidates against the National Center for Biotechnology
Information (NCBI) databases using BLAST. This process helps
eliminate signatures with near matches to background sequences
and matches to sequences not included in the Insignia database, such
as ESTs or environmental sequences. Once a set of signatures has been
decided upon, the integrated Primer3 [22] software can be used to
choose suitable primers and hybridization probes from the signatures.

Assay design and validation. The nucleotide sequences of the
probes and primers for each TagMan assay were selected from the
signature set identified by Insignia for V. cholerae O1 biovar El Tor strain
N16961. The probes and primers were designed outside of Insignia
using commercially available design software (Allele ID, Premier
Biosoft International, http:/lwww.premierbiosoft.com). All assays were
designed for PCR to run under the same conditions. The primers and
probes were synthesized commercially (Invitrogen, http:/lwww.
invitrogen.com, and Sigma-Genosys/Sigma-Aldrich, http:/lwww.
sigmaaldrich.com). The probes were synthesized with the FAM
fluorescent reporter dye at the 5 end and with TAMRA quencher

References

1. Willse A, Straub TM, Wunschel SC, Small JA, Call DR, et al. (2004)
Quantitative oligonucleotide microarray fingerprinting of Salmonella enter-
ica isolates. Nucleic Acids Res 32: 1848-1856.

Wang D, Coscoy L, Zylberberg M, Avila PC, Boushey HA, et al. (2002)
Microarray-based detection and genotyping of viral pathogens. Proc Natl
Acad Sci U S A 99: 15687-15692.

Volokhov D, Pomerantsev A, Kivovich V, Rasooly A, Chizhikov V (2004)
Identification of Bacillus anthracis by multiprobe microarray hybridization.
Diagn Microbiol Infect Dis 49: 163-171.

Slezak T, Kuczmarski T, Ott L, Torres C, Medeiros D, et al. (2003)
Comparative genomics tools applied to bioterrorism defense. Brief
Bioinform 4: 133-149.

O’Connell KP, Bucher JR, Anderson PE, Cao CJ, Khan AS, et al. (2006) Real-
time fluorogenic reverse transcription-PCR assays for detection of
bacteriophage MS2. Appl Environ Microbiol 72: 478-483.

Moser M], Christensen DR, Norwood D, Prudent JR (2006) Multiplexed
detection of anthrax-related toxin genes. ] Mol Diagn 8: 89-96.

Keim P, Klevytska AM, Price LB, Schupp JM, Zinser G, et al. (1999)
Molecular diversity in Bacillus anthracis. ] Appl Microbiol 87: 215-217.
Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, et al. (2000)

@ PLoS Computational Biology | www.ploscompbiol.org

0893

Insignia

dye at the 3’ end. Genomic DNA was extracted from each inclusive
and exclusive validation strain (DNeasy Blood and Tissue Kit, Qiagen,
http:/lwww.qiagen.com), and species identity was confirmed for each
strain sample by partial 16S rDNA sequencing (MicroSeq ID, http://
www.appliedbiosystems.com).

Real-time PCR was performed in a reaction mixture with a total
volume of 25 pl containing 100 ng of genomic DNA, 500 nM of each
primer, 250 nM of each fluorogenic probe, and TagMan Universal
Master Mix (Applied Biosystems). The Master Mix contained
AmpkErase uracil-N-glycosylase (UNG), deoxynucleoside triphosphate
with dUTPs, ROX as an internal passive reference, and an optimized
buffer component. Amplification and detection were carried out in
an ABI 7500 Real-Time PCR System (Applied Biosystems) with an
initial step of 50 °C for 2 min, 95 °C for 10 min, followed by 40 cycles
of 95 °C for 15 s and 60 °C for 1 min.

All PCR assays were conducted in duplicate and Ct values were
used to evaluate the extent to which each assay was inclusive of
V. cholerae strains and/or excluded near-neighbor strains. Ct values of
<21 were considered strong positive, and Ct values between 21 and
50 were binned in increments of 4 (i.e., 21-24, 25-28, etc.) to simplify
analysis of the relative efficiency of PCR across all assays and strains.

Supporting Information

Figure S1. Alternate Grayscale Version of Figure 3
Found at doi:10.1371/journal.pcbi.0030098.sg001 (76 KB PDF).

Table S1. V. cholerae Assay Signature Sequences and Targeted Gene
Function

Found at doi:10.1371/journal.pcbi.0030098.5st001 (100 KB PDF).

Table S2. Inclusive and Exclusive Strain Information
Found at doi:10.1371/journal.pcbi.0030098.5st002 (131 KB PDF).

Table S3. Detailed qPCR Results for All 3,450 Validation Experiments
Found at doi:10.1371/journal.pcbi.0030098.5st003 (89 KB PDF).

Acknowledgments

The authors thank Michael Schatz, Mihai Pop, and Arthur Delcher for
helpful algorithmic discussions; TIGR collaborators Neil Hall, Lynn
Schriml, and Aaron Gussman for providing us with a pre-release
version of Gemina; and the anonymous reviewers for their
constructive suggestions.

Author contributions. AMP, KA, and SLS designed Insignia. DDS
tested Insignia and managed the computing cluster. JAM and ITK
designed and performed the validation experiments. ET, AH, and
RRC determined the validation strains and contributed the DNA
samples. AMP, JAM, ITK, and SLS prepared the manuscript.

Funding. This work was supported in part by the US Department
of Homeland Security Science and Technology Directorate under
awards W81XWH-05-2-0051 and NBCH2070002.

Competing interests. The authors have declared that no competing
interests exist.

Multiple-locus variable-number tandem repeat analysis reveals genetic

relationships within Bacillus anthracis. ] Bacteriol 182: 2928-2936.

Fitch JP, Gardner SN, Kuczmarski TA, Kurtz S, Myers R, et al. (2002) Rapid

development of nucleic acid diagnostics. Proc IEEE 90: 1708-1721.

Fitch JP, Raber E, Imbro DR (2003) Technology challenges in responding to

biological or chemical attacks in the civilian sector. Science 302: 1350-1354.

. McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, et al.
(2003) Autonomous detection of aerosolized Bacillus anthracis and Yersinia
pestis. Anal Chem 75: 5293-5299.

10.

12. Brown K (2004) Biosecurity. Up in the air. Science 305: 1228-1229.

13. Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and
developing technologies for monitoring agents of bioterrorism and
biowarfare. Clin Microbiol Rev 18: 583-607.

14. Slezak T, Kuczmarski T, Ott L, Torres C, Medeiros D, et al. (2003)
Comparative genomics tools applied to bioterrorism defence. Brief
Bioinform 4: 133-149.

15. Kaderali L, Schliep A (2002) Selecting signature oligonucleotides to
identify organisms using DNA arrays. Bioinformatics 18: 1340-1349.

16. Gordon PM, Sensen CW (2004) Osprey: A comprehensive tool employing

novel methods for the design of oligonucleotides for DNA sequencing and
microarrays. Nucleic Acids Res 32: e133.

May 2007 | Volume 3 | Issue 5 | €98



17.

19.

20.

21.

22.

23.

24,

Nordberg EK (2005) YODA: Selecting signature oligonucleotides. Bio-
informatics 21: 1365-1370.

. Li F, Stormo GD (2001) Selection of optimal DNA oligos for gene

expression arrays. Bioinformatics 17: 1067-1076.

Tembe W, Zavaljevski N, Bode E, Chase C, Geyer J, et al. (2007)
Oligonucleotide fingerprint identification for microarray-based pathogen
diagnostic assays. Bioinformatics 23: 5-13.

Rahmann S (2003) Fast and sensitive probe selection for DNA chips using
jumps in matching statistics. Proc IEEE Comput Soc Bioinform Conf 2: 57-64.
Kurtz S (2003) A time and space efficient algorithm for the substring
matching problem. Technical Report. Hamburg: Zentrum fiir Bioinforma-
tik, Universitit Hamburg.

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for
biologist programmers. Methods Mol Biol 132: 365-386.

Livak K], Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides
with fluorescent dyes at opposite ends provide a quenched probe system
useful for detecting PCR product and nucleic acid hybridization. PCR
Methods Appl 4: 357-362.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local
alignment search tool. ] Mol Biol 215: 403-410.

. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences

(RefSeq): A curated nonredundant sequence database of genomes, tran-
scripts, and proteins. Nucleic Acids Res 35: D61-D65.

@ PLoS Computational Biology | www.ploscompbiol.org

0894

Insignia

. Gardner SN, Lam MW, Mulakken NJ, Torres CL, Smith JR, et al. (2004)

Sequencing needs for viral diagnostics. J Clin Microbiol 42: 5472-5476.

. Gardner SN, Kuczmarski TA, Vitalis EA, Slezak TR (2003) Limitations of

TagMan PCR for detecting divergent viral pathogens illustrated by
hepatitis A, B, C, and E viruses and human immunodeficiency virus. J Clin
Microbiol 41: 2417-2427.

. Urisman A, Fischer KF, Chiu CY, Kistler AL, Beck S, et al. (2005) E-Predict:

A computational strategy for species identification based on observed DNA
microarray hybridization patterns. Genome Biol 6: R78.

. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, et al. (1999)

Alignment of whole genomes. Nucleic Acids Res 27: 2369-2376.

. Delcher AL, Phillippy A, Carlton ], Salzberg SL (2002) Fast algorithms for large-

scale genome alignment and comparison. Nucleic Acids Res 30: 2478-2483.

. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile

and open software for comparing large genomes. Genome Biol 5: R12.

. Chang WI, Lawler EL (1994) Sublinear expected time approximate string

matching and biological applications. Algorithmica 12: 327-344.

. Gusfield D (1997) Algorithms on strings, trees, and sequences: Computer

science and computational biology. New York: Cambridge University
Press. 554 p.

. Hohl M, Kurtz S, Ohlebusch E (2002) Efficient multiple genome alignment.

Bioinformatics 18: S312-S320.

May 2007 | Volume 3 | Issue 5 | €98



