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Overall survival prediction of non-
small cell lung cancer by integrating 
microarray and clinical data with 
deep learning
Yu-Heng Lai   1, Wei-Ning Chen2, Te-Cheng Hsu2, Che Lin3*, Yu Tsao4 & Semon Wu5

Non-small cell lung cancer (NSCLC) is one of the most common lung cancers worldwide. Accurate 
prognostic stratification of NSCLC can become an important clinical reference when designing 
therapeutic strategies for cancer patients. With this clinical application in mind, we developed a deep 
neural network (DNN) combining heterogeneous data sources of gene expression and clinical data to 
accurately predict the overall survival of NSCLC patients. Based on microarray data from a cohort set 
(614 patients), seven well-known NSCLC biomarkers were used to group patients into biomarker- and 
biomarker+ subgroups. Then, by using a systems biology approach, prognosis relevance values (PRV) 
were then calculated to select eight additional novel prognostic gene biomarkers. Finally, the combined 
15 biomarkers along with clinical data were then used to develop an integrative DNN via bimodal 
learning to predict the 5-year survival status of NSCLC patients with tremendously high accuracy (AUC: 
0.8163, accuracy: 75.44%). Using the capability of deep learning, we believe that our prediction can be 
a promising index that helps oncologists and physicians develop personalized therapy and build the 
foundation of precision medicine in the future.

Lung cancer is the worldwide leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) 
accounting for approximately 85% of all lung cancer patients1. The most common NSCLC subtypes are adenocar-
cinoma (ADC), squamous cell carcinoma (SQC), and large cell carcinoma. Although the overall 5-year survival 
rate of patients diagnosed with stage I ADC was 63%, nearly 35% of patients relapsed after surgery with a poor 
prognosis2. Adjuvant treatments have been considered ideal for ADC patients with the highest risk of recurrence 
or death to increase survival rates3. Therefore, prognostic stratification is crucial for categorizing patients to help 
doctors make decisions on therapeutic strategies.

Recently, researchers have developed predictive methods based on gene expression profiles to classify lung 
cancer patients with distinct clinical outcomes, including relapse and overall survival4. Previous studies have 
shown the importance of biomarkers for NSCLC, such as EPCAM, HIF1A, PKM, PTK7, ALCAM, CADM1, and 
SLC2A1, which were used as a single biomarker for predicting prognostic condition or metastasis5–11. However, 
cancer is a systemic disease with complicated and illusive mechanisms that often involves multiple genes and 
cross-talk between pathways. Therefore, extending our understanding of NSCLC via the single gene biomarkers 
by studying the interactions between genes is essential for more accurate prognostic prediction.

Machine learning algorithms are powerful tools that apply input features (biomarkers) to capture the com-
plicated interdependencies between these features to accurately predict clinical outcomes12. In addition, pre-
dicting cancer prognosis can be improved by appropriately modeling the interactions between biomarkers 
compared with the single biomarker approach13. Deep learning has seen unprecedented success in many fields, 
such as image recognition14, speech recognition15, and biology16. A deep neural network (DNN) is composed of 
non-linear modules, which represent multiple levels of abstraction17. Each representation can be transformed 
into a slightly more abstract level, leading to even more involved interactions among features. As a result, deep 
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learning algorithms can extract high-level abstractions from different types of data sources and provide superior 
performance compared with traditional machine learning methods18. Thanks to the representation of features in 
hidden layers, a DNN can easily combine the networks for different modalities. Therefore, we aimed to propose 
an integrative DNN that combines both gene expression and clinical data to improve prognostic prediction for 
NSCLC patients.

During the flourishing development of deep learning algorithms in biomedical applications, two important 
works have drawn our attention. Coudray et al. trained their convolutional neural network (CNN) with the 
whole-slide images for NSCLC patients obtained from The Cancer Genome Atlas (TCGA) to classify them into 
adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), or normal lung tissues. They suggested that deep 
learning models can help in detecting cancer subtypes and gene mutation19. Bo He et al. performed feature extrac-
tion on computed tomography (CT) images of NSCLC patients and built a random forest classifier for predicting 
the survival status20. Note that both their prediction models dealt with image data while we focused on gene 
expression and clinical information. We believe that their works and ours are complementary to each other. From 
the gene expression data, we selected a set of 15 prognostic biomarkers that can identify patients with adverse 
prognosis in the early stages. We can draw biological insights from the molecular mechanisms among them for 
a better understanding of the formation and metastasis of cancer cells. We motivate our systems biology feature 
selection process in the paragraphs below.

Due to the relative small sample size of patient data compared to the large number of genetic features, sci-
entists have assiduously focused on feature selection algorithms that aim to obtain a subset of significantly rep-
resentative features21. However, while traditional feature selection methods are often based on the statistical or 
predictive performance of the patient dataset, biological concepts were rarely considered when isolating poten-
tial gene features. Therefore, the predicted gene features to apply and improve therapeutic strategies for cancer 
patients are limited.

Systems biology is computational and mathematical modeling of complex biological systems that has been 
widely applied22. There is increasing interest in applying systems biology approaches to identify cancer-associated 
genes as feature selection strategies23. In this study, we established a systems biology approach for NSCLC 
patients, which identified eight novel survival-related genes based on seven previously well-known biomarkers. 
The combined 15 biomarkers were used in the following DNN model to predict the survival status of patients. 
Through a bimodal deep learning approach, we combined gene expression profiles and clinical data sources to 
predict the 5-year overall survival of NSCLC patients. We believe our significant improvements to predicting 
prognostic outcomes for lung cancer patients may help oncologists and physicians make accurate and precise 
decisions on appropriate treatment for individual patients, which may build the foundation for future personal-
ized therapeutic strategies.

Results
We integrated systems biology and deep learning approaches to predict the survival status of NSCLC patients. In 
addition, the systems biology approach was specifically used to identify prognostic biomarkers (gene features). 
The selected prognostic biomarkers were used as input features for our DNN prediction based on the 5-year sur-
vival of lung cancer patients. Moreover, we further integrated their clinical background via an integrative DNN 
model to improve the performance of our prediction. The schematic of our strategy is shown in Fig. 1.

Figure 1.  Schematic of the study design. We built 7 pairs of biomarker+ and biomarker- gene interaction 
networks for patients divided with high and low well-known biomarkers expression levels identified with 
SetpMiner, respectively. Overlapping these 7 prognosis relevance values (PRV) lists produced 8 prognostic 
biomarkers. We chose lung adenocarcinoma (ADC) patients with complete clinical data (n = 512) and divided 
them into the training (n = 256), test (n = 171), and validation (n = 85) sets. We trained deep neural networks 
(DNNs) using the training set and tuned hyper-parameters using the validation set. After training the DNNs, 
we classified the test set and conducted the survival analysis.
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Identification of eight prognostic biomarkers for feature selection.  We referred to seven 
well-known biomarkers that are highly correlated with NSCLC according to previous studies (EPCAM, HIF1A, 
PKM, PTK7, ALCAM, CADM1, and SLC2A1)5–11,24,25. Based on each of these seven biomarkers, we separated the 
614 ADC patients into biomarker- and biomarker+ subgroups according to expressions by StepMiner26 (Fig. 1, 
systems biology feature selector).

We constructed interaction networks for both biomarker- and biomarker+ subgroups, resulting in a pair 
of gene interaction networks for each NSCLC biomarker. From each pair of interaction networks, genes were 
ranked by PRV (see Methods). We selected the top 30 genes as candidates for each well-known NSCLC biomarker. 
The details of the PRV for each biomarker are listed in the Supplementary Material. To guarantee robustness, we 
overlapped the seven PRV lists and found that genes, including COPS5, CUL1, CUL3, EGFR, ELAVL1, GRB2, 
HSP90AA1, NRF1, PPP1CA, RNF2, RPA2, SIRT7, and SUMO1 were overlapped in all seven lists. By filtering these 
genes based on significance for survival (p < 0.01), the final eight prognostic biomarkers, CUL1, CUL3, EGFR, 
ELAVL1, GRB2, NRF1, RNF2, and RPA2, were identified. Combined with seven well-known biomarkers, a set of 
15 prognostic gene biomarkers were adopted in the following analyses.

Integrating gene expression and clinical data using a DNN.  We used a DNN to exploit the inter-
dependencies of the 15 selected prognostic biomarkers, which were fed into the DNN as input features. The 
output of the DNN was a binary outcome of the five-year overall survival probability for the patient after the first 
therapeutic treatment. The optimized structure for our DNN uses four hidden layers, each with 40 neurons, with 
rectified linear unit (ReLU) as the activation function and Nadam as the optimizer. To verify the effectiveness 
of the DNN on survival classification, we compared the performance with other well-known classifiers, such as 
K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM) by using the same prog-
nostic biomarkers as input features27–29. For the KNN classifier, the Euclidean distance was used as the distance 
metric, and for the SVM classifier, a Gaussian radial basis function was used as the kernel function. The parame-
ters used in KNN, RF, and SVM were all optimized based on 10-fold cross-validation of the training set. We also 
compared different classifiers with the molecular prognostic index (MPI)30. Due to the imbalance of labels across 
the entire dataset (n = 512; survivals = 355 and deaths = 157), the classifiers tended to classify the patients as alive. 
In this case, if a naive classifier classified all patients as alive, it still reached an accuracy of 0.6953. On the other 
hand, AUC is a much better performance metric than accuracy that takes class imbalance into account and is a 
thresholdless metric (details described in the Supplementary Materials). We found that the performance of the 
DNN (AUC: 0.7926, accuracy: 0.7485) was superior to all other methods in terms of AUC when trained with only 
microarray data. However, the accuracy of the DNN was comparable with RF (AUC: 0.7767, accuracy: 0.7544), 
yet higher in AUC. Furthermore, the AUC of RF was close to our DNN model, so we could compare RF and exist-
ing work as the candidate for further investigation30. Moreover, we trained our DNN using only clinical patient 
data (age, gender, and stage). In a previous study, a clinical prognostic index (CPI) risk score was defined by using 
clinical data30. We again noted that the DNN (AUC: 0.7388, accuracy: 0.6608) achieved a significantly higher 
AUC than CPI (AUC: 0.6460, accuracy: 0.6257) and RF (AUC: 0.6361, accuracy: 0.6784) (see Supplementary 
Materials Tables S3–5 for more information).

Although several studies have combined microarray and clinical data for making predictions31, it was difficult 
to integrate two heterogeneous data sources. The DNN has the flexibility to integrate heterogeneous data sources 
by merging the hidden layers of the neural networks. The application of a DNN for integrating different types 
of data sources has been successful in handling audio and video data sources32; however, it is relatively new to 
integrate gene expression and clinical data sources. Therefore, we proposed using a DNN for data integration 
(Fig. 2a). The weights of the integrative DNNs were trained by feeding in the microarray and clinical data simul-
taneously. The weights trained for the individual DNN networks were used as initial weights for the pre-training 
of the integrative network (see Supplementary Materials).

Gentles et al. also combined gene expression data (MPI) and clinical data (CPI) to define a composite risk 
model (CRM). The threshold was chosen from the median of training sets for the CRM. We compared the per-
formances of our proposed integrative DNN with RF and CRM, as shown in Fig. 2b. The AUC performance of 
the integrative DNN (AUC: 0.8163, accuracy: 0.7544) was better than that of the RF (AUC: 0.7926, accuracy: 
0.7661). It is important to note that after we included the clinical data, the improved AUC performance of the 
DNN (0.7926 to 0.8163, improved by 3%) was higher than that of the RF (0.7767 to 0.7926, improved by 2%). Our 
proposed integrative DNN is more powerful for integrating heterogeneous data sources reflected by the AUC 
performance. It is important to note that both machine learning-based algorithms significantly outperformed the 
CRM method (AUC: 0.7223, accuracy: 0.6491).

From AUC to reclassification.  To obtain an overall picture of the performance comparison, we also con-
sidered precision, recall, and F1-score. The F1-score is also called the F1 measure and it considers both the pre-
cision and the recall by computing the harmonic mean of precision and recall33. To compute these metrics, we 
need to find suitable cut-off points for reclassification. We used the Youden index34 to select cut-off points for 
reclassification. Such reclassification was conducted on both DNN with only microarray data and the integrative 
DNN with both microarray and clinical data. We calculated the cut-off points as 0.4396 and 0.4008 for the two 
DNNs, respectively. Similarly, we also calculated new cut-off points as 0.32 and 0.34 for the microarray RF and 
integrative RF, respectively. It is to note that these new cut-off points are smaller than 0.5 (original cut-off point), 
indicating that the number of patients classified as deaths increased after reclassification.

To confirm the effectiveness of reclassification, we evaluated their performances in terms of accuracy, preci-
sion, recall, and F1-score for the microarray DNN and RF and the integrative DNN and RF (Fig. 3a). Note that 
the imbalanced class distribution of the data made the recall and F1-score of the original classifier low. When 
Youden indices were used for reclassification, the evaluation criteria (recall and F1-score) improved for both the 
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microarray and integrative DNNs and RFs. For DNNs, we observed a significant increase in recall (from 0.3269 to 
0.5961 for the microarray DNN; 0.3462 to 0.7885 for the integrative DNN) and F1-score (from 0.4416 to 0.5740 
for the microarray DNN; from 0.4615 to 0.6406 for the integrative DNN). Similarly, we also observed a signifi-
cant increase in recall (from 0.4230 to 0.7307 for the microarray RF; 0.4423 to 0.7115 for the integrative RF) and 
F1-score (from 0.5116 to 0.5984 for the microarray RF; from 0.5349 to 0.5968 for the integrative RF). For RF, we 
observed a minor decrease in accuracy (from 0.7485 to 0.7310 for the microarray DNN; from 0.7544 to 0.7310 
for the integrative DNN). Furthermore, there was a decrease in precision (from 0.68 to 0.5536 for the microarray 
DNN; from 0.6923 to 0.5394 for the integrative DNN), but a significant increase in recall compensates, resulting 
in a significant overall improvement in the F1-score. We also observed decreases in both accuracy (from 0.7544 
to 0.7017 for the microarray RF; from 0.7661 to 0.7076 for the integrative RF) and precision (from 0.6470 to 
0.5067 for the microarray RF; from 0.6765 to 0.5139 for the integrative RF) for RFs. Overall, the integrative DNN 
achieved a higher F1-score than the integrative RF, and therefore is a more desired classifier after reclassification.

Survival analysis.  To validate the effectiveness of our proposed approach, we conducted survival analysis for 
patients on our prognostic biomarkers and deep learning models. We divided the patients into high risk (which 
was predicted as dead) and low risk (which was predicted as survived) by our proposed microarray and integra-
tive DNNs, respectively. KM analysis (see Methods) and proportional-hazards model were used to evaluate the 
results for both DNN models with/without reclassification (Fig. 3). We observed that reclassification indeed sepa-
rates the two risk groups further apart based on KM analysis for both our DNN models (Fig. 3b for the microarray 
DNN; Fig. 3c for the integrative DNN). An improvement can also be observed in the proportional-hazards model. 
The microarray DNN (original) separates patients into high and low risk groups (HR: 3.837, 95% CI: 2.143–6.871; 
p-value < 0.001). After reclassification, we observed a more eminent separation between the two risk groups 
(HR: 4.109, 95% CI: 2.356–7.166: p-value < 0.001). For the integrative DNN, the separation between the two 
groups becomes even more significant with reclassification (HR: 6.642, 95% CI: 3.313–12.601, p-value < 0.001). 
We observed similar results for RFs; however, the separation of the low and high-risk groups was greater for 
DNNs than RFs. We can also observe that the integrative DNN achieves the highest hazard ratio, indicating that 
the integrative DNN is capable of extracting useful information from heterogeneous data types (Fig. 3d).

Independent validation set.  To further validate the robustness of our proposed DNN models, we evalu-
ated their performances on an independent dataset (E-MTAB-923). The patients for E-MTAB-923 (n = 90) are 
more balanced (51 survivals, 39 deaths) than the original cohort. We compared our proposed DNN models with 
RF in terms of AUC and accuracy (Fig. 4a). Interestingly, the integrative DNN outperformed RF not only in AUC, 
but also in accuracy. This suggests that our proposed integrative DNN model generalized better to the independ-
ent validation set. For reclassification, we used the same set of cut-off points as those in the previous section for 
the microarray and integrative DNNs and RFs. Since the patients of this independent validation set are more 
balanced than the original cohort, the results of classification are no longer extremely biased towards the low risk 
group. We further compared the accuracy, precision, recall, and F1-score of the microarray DNN and RF and the 
integrative DNN and RF (Fig. 4e). Due to different label distributions between the training set and the independ-
ent validation set, we observed that reclassification lowered the accuracies of both DNNs (from 0.6556 to 0.5889 
for the microarray DNN; from 0.6899 to 0.6111 for the integrative DNN). However, reclassification improved the 

Figure 2.  The integrative DNN structure and performance comparison with other methods. (a) The left branch 
network deals with the microarray data source and the right branch network processes the clinical data source. 
Both subnetworks were merged together and form an integrative network. We merged the 4th hidden layer 
(with 40 neurons) of the microarray DNN data and the 4th hidden layer (with 18 neurons) of the clinical DNN. 
The merged layer contained 58 neurons and were stacked with two hidden layers with 32 neurons each for the 
final prediction. (b) Performance comparison of the integrative DNN with other methods for combined data.
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recall and F1-score in both DNNs. We had similar results for RFs. For RFs, we also observed an increasing trend 
in recall (from 0.2307 to 0.5897 for the microarray RF; 0.1795 to 0.6923 for the integrative RF) and F1-score (from 
0.3529 to 0.5679 for the microarray RF; from 0.2917 to 0.6353 for the integrative RF). Although reclassification 
decreased the accuracies, it also improved the F1-scores. The integrative DNN model has the best F1-score and 
AUC in the independent validation set.

We divided the independent validation set into two risk groups and used the proportional-hazards model 
(Fig. 4b) and KM estimator (Figs. 4c,d) for survival analysis. Although the stratifications did not benefit from 
adding clinical data, improvement was observed for the proportional-hazards model. The microarray DNN (orig-
inal) separated patients into high and low risk groups (HR: 2.618, 95% CI: 1.393–4.918; p-value = 0.002). After 
reclassification, we observed that the separation between the two risk groups was closer (HR: 1.830, 95% CI: 
0.959–3.491; p-value = 0.067). For the integrative DNN, the separation between the two groups becomes even 
more eminent (HR: 2.985, 95% CI: 1.581–5.635; p-value < 0.001). On the other hand, we observed a moderate 
separation for the microarray RF (original) (HR: 2.691, 95% CI: 1.230–5.885; p-value = 0.013). After including 
both microarray and clinical data, we observed a more significant separation between the two risk groups (HR: 
3.416, 95% CI: 1.492–7.824; p-value = 0.004). We expected the results from survival analysis to be worse since the 
reclassification reduced the accuracy. Recall that both DNNs was improved, although the separation between the 
two groups was still not eminent after reclassification.

Discussion
Traditionally, feature selection methods can be categorized into three different types: the filter, wrapper, and 
embedded methods35. The strategy for the filter method was based on ranking the performance or mutual infor-
mation of each feature, which was widely used in many domains because of their simplicity. The wrapper method 
worked as a black box by selecting features based on the performance of the classifier, which often showed great 
computational complexity and only worked well in limited classifiers. The embedded method was similar to 
the wrapper method; however, it focuses on reducing the amount of computational time required. All of the 
methods above aimed to select the top-ranked features purely based on statistical or predictive performance and 
disregarded the biological meaning of the gene features. Therefore, the selected gene features often lack biological 
insights and cannot be applied to further experimental validation.

Figure 3.  DNN and RF performance evaluation on the merged cohort. (a) The performance of the DNN/RF 
with/without reclassification with only microarray data or both microarray and clinical data. (b) KM analysis 
of overall survival in the cohort microarray test set with stratification of risk groups based on the DNN and RF 
trained on only the microarray data. The cut-off threshold was set at either 0.5 (original) or using the new cut-
off point from Youden index (reclassification). (c) Both microarray and clinical data were applied to DNN and 
RF, and the cut-off threshold was set at either 0.5 (original) or using the new cut-off point from Youden index 
(reclassification). (d) Univariate analysis with proportional-hazards model of each classifier.
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To address this issue, we demonstrated a systems biology approach to select biologically meaningful gene 
features and identify eight prognostic biomarkers for NSCLC patients. These prognostic biomarkers (CUL1, 
CUL3, EGFR, ELAVL1, GRB2, NRF1, RNF2, and RPA2) were identified by overlapping seven computed PRV 
lists. Among the eight prognostic biomarkers, most of them have been reported and directly relate to NSCLC in 
previous studies. ELAVL1 is a well-known RNA-binding protein associated with multi-carcinogenesis, such as 
large cell lymphoma and glioma, by modulating RNA stability36. Overexpression of nuclear ELAVL1 in NSCLC 
patients was correlated with lymph node metastasis and may serve as a potential diagnosis biomarker37. In addi-
tion, while nuclear ELAVL1 was important in cancer progression, cytoplasmic ELAVL1 was also identified as an 
independent prognostic factor for survival in NSCLC38. EGFR is a well-known transmembrane protein involved 
in controlling cell survival and tumorigenesis in many malignancies, including NSCLC39. Moreover, mutated 
and overexpressed EGFR has been reported in a myriad of NSCLC case studies40. Interestingly, while EGFR was 
recognized as a potential therapeutic target of NSCLC, its binding adaptor, growth factor receptor bound pro-
tein 2 (GRB2), was shown to be a stabilized EGFR and co-activated downstream to the MAPK/ERK pathway40. 
Among the Cullion family, Cullin 1 (CUL1) is one of the scaffold proteins in E3 ubiquitin ligase involved in 
cancer progression. High expression was correlated to patient survival rate, which was identified as an independ-
ent prognostic factor in NSCLC41. There are eight members in the Cullin family. In addition to CUL1, CUL3 is 
known as a scaffold protein in the ubiquitin-proteasome system and contributes to cellular regulation, such as cell 
cycles, protein trafficking, and stress response, which are common tumorigenesis phenomenon when mutated. 
Furthermore, one substrate adaptor of CUL3, kelch-like ECH-associated protein (Keap), was first identified as an 
inhibitor of transcriptional factor Nf-E2-related factor 2 (Nrf2) and played important roles in anti-oxidation stress 
and cell defense during cancer suppression42. Although there is only limited evidence addressing the function of 

Figure 4.  DNN and RF performance evaluation on the independent validation dataset. (a) AUCs and 
accuracies of the DNN and RF on the independent validation set. (b) Univariate analysis with proportional-
hazards model of each classifier. (c) KM analysis of overall survival in the independent validation set with 
stratification of risk groups based on the DNN and RF trained with only the microarray data. The cut-off 
threshold was set at either 0.5 (original) or using the new cut-off point from Youden index (reclassification). 
(d) Both microarray and clinical data were applied to DNN and RF, and the cut-off threshold was set at either 
0.5 (original) or using the new cut-off point from Youden index (reclassification). (e) Additional performance 
metrics of the DNN with/without reclassification with only microarray data or both microarray and clinical 
data.
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Nrf1 and Nrf2 in prostate cancer43, the genetic and functional conservation between them identifies their active 
roles in lung cancer progression. Ring finger protein 2 (RNF2), a member of the group II polycomb group (PcG) 
protein, was highly expressed in many types of human malignancies44. Despite the role RNF2 plays in biological 
processes in cancers via its diverse mechanisms, it highlights the potential oncogenic activity of RNF2 on NSCLC. 
Replication protein A 2 (RPA2), a single-strand DNA binding protein, processes DNA metabolism in response 
to DNA damage-associated replication arrest45. It has also been considered a potential therapeutic target and 
prognostic indicator for colon cancer, as shown by differences in its immunohistochemical expression between 
cancer patients and controls46. To summarize, each biomarker we identified showed great potential for being a 
prognostic biomarker based on its biological background.

We further analyzed eight prognostic biomarkers using GSEA (Gene-Set Enrichment Analysis)47. Using GO 
biological process enrichment analysis, we found that CUL1, CUL3, RNF2, and RPA2 overlap in their mitotic cell 
cycles, which has important biological implications in tumor development. We also analyzed these prognostic 
biomarkers by investigating their interdependencies using STRING (https://string-db.org/)48 (Fig. 5). The interac-
tion between GRB2 and EGFR were experimentally verified49; both were characterized in the KEGG “Non-small 
cell lung cancer pathway” (pathway #5223). In addition, the interactions among GRB2, EGFR, HIF1A, and 
SLC2A1 were also highly correlated with cancer in the KEGG “Pathways in cancer” (pathway #5200).

One reason our proposed PRV feature selection method performs well in not only the test set, but also the 
independent validation set, is due to the robustness emphasized in our systems biology approach. Several steps 
were taken to ensure the robustness of our feature selection method. Firstly, we used gene expression data from 
six different datasets and selected only genes with the same probe number. Secondly, our PRV feature selection 
method was applied to each of the seven well-known NSCLC biomarkers in our data cohort. We then constructed 
seven different paired interaction networks to obtain seven PRV lists. The eight prognostic biomarker genes were 
selected via overlapping these seven PRV lists. In other words, we only selected the prognostic biomarkers that 
appeared in all seven PRV lists. This selection process guarantees robustness in our method based on the superior 
predictive performance of our proposed integrative DNN. In the future, we can not only choose well-known bio-
markers from the literature, but use other clinical outcomes to group patients for selecting features.

In most of the existing work, only gene expressions were used as features for training classifiers, with the 
aim of predicting various disease outcomes12,21. In recent years, some researchers have begun to consider com-
bining gene expression and clinical data to make such predictions30,31. In this study, we applied the concept of 
bimodal learning to construct an integrative DNN where two heterogeneous modalities (gene expression and 
clinical data) were integrated for predicting ADC patient overall survival. By using two modalities, the integrative 
DNN approach is capable of providing the missing information left by the other observed modality. Compared 
with our microarray DNN, we observed an increase in AUC and accuracy from the integrative DNN. We also 
demonstrated improved prognostic performance for survival analysis. This highlights the benefit of integrating 
microarray and clinical data via our integrative DNN approach. A good bimodal learning model possesses certain 

Figure 5.  The interaction network of prognostic biomarkers. Visualization of interdependencies of the 15 
selected biomarkers via STRING (https://string-db.org/).

https://doi.org/10.1038/s41598-020-61588-w
https://string-db.org/
https://string-db.org/


8Scientific Reports |         (2020) 10:4679  | https://doi.org/10.1038/s41598-020-61588-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

properties. The joint representation should be similar in its feature space, implying that the two heterogeneous 
data sources correspond to similar concepts. We use two DNNs to extract features from each data source and 
jointly train them for the complete bimodal learning model in the combined layers. From this, the combined 
model better integrates two data modalities into a joint representation. Furthermore, image data such as CT-scans 
and whole-slide images were utilized for training deep learning models to provide tissue classification or patient 
overall survival prediction19,20. We believe that our work and theirs are perfect complements to each other. For 
future work, we could use more than two types of data sources to construct a multimodal learning model for even 
more accurate prediction.

Methods
Microarray data preprocessing.  The open access microarray data were downloaded from the National 
Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo) with accession numbers GSE19188, GSE29013, GSE30219, GSE31210, GSE37745, GSE50081 with 
the same platform: the human Affymetrix HG-U133 Plus 2.0 platform (GPL570). Six independent GEO datasets 
were merged into one cohort with 614 patients. We separated 256 patients as the training set, 85 patients as the 
validation set, and 171 patients as the test set, all of which have complete clinical data. E-MTAB-923 was taken 
as an independent validation set with the same platform. Table 1 provides detailed information on the cohort. 
The median overall survival time is 56.25 months. All the datasets were preprocessed by the robust multi-array 
average (RMA) algorithm and gene expression values were log2 transformed.

Prognosis relevance value.  Based on the gene expression for each of the well-known biomarkers, we 
divided patients into two different subgroups (biomarker- and biomarker+) via the StepMiner algorithm26. 
Crucial genes were identified by a systematic comparison between subgroups. For both biomarker- and bio-
marker+ groups, we constructed the corresponding gene interaction networks (interaction networks)50. 
According to the constructed interaction networks, we defined prognosis relevance values (PRV) to measure the 
difference between biomarker+ and biomarker- interaction networks for each gene (details in the Supplementary 
Material). Genes with a larger PRV show a significant difference among interactions or connections compared 
with other genes, which are potential prognostic biomarkers.

Bimodal DNN (integrative DNN).  A DNN is composed of one input and one output layer, with many 
hidden layers in between representing multiple levels of abstraction. Each hidden layer is composed of many 
neurons. Deep learning has been successfully applied to supervised learning for combining different modalities. 
For our dataset, we not only used microarray data, but also clinical data. Here, we combined two DNNs (one for 
the microarray data input and the other for the clinical data input) by merging their output layers and further 
concatenating several hidden layers before reaching the final prediction. The integrative DNN can be expected to 
benefit from combining the two separate data sources.

Experimental details for benchmark models.  We performed 10-fold cross-validation to select 
hyper-parameters for the benchmark models. For KNN, we selected Euclidean distance as the distance 
measure and considered at most 30 nearest neighbors. We utilized RBF kernel for SVM with different levels 
of L2-regularization and different gamma values for the kernel. For RF, we restricted the maximum depth as 
one-third of the dimension of the input data dimension and varied the number of trees used. The detailed 
searched optimal parameters were summarized in Table S6.

Bimodal DNN hyper-parameter selection.  For bimodal DNN, we varied the number of neurons in the 
two DNNs for microarray and clinical data and observed their cross-entropy losses in the validation set (Table 1), 
as illustrated in Table S7. We found the best model by selecting the one with the least validation loss. We also 
performed a similar search for the best optimizer, and the results are shown in Table S8. We found the Nadam 
optimizer performed the best. Learning curves for pre-training the microarray and clinical subnetworks, as well 
as the merged bimodal network, were illustrated in Figures S2, S3, and S4, respectively. The final model structure 

Cohort 
training set

Cohort 
validation set

Cohort 
test set E-MTAB-923

No. of patients 256 85 171 90

Median of age 64 (32–84) 64 (44–86) 63 (32–86) 65 (35–84)

Male 126 (49.8%) 47 (55.3%) 93 (54.4%) 14 (15.6%)

Female 130 (50.2%) 38 (44.7%) 78 (45.6%) 76 (84.4%)

Stage IA 131 39 81 28

Stage IB 83 32 61 26

Stage IIA 6 1 6 2

Stage IIB 26 8 16 7

Stage III & IV 14 5 7 27

No. of deaths 77 26 52 39

Table 1.  Clinical characteristics of patients.
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of our DNN contained four layers with 40 neurons in each layer for the two DNN for microarray and clinical data, 
and Nadam optimizer and ReLU activation function was adopted with L2-regularization. The learning rate was 
set to 0.006, and we followed the default settings in Nadam for other parameters. Early stopping was also included 
throughout the training process to avoid overfitting. We limited the model to train no longer than 100 epochs 
with batch size 20 and stop training if the validation loss was not improved for over 30 epochs.

From AUC to reclassification.  The receiver operating characteristic51 curve is a graphical plot that illus-
trates the diagnostic ability of a binary classifier system created by plotting the true positive rates against the false 
positive rates at various threshold settings. The area under the ROC curve has been used for evaluating how well 
the model performs51. Under some conditions, we can achieve a better reclassification performance by adjusting 
the cut-off points. In this study, the cut-off points were determined with the help of Youden index34, which is a 
frequently-used summary measure of the ROC curve. In previous classification tasks, we classified a patient by 
comparing the probabilities of patient survival outcomes with 0.5 for all classifiers. To further improve predictive 
performance, new cut-off points determined with Youden index were used for reclassification.

Survival analysis.  In our study, overall survival time was calculated from the date of surgery to the 
date of death. We predicted the survival status of patients within 5-year. Therefore, patients were treated as 
alive patients when survival time was greater than five years. Survival curves were demonstrated based on a 
Kaplan-Meier estimation for five years and compared using a log-rank test52 (KM analysis). We applied the cox 
proportional-hazards model to analyze the relationship between the prognostic genes for survival53. The hazard 
ratios (HR) and confidence intervals (CI) were reported.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.

Code availability
Model source codes are available at https://github.com/idssplab/overall_survival_nsclc.
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