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BACKGROUND. Targeted arterial infusion of verapamil combined with chemotherapy (TVCC) is 
an effective clinical interventional therapy for esophageal squamous cell carcinoma (ESCC), but 
multidrug resistance (MDR) remains the major cause of relapse or poor prognosis, and the underlying 
molecular mechanisms of MDR, temporal intratumoral heterogeneity, and clonal evolutionary 
processes of resistance have not been determined.

METHODS. To elucidate the roles of genetic and epigenetic alterations in the evolution of acquired 
resistance during therapies, we performed whole-exome sequencing on 16 serial specimens from 
7 patients with ESCC at every cycle of therapeutic intervention from 3 groups, complete response, 
partial response, and progressive disease, and we performed whole-genome bisulfite sequencing for 
3 of these 7 patients, 1 patient from each group.

RESULTS. Patients with progressive disease exhibited a substantially higher genomic and 
epigenomic temporal heterogeneity. Subclonal expansions driven by the beneficial new mutations 
were observed during combined therapies, which explained the emergence of MDR. Notably, SLC7A8 
was identified as a potentially novel MDR gene, and functional assays demonstrated that mutant 
SLC7A8 promoted the resistance phenotypes of ESCC cell lines. Promoter methylation dynamics 
during treatments revealed 8 drug resistance protein-coding genes characterized by hypomethylation 
in promoter regions. Intriguingly, promoter hypomethylation of SLC8A3 and mutant SLC7A8 were 
enriched in an identical pathway, protein digestion and absorption, indicating a potentially novel 
MDR mechanism during treatments.

CONCLUSION. Our integrated multiomics investigations revealed the dynamics of temporal genetic 
and epigenetic inter- and intratumoral heterogeneity, clonal evolutionary processes, and epigenomic 
changes, providing potential MDR therapeutic targets in treatment-resistant patients with ESCC 
during combined therapies.
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Laboratory, Guangdong Basic and Applied Basic Research Foundation, and the third round of public 
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Introduction
Esophageal cancer is the seventh most common cancer in terms of  incidence and the sixth most fatal 
cancer worldwide. Eastern and southern Africa and eastern Asia rank as the top 3 regions based on 
age-standardized incidence rates according to the statistics from 185 countries (1). Although the overall 
5-year survival rate has risen in recent years, it remains at a low level, ranging from 15% to 25% (2, 3). 
Esophageal squamous cell carcinoma (ESCC), the predominant histologic subtype of  esophageal cancer, 
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accounts for about 90% of  esophageal cancer cases globally, while esophageal adenocarcinoma is more 
prevalent in Western countries (4–6).

The therapies for ESCC include surgical resection, chemotherapy, radiotherapy, targeted therapy, and 
immunotherapy. For the early stage of  ESCC, surgical resection is a definitive treatment. However, most 
patients have a poor prognosis because of  the late onset of  symptoms and diagnoses (7–10). Recently, 
we achieved a better therapeutic efficacy through targeted arterial infusion of  verapamil combined with 
chemotherapy (TVCC) in a cohort of  46 patients with advanced ESCC (stage III and IV). TVCC reduced 
tumor stage significantly, improved the survival time, and achieved an 89.13% overall effective rate (com-
plete and partial response; ref. 11).

Verapamil is an L-type voltage-gated calcium channel blocker binding to the subunit receptor in the 
plasma membrane, and it is a well-established drug strategy for heart arrhythmia, angina, and hypertension 
through antagonism of calcium influx (12–14). P-glycoprotein mediates the efflux of  chemotherapeutic drugs 
from cells (15, 16). Verapamil, as a P-glycoprotein inhibitor, can obstruct the efflux of  anticancer agents, there-
by raising the intracellular concentration of  chemotherapeutic agents in cancer cells (17, 18). TVCC has been 
widely used in the clinical treatment of  diverse cancers, such as metastatic colorectal cancer (19), lung cancer 
(20), liver cancer (21, 22), and gastric cancer (23). However, the major challenge to cancer treatment is the 
development of  multidrug resistance (MDR), which can cause relapse or poor prognosis (24–26).

Although the genetic and epigenetic landscapes of  ESCC have been comprehensively elucidated recent-
ly and provide deep insights into the initiation and progression of  ESCC (27–33), including cell cycle reg-
ulation (TP53, RB1, CDKN2A, FBXW7, NFE2L2, ADAM29, FAM135B, CCND1), the Hippo and Notch 
pathways (YAP1, AJUBA, NOTCH1, NOTCH2, NOTCH3), RTK/MAPK/PI3K signaling (PIK3CA, FGFR1, 
ERBB2), microRNAs (miR-548k, miR-21, miR-34b, miR-92a), and epigenetic modification (MLL2, ASH1L, 
MLL3, SETD1B, CREBBP, EP300, KDM6A; refs. 27, 34–43), the underlying molecular mechanisms of  MDR 
in clinical therapies are yet to be fully elucidated.

Genetic heterogeneity is a fundamental property of  cancers and can contribute to the development of  
drug resistance or diverse clinical outcomes due to genetic instability or alterations (44–47). Beneficial new 
mutations under selective pressure can drive subclonal expansion, representing various tumor evolution 
models, such as punctuated evolution, branching evolution, linear evolution, and neutral evolution, leading 
to acquired resistance and relapse of  cancer during therapeutic interventions (46, 48–50). In addition, epi-
genetic heterogeneity also plays an important role in the emergence of  MDR (51, 52). Epigenetic patterns 
have great plasticity and vary dramatically as therapies proceed and the tumor develops.

Despite the advances of  molecular etiology and target therapies, there is a paucity of  evidence about the 
molecular mechanisms, genetic and epigenetic heterogeneity, and clonal evolutionary trajectories of  MDR 
in TVCC treatments. Here, we address these critical issues through comparative and integrative investigation 
of  genomic and epigenomic characteristics on serial specimens obtained from 7 patients with ESCC with 
TVCC treatment. We enrolled a cohort of  7 patients with ESCC from 3 groups: complete response (CR), 
partial response (PR), and progressive disease (PD). Serial specimens were obtained at every cycle of  thera-
peutic intervention and conducted with whole-exome sequencing (WES) with matched tissues. In a subset 
of  this cohort, 1 case from each group was subjected to whole-genome bisulfite sequencing (WGBS). We 
revealed the dynamics of  temporal genetic and epigenetic heterogeneity and clonal evolutionary processes 
during combined therapies. Notably, we observed a predominant subclonal population, implicating acquired 
resistance, and we identified potentially novel MDR genes, which may facilitate personalized treatment and 
the development of  new therapeutic targets to reverse MDR in ESCC.

Results
Treatment-specific alterations of  molecular landscape. TVCC was performed once a month in 7 patients with ESCC, 
1 to 3 times per patient, and specimens were obtained at every checkpoint (Figure 1). In this cohort, 4 patients 
achieved CR, 1 patient showed PR, and 2 patients had PD (see Supplemental Table 1; supplemental material 
available online with this article; https://doi.org/10.1172/jci.insight.150203DS1). We performed WES on 
16 serial specimens from 7 patients with ESCC, with a median sequencing depth of  173× for tumors and 
88× for normal samples (Supplemental Figure 1A and Supplemental Table 2). Meanwhile, 6 serial specimens 
from 3 cases were subjected to WGBS, 1 case from each group, with a median sequencing depth of  35× for 
tumors and normal samples (Supplemental Figure 1B and Supplemental Table 3). In total, we identified 2053 
nonsilent mutations and 661 silent mutations (Supplemental Table 4 and Supplemental Table 5). The PD 
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group showed the most abundant somatic mutations and somatic copy number aberrations (SCNAs; Figure 2 
and Supplemental Figure 2, Kruskal-Wallis rank-sum test, P = 0.041). Considerable variations were observed, 
as expected for different clinical outcomes. The number of  somatic mutations and SCNAs decreased in the 
CR group during the serial therapies of  TVCC, whereas the PD group exhibited a trend toward increased 
mutations. Remarkably, the PR patient demonstrated a substantial increment of  somatic mutations and an 
opposite change in SCNAs. In methylation profiles, we also found a substantial reduction of  the number of  
differentially methylated regions (DMRs) in the CR group and a trend toward rising DMRs in a PR patient 
during therapeutic interventions; the PD patient demonstrated a lower number of  DMRs at checkpoint 3 
but an elevated number of  SCNAs, indicating the important role of  SCNAs in the progression of  the tumor.

We next investigated the dynamic patterns of  somatic mutations in ESCC-related genes during com-
bined therapies and identified 75 driver mutations based on previously reported criteria (Supplemental 
Table 6 and refs. 53, 54), including several well-known ESCC-implicated genes, such as TP53, NOTCH1, 
FAT1, CDKN2A, and PIK3CA (Figure 2). Evolutionary characteristics of  driver events occurred differently 
in the CR, PR, and PD groups. TP53 alterations were subjected to early events in patients CR_P2 and 
CR_P3 and disappeared during tumor therapies. CSMD3 and BRCA2 occurred early in patient CR_P1. On 
the contrary, patient PR_P1 revealed late alterations in TP53 and NOTCH1. Similarly, patient PD_P1 devel-
oped more late mutations during the treatments, in accordance with a previous study (55). This finding 
uncovers the impact of  genetic heterogeneity on clinical consequences and suggests the evolution of  driver 
mutations under therapeutic selection pressure.

Figure 1. Schematic representation of patient sampling and analytic strategy during therapies. Seven patients with ESCC (n = 7) were treated with TVCC 
every month. Patients were divided into 3 groups: complete response (CR), partial response (PR), and progressive disease (PD). We collected 16 samples at 
every checkpoint of therapeutic intervention and performed whole-exome sequencing (circle) with matched tissues. Whole-genome bisulfite sequencing 
(square) was conducted for 3 patients from each group (CR, PR, and PD). The bottom panel shows comparative and integrative investigation of genomic 
and epigenomic characteristics.
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Dynamics of  temporal intratumoral heterogeneity during treatments. Intratumoral heterogeneity (ITH) has a 
close relationship with clinical outcomes and tumor evolution (53, 56). To assess the dynamics of temporal 
ITH during TVCC, we analyzed how the dynamics of mutational processes, burden of mutations, and SCNA 
profiles contributed to ITH during treatments.

APOBEC signature (cytidine deamination) was the predominant mutational process in ESCC, as reported 
in previous studies (54, 57). We observed a significant accumulation of the APOBEC signature in patient PD_P1 
but a reduction in CR_P2 (Figure 3, A and B). Mutational signature 39 (of unknown etiology) demonstrated a 
decreased contribution in the CR group as opposed to the PD group, which was elevated. Moreover, the change in 
defective DNA mismatch repair contribution, including signatures 6, 15, and 26, varied among the CR patients. 
Signatures 15 and 26 were increased in patients CR_P1 and CR_P2 (Figure 3A), but signature 6 was reduced 
in patients CR_P3 and CR_P4 (Supplemental Figure 3A). Combined therapies led to decreased abundance of  
mutational signatures in patient CR_P2 and markedly improved mutational signatures in patients PR_P1 and 
PD_P2 (Figure 3B and Supplemental Figure 3A). A higher mutational burden was observed in the PD group 
than the CR group (5.11 vs. 2.28), which had a lower mutational burden, and the PR patient showed a trend 
toward increased mutations during therapies (Figure 3C and Supplemental Figure 3B, Kruskal-Wallis rank-sum 
test, P = 0.031). This finding potentially reflects enormous differences in the genetic heterogeneity of patients with 
ESCC and illustrates the dynamics of inter- and intratumoral heterogeneity during clinical treatments.

Figure 2. Profiles of molecular alternations due to treatments. Each column represents a sample obtained from serial checkpoints under combined therapies. 
The top 3 panels depict a specific molecular landscape, including the number of somatic mutations, somatic copy number aberrations (SCNAs), and differen-
tially methylated regions (DMRs). The bottom panel shows somatic driver mutations in different groups. Mutation frequencies are displayed on the right.
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The PD patients represented the most SCNAs, and amplifications accounted for the major portion. The 
proportion of  amplifications of  PD_P1 and PD_P2 was 85.14% and 62.38%, respectively (Figure 3D and 
Supplemental Table 7). However, substantial variation in evolution lineages occurred in these 2 patients. 
Trunk SCNAs in PD_P1 were predominantly in the early stage (checkpoint 1), and more private SCNAs 
emerged in the late stage because of  therapeutic pressure. In contrast to PD_P1, patient PD_P2 had fewer 
SCNAs and had more shared SCNAs in late checkpoints (Figure 2 and Figure 3D). Only 8 common SCNAs 
were identified in PD patients (Supplemental Table 8), including a well-known oncogene NRG1 in non–small 
cell lung cancer, pancreatic cancer, and invasive mucinous adenocarcinoma (58, 59). These results suggest 
strong intertumoral heterogeneity and ongoing SCNA evolution during treatments.

Clonal evolutions under combined therapies. To decipher clonal evolution and ongoing selective pressure 
toward therapeutic intervention, we inferred clonal populations and reconstructed phylogenetic trees based 
on somatic mutations and SCNAs. We observed various models of  evolutionary dynamics, including linear, 
divergent, and branching evolution (Figure 4). In the CR group, patient CR_P1 exhibited a linear evolution, 
where clone 0 evolved as a dominant clone and subclone 1 derived different descendent subclones under selec-
tive pressures. Furthermore, checkpoint 4 had fewer private mutations (Figure 4A). Patients CR_P2 and CR_
P3 showed a divergent evolution (Supplemental Figure 4A and Supplemental Figure 4B). Different branches 
existed in continuous checkpoints during therapies and displayed a similar trend toward the change in the 
number of  private mutations. Patient CR_P4 contained 2 independent clones at pretreatment checkpoint 
1, and clone 0 disappeared at checkpoint 3. Meanwhile, clone 2 evolved subclone 1 during TVCC exposure 
(Supplemental Figure 4C). Similarly, patient PR_P1 demonstrated the same pattern of  unrooted branching 

Figure 3. Characteristics of temporal genomic heterogeneity. (A) Mutation signatures detected in each ESCC sample. (B) Changes in relative mutation 
signature contribution between pretreatment and treatment stages in CR_P2, PR_P1, and PD_P1. (C) Changes in mutation burden in 3 groups during treat-
ments. (D) SCNA profiles of amplifications (red) and deletions (blue) based on log2 ratio of copy number. Tumor samples are arranged in rows and columns 
represent genomic positions.
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evolution (Figure 4B) but obtained a resistant subclone 1 in late stage, which led to a different clinical outcome 
compared with CR_P4. Patient PD_P1 showed a rooted branching evolution. A potential resistant clone 2 
was already present in the early stage (checkpoint 1) and was retained with its descendent subclone 0 after the 
therapies (Supplemental Figure 4D). In contrast, patient PD_P2 exhibited a divergent evolution and evolved 
a dominated and resistant clone 3, then a descendent subclone 1 during the treatments (Figure 4C). Taken 
together, this result unveiled diverse evolutionary trajectories in patients with various clinical outcomes and 
may explain different evolutionary paths of  drug resistance across patients.

Acquired resistance gene SLC7A8. To gain insight into the mechanisms of  therapy resistance, we investigated 
the common mutated gene after therapies in PD patients (Figure 5A). A missense mutation, SLC7A8 p.T184P, 
was not detected in pretreatment samples, which occurred concurrently at treatment-specific checkpoints of  
patients PD_P1 and PD_P2. Furthermore, it was also detected at the late stage (checkpoint 2) of  patient PR_

Figure 4. Heterogeneity of clonal evolutions under combined therapies. Phylogenetic trees show the evolution of clone 
or subclone at the left side of each panel. The top right of each panel demonstrates the dynamics of clonal composition at 
each checkpoint across every sample under selective pressures. A discrete-characters parsimony method was used to gen-
erate phylogenetic relations based on somatic mutations and copy number aberrations and is shown at the bottom right of 
each panel. Black: trunk, dark gray: shared branches, gray: private branches. Diverse evolutionary paths were inferred across 
patients: (A) linear evolution (CR_P1), (B) unrooted branching evolution (PR_P1), and (C) divergent evolution (PD_P2).
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P1 (Supplemental Figure 5 and Figure 5B). We estimated the cancer cell fraction of  SLC7A8 p.T184P for each 
patient during the treatments, which was higher in PD patients (PD_P1_C3: 0.26, PD_P2_C3: 0.23) than in 
the PR patient (PR_P1_C2: 0.09; Figure 5C). Additionally, it was a private mutation in all PR and PD groups 
(Supplemental Table 5 and Figure 5D) and evolved as a subclone (PR_P1, subclone 1; PD_P1, subclone 0; 
PD_P2, subclone 1; Figure 4, B and C and Supplemental Figure 4D) upon verapamil treatment, indicating 
that the hotspot mutation in SLC7A8 might play an important role in resistance to TVCC.

To discover the biological function of mutant SLC7A8 (SLC7A8-mut), we used the KYSE150 and 
KYSE510 cell lines, which have been proven to be the least sensitive to cisplatin (60), for further research. The 
acquired resistance mutation SLC7A8 p.T184P during TVCC was not observed in KYSE150 and KYSE510 
cell lines based on whole-genome sequencing profiling of these 2 cell lines (Supplemental Tables 9 and 10). 
We first assessed the IC50 of verapamil in KYSE150 and KYSE510 by MTS assay after 72 hours of treatment 
(KYSE150, 77.45 μg/mL, 95% CI: 74.33–80.7 μg/mL; KYSE510, 59.22 μg/mL, 95% CI: 55.37–62.88 μg/
mL). A proper concentration of cisplatin (from 2.5 μM to 10 μM) and verapamil (from 20 μg/mL to 40 μg/
mL) was selected to treat the cells, and the combination index was determined by the Chou-Talalay method. 
A combination index value less than 1 was observed in KYSE150 and KYSE510 with combination treatment 
of cisplatin and verapamil, indicating a remarkable synergistic effect (Figure 6A). Notably, low-dose cisplatin 
and verapamil displayed strong synergy with a combination index value less than 0.5, which suggested that 

Figure 5. Acquired resistance mutation of SLC7A8. (A) Venn diagram of acquired mutation in PR and PD patients. (B) Schematic of SLC7A8 somatic muta-
tion in this ESCC cohort. Only 1 mutation was identified from treatment-specific samples. (C) Cancer cell fraction (CCF) of SLC7A8 p.T184P across PR and 
PD patients. (D) Private branch contained SLC7A8 p.T184P and is illustrated in the phylogenetic tree of patient PD_P2.
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verapamil efficiently enhanced the cytotoxic effect of cisplatin. To explore the biological function of mutant 
SLC7A8 in chemotherapy, we detected the endogenous expression of SLC7A8 and constructed stably express-
ing SLC7A8-WT and mutant SLC7A8 KYSE150 and KYSE510 cell lines (Figure 6B). We further determined 
how cell viability was altered by cisplatin and verapamil treatment. We treated cells with cisplatin and ver-
apamil and measured the cell growth rate at 48 hours compared with 0 hours. The cell viability of empty 
vector, SLC7A8-WT, and SLC7A8-mut cells significantly decreased in the cotreatment group (Figure 6, C and 
D). However, the SLC7A8-mut cells had a higher cell growth rate than SLC7A8-WT cells in the cotreatment 
group, which demonstrated that SLC7A8-mut might reduce the cytotoxicity of combination therapy. Next, we 
performed propidium iodide (PI) staining flow cytometry to detect the apoptotic effect in the SLC7A8-WT and 

Figure 6. Functional validation of SLC7A8 mutation in multidrug resistance. (A) Combination index and cell survival rate (%) of cisplatin and verapamil. (B) 
Immunoblotting analysis of endogenous expression of SLC7A8 (left panel) and the forced overexpression of SLC7A8-WT versus mutant SLC7A8 (SLC7A8-
mut) in KYSE150 and KYSE510 cell lines (right panel). Cell viability measurement revealed that SLC7A8-mut cells represented higher cell growth rate than 
SLC7A8-WT cells in KYSE150 (C) and KYSE510 (D) cell lines. PI staining flow cytometry showed the apoptotic effect of SLC7A8-WT and SLC7A8-mut in 
KYSE150 (E) and KYSE510 (F) cell lines. KYSE150 cell was treated with 10 μM cisplatin and 20 μg/mL verapamil. KYSE510 cell was treated with 2.5 μM cispla-
tin and 20 μg/mL verapamil. Three independent experiments were performed. *P < 0.05, ****P < 0.0001. Data represent mean ± SD. Two-way ANOVA fol-
lowed by Tukey’s multiple-comparison test was used. VER, verapamil; DPP, cisplatin; Ctrl, control; mut, mutation; COM, combination; PI, propidium iodide.
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SLC7A8-mut group after 48 hours of cotreatment. As shown in Figure 6, E and F, the cell apoptosis induced 
by cisplatin and verapamil cotreatment was more significant than that induced by single drug treatment. Nev-
ertheless, compared with SLC7A8-WT, the SLC7A8-mut group had a decreased apoptotic rate. These results 
implied that SLC7A8-mut blocked the therapeutic effect of the cisplatin and verapamil combination. In summa-
ry, cisplatin and verapamil exerted synergistic inhibitory effects on ESCC cells, and SLC7A8-mut endowed cells 
with resistance to the cisplatin and verapamil combination treatment. Taken together, this finding indicates the 
important role of acquired SLC7A8 mutation in resistance to TVCC treatment.

Patterns of  epigenetic dynamics. Epigenetic alterations have been reported to be associated with tumori-
genesis and drug resistance in previous tumor studies (32, 61, 62). To decipher epigenetic ITH in ESCC and 
the potential relationship between epigenetic dynamics and MDR, we performed WGBS for 6 samples that 
were obtained from 3 patients: a CR, PR, and PD patient. The global methylation levels were lower in tumor 
tissues compared with normal tissues (Figure 7A), as described previously (61). The coefficient of  variation 

Figure 7. Epigenetic heterogeneity and dynamics. (A) Distribution of global CpG methylation levels across gene bodies 
in tumor and normal samples. TSS, transcription start site; TES, transcription end site. (B) The coefficient of variation 
was calculated to assess intertumor DNA methylation heterogeneity per patient. (C) Epiallele shifts per million loci 
(EPM) in each sample. (D) Two patterns depict the dynamics of methylation level under treatments. Pattern 1 assumed 
that hypomethylation level of promoter regions facilitated MDR and tumorigenesis, and pattern 2 assumed that hyper-
methylation promoted the evolutionary processes of MDR. (E) Lollipop plot shows the CpG methylation level of SLC7A8 
promoter region for each patient. (F) Altered pathway (protein digestion and absorption) composed of mutant SLC7A8 
and promoter hypomethylation of SLC8A3. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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was calculated to assess intertumoral heterogeneity of  DNA methylation levels across patients (63). The 
CR group displayed a trend toward declining DNA methylation levels in contrast to the PR and PD groups 
(Figure 7B), suggesting substantial variations of  clinical outcomes on the basis of  epigenetic heterogeneity 
among patients with ESCC. Moreover, we used EPM (epiallele shifts per million loci) to evaluate the epial-
lele shift of  epigenetic landscape between different stages of  therapies. The degree of  EPM was highest in 
patient PD_P2 and demonstrated an upward trend at checkpoint 3 (Figure 7C and Supplemental Table 11).

To elucidate the epigenetic dynamics during therapies, we raised 2 hypotheses to depict the changes 
in methylation level during treatment. The first hypothesis (pattern 1) assumed that the hypomethylation 
level of  promoter regions facilitated MDR and tumorigenesis. In contrast, the second hypothesis (pat-
tern 2) assumed that hypermethylation promoted the evolutionary processes of  MDR (Figure 7D). We 
observed 11 genes in concordance with pattern 1, including 8 protein-coding genes, such as PZP, FKBPL, 
and SLC8A3 (Figure 7E). Only 2 long noncoding RNAs (AL391415.1 and LINC01509) were detected accord-
ing to pattern 2 (Supplemental Table 12). Interestingly, SLC7A8 and SLC8A3 were enriched in the common 
pathway of  protein digestion and absorption (Figure 7F), suggesting a potential relationship between alter-
ation of  amino acid metabolism and MDR.

Discussion
Cisplatin-based chemotherapy is recommended as the first-line treatment for advanced ESCC, but only a 
small proportion of  patients have complete or partial response to chemotherapy. Substantial clinical efficacy 
of  TVCC has been reported by us in several clinical trials, including colorectal cancer, gastric cancer, lung 
cancer, and liver cancer trials. In this study, we adopted this clinical approach in ESCC and achieved good 
clinical results. Nevertheless, the MDR phenomenon was observed in some patients. Therefore, it is import-
ant to elucidate intrinsic and acquired resistance mechanisms that arise during combined therapies.

To gain insight into the temporal dynamics of genomic alterations and clonal evolution toward thera-
py resistance, we performed a comprehensive genomic and epigenomic profiling of ESCC specimens from 
7 patients, including pretreatment- and treatment-specific samples, to reveal the underlying mechanisms of  
MDR. We observed the accumulation of molecular alterations in PD patients and a trend toward declining 
molecular alterations in CR patients. In addition, diverse temporal inter- and intratumoral heterogeneity were 
also found in patients with different clinical outcomes. Various mutational processes were observed in patients 
with different clinical outcomes. The cytidine deamination process, APOBEC signature, attributed to the acti-
vation of AID/APOBEC cytidine deaminases, is the predominant mutational signature in ESCC, as reported 
in our previous studies (57, 64). We revealed a substantial accumulation of the APOBEC signature in PD_P1 
but a trend toward diminishing APOBEC signature in CR_P2. Intertumoral heterogeneity might result in 
diverse clinical responses (65), and adaptive mutagenesis (increased mutation generation by therapy induction) 
can accelerate the emergence of resistant cancer cells. Besides APOBEC signature, defective DNA mismatch 
repair signatures, including SBS 6, 15, and 26, presented opposite patterns in the CR group. DNA mismatch 
repair mediates cell cycle arrest and apoptosis and participates in DNA metabolic pathways (66). The alteration 
of signature abundance during therapies can lead to different clinical responses and fuel a shift in treatment par-
adigm, thus improving clinical outcomes. High genetic heterogeneity driven by accumulating genetic instability 
and alterations might lead to acquired resistant clones under selective pressure imposed by combined therapies, 
and the outgrowth of resistant clones will expand during therapies. Furthermore, we detected various clonal 
patterns, including linear, divergent, and branching evolution, during therapies. Intriguingly, we detected an 
acquired resistance mutation, SLC7A8 p.T184P, as a hotspot mutation, in PR and PD patients. Meanwhile, 
the evolutionary dynamics of subclones carrying the SLC7A8 mutation implied the emergence of acquired 
resistance. Further functional assays showed that the mutant SLC7A8 reduced the cytotoxicity of combination 
therapy, as demonstrated by a higher cell growth rate and a decreased apoptotic rate.

Besides the genetic heterogeneity contributing to phenotypic divergences in tumors, epigenetic mecha-
nisms can also result in various characteristics in cancer cells. It has become evident that inter- and intratu-
moral epigenetic heterogeneity can predispose patients to various clinical outcomes and foster resistance to 
treatments (67, 68). We profiled epigenomic alterations from global methylation analysis and found a high-
er level of  epigenetic heterogeneity in PD patients. Notably, we demonstrated hypomethylation status in 
promoter regions of  8 protein-coding genes in PD patients compared with CR patients on the basis of  epi-
genetic dynamic patterns during therapies. An enriched pathway, protein digestion and absorption, includ-
ing SLC7A8 and SLC8A3, highlighted the potential role of  amino acid metabolism in MDR. Yasuhiro et al. 
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reported that the overexpressed LLGL2 in estrogen receptor–positive breast cancer promoted leucine uptake 
by upregulated SLC7A5 to induce tamoxifen resistance (69). However, our conclusions are limited by the 
small sample size; further studies are needed to better understand clonal evolution involved in therapeutic 
resistance and reveal the potential mechanisms of  amino acid metabolism in MDR of  TVCC in ESCC.

In summary, integrative analysis of  the genomic and epigenomic landscape may enhance the under-
standing of  evolutionary processes of  acquired resistance and unveil novel therapeutic targets to reverse 
MDR in clinical treatments.

Methods
Sample collection. Patients who had no contraindication for verapamil, cisplatin, lobaplatin, or 5-fluoroura-
cil underwent esophageal endoscopy, computed tomography, and pathological examination to confirm the 
histologic grade of  ESCC and lymph node metastasis. Seven patients in 3 groups, CR, PR, and PD (19, 20, 
23), were recruited, and they provided documented informed consent (Supplemental Table 1). Response eval-
uation criteria were defined as follows: a) CR — complete disappearance of  target lesions in the esophageal 
endoscopic examination and barium x-ray, disappearance of  lymphatic and distant metastases disappeared; 
the effect lasted for at least 1 month; b) PR — 30% or more reduction of  the maximum diameter of  tar-
get lesions in the barium x-ray and esophageal endoscopic examination; lymphatic and distant metastases 
declined by more than 30% for more than 1 month since the treatment started; c) PD — at least a 20% 
increase in bidimensional diameter or new lesions appeared. The Seldinger technique was used to conduct 
TVCC for each patient monthly. Tumors and paired normal specimens were obtained from each patient at 
every checkpoint of  therapeutic intervention.

WES and WGBS. DNA was extracted using QIAamp DNA Micro kit (QIAGEN) according to the man-
ufacturer’s instructions. The qualified genomic DNA was sheared into fragments of  200–300 bp by a Cova-
ris focused ultrasonicator. Then, the fragments were end-repaired, A-tailed, and ligated with adapters. For 
WGBS library generation, DNA fragments were ligated with cytosine methylated barcodes. Bisulfite con-
version was conducted using EZ DNA Methylation-Gold Kit (Zymo Research). Selective DNA fragments 
were amplified by PCR. SureSelect Human All Exon V6 kit (Agilent Technologies) was used to capture the 
human exonic regions. High-throughput sequencing was performed on a Hiseq X Ten platform to generate 
150 bp paired-end reads. The raw sequencing data have been deposited in the Genome Sequence Archive 
(70) in National Genomics Data Center (71), China National Center for Bioinformation/Beijing Institute 
of  Genomics, Chinese Academy of  Sciences, under accession number HRA000936 (publicly accessible at 
https://ngdc.cncb.ac.cn/gsa).

Somatic mutations and copy number aberration detection. Quality control was performed by Cutadapt (v1.19; 
ref. 72) and TrimGalore (v0.5.0) (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to 
remove adapters, low-quality segments, and discarded reads shorter than 50 bp. High-quality reads were 
aligned to human reference genome (GRCh38.p12) using BWA (v0.7.17; ref. 73) to generate a binary align-
ment map (BAM) format file. Duplicated reads were marked and removed by Picard (v1.112) (https://broa-
dinstitute.github.io/picard/). Somatic single-nucleotide variants/InDels were detected by GATK (v4.1.0.0, 
Mutect2; ref. 74) and followed by ANNOVAR (Version 2018Apr16) (75) to functionally annotate somatic 
variants. We applied the R package maftools (v2.0.10; ref. 76) to classify and visualize variants and rank 
mutated genes. We set the following criteria to filter low-quality or possible false somatic variants: a) cov-
erage of  mutated sites should be more than 10 reads and at least 4 reads harboring mutations in the tumor 
sample, with at most 2 reads with mutations in the corresponding normal samples; b) filter common SNPs 
in dbSNP150, Eastern Asia of  1000 Genomes, ExAC, gnomADe, and ESP6500. SCNAs were assessed by 
Control-FREEC (v11.5; ref. 77). The trunk was defined as the ubiquitous mutations that occurred in all tumor 
samples, shared branches representing mutations that existed in partial samples, and private branches repre-
senting mutations merely present in 1 sample (54).

Identification of  driver mutations. Putative cancer driver genes were curated from previously reported 
ESCC-implicated genes (27, 34–36, 54, 57, 64, 78–81), pan-cancer analysis of 21 tumor types (82), and COS-
MIC cancer gene census (v92; ref. 83). Nonsilent mutations located within these genes were selected based on 
the following criteria: a) recessive genes annotated by COSMIC, and the mutation was deemed as deleterious; 
for example, stop-gain, splicing mutations, frameshift insertions and deletions, and nonsynonymous variants 
predicted deleterious by 2 of 3 approaches, including SIFT (84), Polyphen2 (85), and MutationTaster (86); b) 
an exact match or at least 3 COSMIC variants located within 15 bp flanking regions of the mutation (53, 54).
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Mutational signature analysis. To characterize the underlying mutational processes during combined thera-
pies, we used SignatureAnalyzer (87, 88), a BayesNMF algorithm, and MutationalPatterns (89), a non-negative 
constrained least-squares algorithm, to estimate the relative contribution of COSMIC (v3.1; ref. 90) signatures.

Clonality inference and phylogenetic tree construction. We estimated tumor clonality and cellular prevalence by 
incorporation of variant allele frequency and allele-specific copy number of the genomic region at each muta-
tion using PyClone (v0.13.0) (91) based on a Bayesian clustering method. The construction of clonal evolution 
was inferred by CITUP (92) in the QIP version. Mutations should satisfy the infinite-sites model, which means 
that a mutation occurs only once during the evolutionary process. To infer clonal evolution, 4 evolutionary 
constraints are considered: a) sum rule, which states that the sum of cellular prevalence over all descendant 
subclones should be equal or less than the ancestor clone in each sample; b) crossing rule, in which the cellular 
prevalence of a descendant subclone must be smaller than the ancestor clone; c) connectivity rule, which states 
that a subclone is connected to only 1 clone; d) pigeonhole principle, indicating that if  the sum of cellular prev-
alence of 2 clusters exceeds 100% in a single sample, these 2 clusters will be considered dependent and have an 
evolutionary relationship (53, 55). In addition, we also constructed phylogenetic trees using discrete-characters 
parsimony method implemented in PHYLIP (v3.697; ref. 93) based on a binary matrix generated by somatic 
mutations and copy number aberrations.

Identification of  DMRs and annotation. We aligned the WGBS reads to human reference genome (GRCh38.
p12) using BS-Seek2 (v2.1.8; ref. 94) and Bismark (v0.22.1) (95) after removed adapters and low-quality reads 
with default parameters. DMRs were detected by CGmapTools (v0.1.2) (96) and fulfilled the following criteria: 
a) P value less than 0.05 and b) the difference in methylation level between 2 samples was greater than 0.15. The 
comprehensive gene annotation Release 30 in GTF was downloaded from GENCODE (https://www.genco-
degenes.org/human/) on the basis of the GRCh38.p12 reference genome. CpG islands were downloaded from 
the University of California Santa Cruz (http://genome.ucsc.edu/). The 2000 bp flanking regions of CpG 
islands were defined as CpG shores and the same as CpG shelves (2000 bp flanking regions of CpG shores). 
The 15-state ChromHMM annotation of esophagus tissue E079 was downloaded from Roadmap Epigenom-
ics (97) to mark regulatory elements.

Epigenetic dynamics during therapeutic interventions. We detected epiallele shifts in each eloci between tumors 
and paired normal samples at 4 adjacent CpGs in 16 patterns by methclone (v0.1; ref. 98), where “0” represented  
an unmethylated CpG and “1” stood for a methylated CpG. It was defined as a significant change between 
foreground and background if  the combinatorial entropy difference was ΔS less than –70.

Epigenetic dynamics in promoter regions were compared simultaneously between tumors and paired nor-
mal samples, 2 serial tumor samples at adjacent checkpoints, and different clinical groups by in-house scripts. 
Based on the changes in methylation level, we raised 2 hypotheses to depict the epigenetic dynamics during 
treatment. First, the hypomethylation level of promoter regions facilitated MDR and tumorigenesis (pattern 
1). Second, hypermethylation promoted the evolutionary processes of MDR (pattern 2). According to these 2 
hypotheses, candidate genes with epigenetic alterations in promoter regions were identified.

Cell culture. ESCC cell lines KYSE150 and KYSE510 were gifts from Y. Shimada of Kyoto University, 
Kyoto, Japan. They were authenticated using short tandem repeat profiling. Cells were cultured in RPMI 1640 
(Gibco) supplemented with 10% FBS (Gibco) in a 5% CO2 humidified incubator at 37°C.

Cell viability assay. Cells were seeded in 96-well plate at the density of 3 × 103/well for 24 hours. Old culture 
medium was removed and 100 μL 10% MTS was added for 1 hour, and the 490 nm absorbance was measured 
with Infinite M200 PRO (Tecan). The drug combination was determined by the combination index method (Cal-
cuSyn software, Biosoft) according to the median-effect analysis of Chou and Talalay (99). A combination index 
less than 1 indicates synergy, greater than 1 indicates antagonism, and equal to 1 indicates an additive effect.

Flow cytometry analysis. Cells were seeded in 6-well plate and treated with cisplatin or verapamil or combined 
cisplatin and verapamil. The annexin V-FITC apoptosis detection kit (Beyotime) was used to detect the apoptot-
ic cells according to the manufacturer’s instructions. The samples were analyzed by Accuri C6 (BD Biosciences).

Western blot. Cells were collected and lysed by RIPA buffer with protease inhibitor cocktail (Roche) for 30 
minutes on ice. After centrifuging at 12,000g, the supernatant was collected and quantified by BCA protein assay 
kit (Thermo Fisher Scientific). About 30 μg protein was resolved by SDS-PAGE and transferred to PVDF mem-
brane; the membrane was incubated with primary antibodies (flag: MilliporeSigma, F1804; actin: Proteintech, 
66009-1-Ig; SLC7A8: Abcam, ab75610) overnight at 4°C and secondary antibodies (anti–mouse IgG, HRP-
linked antibody 7076) for 1 hour at room temperature. The target bands were exposed by Amersham Imager 600.
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Statistics. A nonparametric Kruskal-Wallis rank-sum test was used to compare the statistical difference of  
multiple independent samples, and Wilcoxon’s rank-sum test was used for intragroup statistical differences. For 
multiple comparisons, 2-way ANOVA followed by Tukey’s post hoc test was used to analyze the differences in 
growth and apoptosis rate between experimental groups. P values of less than 0.05 were considered significant.

Study approval. Study protocols were approved by the Ethics Review Committee of Anhui Provincial Can-
cer Hospital, Anhui Province, China. All patients provided written informed consent.
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