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Bone-derived exosomes are naturally existing nano-sized extracellular vesicles secreted
by various cells, such as bone marrow stromal cells, osteoclasts, osteoblasts, and
osteocytes, containing multifarious proteins, lipids, and nucleic acids. Accumulating
evidence indicates that bone-derived exosomes are involved in the regulation of skeletal
metabolism and extraosseous diseases through modulating intercellular communication
and the transfer of materials. Following the development of research, we found that
exosomes can be considered as a potential candidate as a drug delivery carrier thanks
to its ability to transport molecules into targeted cells with high stability, safety, and
efficiency. This review aims to discuss the emerging role of bone-derived exosomes
in skeletal metabolism and extraosseous diseases as well as their potential role as
candidate biomarkers or for developing new therapeutic strategies.
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THE INTRODUCTION OF EXOSOMES

Exosomes, first discovered in the 1980s, refer to extracellular vesicles with a diameter of 30–
100 nm, and they were thought to be involved in the selective release of the transferrin receptor
during maturation of sheep reticulocytes (Pan and Johnstone, 1983; Johnstone et al., 1987). Despite
existing in reticulocytes, exosomes were found to be released by a variety of other cells, including
lymphocytes (Guay et al., 2019), dendritic cells, platelets, mast cells (Cheung et al., 2016), neurons,
macrophages (Bourdonnay et al., 2015), mesenchymal stem cells (MSCs), intestinal epithelial cells
(IECs), and so on (van Niel et al., 2001; Clayton et al., 2005; Taylor and Gerçel-Taylor, 2005; Raposo
and Stoorvogel, 2013). Exosomes initiate formation when the inner membrane of the endosomes
bud inwardly to form luminal vesicles, which then transform into multivesicular bodies (MVBs).
These MVBs can either be fused with lysosomes to degrade themselves, or they can release vesicles,
named exosomes, after fusion with the plasma membranes (Figure 1) (Simons and Raposo, 2009).
It was indicated that lipids are enriched on the surfaces of exosomes, including cholesterol,
sphingomyelin, and ceramides. Furthermore, exosomes contain numerous biological
molecules, such as proteins, enzymes, and microRNAs (miRNAs) (Valadi et al., 2007), which
mediate intercellular communication and play an important role in the physiological and
pathological processes (Kowal et al., 2014; Janas et al., 2015). Exosomes secrete complex
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FIGURE 1 | Exosome biogenesis and secretion The membrane of the late endosome buds inwardly to form luminal vesicles, which then transform into multi-vesicle
bodies (MVBs). MVBs then fuse with the plasma membrane and release vesicles named exosomes into the extracellular space. MVBs can also be fused with
lysosomes, and they degrade vesicles inside.

content that depends not only on the cell type but also the
microenvironment, such as mechanical properties, cellular PH,
biochemical stimuli, and hypoxia (Choudhry and Harris, 2018).
While previous research has shown that exosomes originating
from different cells contain a specific subset of endosome-
related proteins, they are involved in MVE biogenesis (e.g.,
Alix and Tsg101), membrane transport, and fusion (e.g., Rab
GTPases, Annexins, and flotillin) (Colombo et al., 2014); among
these actions, ubiquitous proteins like tetraspanins (CD9 and
CD81), heat shock proteins (HSP70 and HSP90), and tumor-
susceptibility gene 101 (Tsg101) are frequently used as markers
of exosomes (Bjørge et al., 2017).

Exosomes have been widely investigated because of their
multiple functions in diverse physiological process and diseases.
As one of the most important factors in the paracrine regulation
mechanism, exosomes can directly participate in signaling
communication between cells. Dai et al. (2019) elucidated that
prostate cancer (PCa)-derived exosomes could promote tumor
growth and premetastatic niche formation in bone through
transforming PKM2 into BMSCs. Alveolar macrophages (AMs)
were found to secret exosomes containing the SOCS1 protein,
which could be taken up by alveolar epithelial cells (AECs)
and can inhibit STAT1 activation, leading to downregulation of

inflammatory signaling both in vitro and in vivo (Bourdonnay
et al., 2015). In addition, the microvesicles—released from
primary lung epithelial cells induced by hyperoxia—containing
hnRNPA2B1-associated miRNAs could be delivered into a
macrophage and stimulate inflammation (Lee et al., 2019).
Taken together, these experiments illustrated the essential role of
exosomes in bilateral actions between AMs and AECs. Besides,
the FasL-positive microvesicles released by melanoma cells were
proven to induce the apoptosis of Jurkat and lymphoid cells,
through which a tumor may escape from the effect of the
immune system (Andreola et al., 2002). It can be seen that the
exosomes derived from multiple cells are able to transfer different
molecules, proteins, RNAs, and therefore have a significant effect
on recipient cells.

TECHNIQUES FOR ISOLATING
EXOSOMES

To optimally understand and exploit the biological action and
clinical application of exosomes, it is essential to isolate them
from cell culture supernatants or primary body fluids. The
exosomes originate from a wealth of sources, such as whole blood
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(Wu et al., 2017), menstrual blood (Dalirfardouei et al., 2018),
urine (Street et al., 2017), cerebrospinal fluid (CSF) (Manek et al.,
2018), milk (Leiferman et al., 2019), and so on. So far, a series
of methods have been developed to isolate exosomes on the
basis of size difference, molecular weight, density, certain surface
markers, including differential ultracentrifugation (Raposo et al.,
1996), density gradient ultracentrifugation (van der Pol et al.,
2012), size based filtration, size-exclusion chromatography (Rood
et al., 2010), immunoaffinity isolation (Kang et al., 2017),
precipitation (Coumans et al., 2017; Li P. et al., 2017), field-
flow fractionation (Zhang and Lyden, 2019), and so on.
Generally speaking, every isolation technique exhibits its distinct
advantages and disadvantages due to different experimental
principles. Since exosomes have great potential and value in early
clinical diagnosis, disease treatment, and prognosis evaluation,
it is imperative to establish more user-friendly, efficient, and
reliable technologies for the purpose of exosome isolation.

THE CHARACTERISTICS AND
CONTENTS OF BONE-DERIVED
EXOSOMES

In recent years it has been established that bone marrow stromal
cells, osteoclasts, osteoblasts, and osteocytes can release exosomes
that can not only regulate bone remodeling and skeletal disorders
but can also participate in the progression of extraosseous
diseases (Liu et al., 2017). Bone-derived exosomes contain a
multitude of molecules, such as proteins and nucleic acids, that
vary dynamically according to cell types as well as pathological
and physiological conditions. In a recent study, researchers
detected a total of 1,536 proteins contained in osteoblast-
derived exosomes; they found that several valuable proteins
involved in membrane trafficking and signaling pathways might
be implicated in human bone diseases, including transforming
growth factor beta receptor 3 (TGFBR3), lipoprotein receptor-
related protein (LRP)6, bone morphogenetic protein receptor
type-1 (BMPR1), and smad ubiquitylation regulatory factor-
1 (SMURF1) (Ge et al., 2017). In addition, one proteomics
profiling of exosomes from primary mouse osteoblasts revealed
the difference in content between osteosomes under various
differentiation statuses. To be more specific, 10 of the commonly
expressed proteins were found to be increased more than
five-fold in mineralizing (D24 osteosomes) primary mouse
calvarial osteoblasts compared with proliferating osteoblasts
(D0 osteosomes) (Bilen et al., 2017). Xu et al. (2014) tried
to figure out the physiological role of exosomal miRNAs in
osteoblast differentiation; they detected 79 miRNAs (∼8.84%)
in exosomes isolated from BMSC culture supernatants and
verified the presence of miRNA in exosomes during BMSCs
osteogenic differentiation for the first time. Moreover, this study
revealed differential expression of 14 exosomal miRNAs during
osteogenic differentiation of human BMSCs; nine miRNAs
(let-7a, miR-199b, miR-218, miR-148a, miR-135b, miR-203,
miR-219, miR-299-5p, and miR-302b) were upregulated, and
four miRNAs (miR-221, miR-155, miR-885-5p, miR-181a, and
miR-320c) were downregulated (Xu et al., 2014). Another

research study demonstrated that BMSC-derived exosomes could
significantly reverse either S100- or LPS/ATP-induced injury in
mice and hepatocytes. However, these protective effects were
partly abolished with the involvement of the miR-223 inhibitor.
This study firstly revealed the role of miRNA transferred by
BMSCs-exo on liver injury caused by autoimmune hepatitis
(Chen et al., 2018). Roccaro et al. (2013) found that BM-
MSCs promoted the release and transfer of exosomes to MM
(multiple myeloma) cells and detected a lower level of tumor-
inhibiting factor miR-15a in MM BM-MSC versus normal BM-
MSC-derived exosomes. Furthermore, a variety of oncogenic
proteins and cytokines, which regulate adhesion and migration,
were found to be enriched in MM BM-MSC-derived exosomes
(Roccaro et al., 2013). In conclusion, the contents of bone-
derived exosomes vary according to their different originators
and microenvironments, which exert multiple effects on a serious
of diseases, including skeletal disorders, prostate cancer, multiple
myeloma, breast cancer, and so on.

THE ROLES OF BONE-DERIVED
EXOSOMES IN SKELETAL METABOLISM

The skeleton is considered to be an essential support organ
that protects vital organs, stores minerals, and provides a
mechanical bracket for body and movement (Han et al., 2018).
Osteoblast-mediated bone formation and osteoclast-mediated
bone resorption maintain a dynamic balance through signaling
proteins, such as asephrin-Eph, which bone remodeling process
occurs throughout the lifespan to ensure the integrity of the
skeleton and its multiple functions (Zhao et al., 2006; Suchacki
et al., 2017). It has also been proposed that osteocytes play
essential roles in bone remodeling by affecting the activities of
osteoblasts and osteoclasts (Tatsumi et al., 2007).

The molecular regulation mechanism of bone remolding
is affected by many factors, such as age (Ambrogini et al.,
2010), genes, proteins (Ishijima et al., 2001), hormone levels
(Hayashi et al., 2019), enzymes (Jin et al., 2014), amino acids
(Yu et al., 2019), and cytokines (Wang et al., 2015). For
example, the bone-resorbing activity of osteoclasts was negatively
regulated by a signal transducer and activator of transcription
5 (Stat5), which performs its functions through suppressing
MAPK activity via regulation of Dusp1 and Dusp2 (Hirose et al.,
2014). Researchers found that sphingosine-1-phosphate (S1P)
is able to mediate the location of osteoclast (OC) precursors
(OPs) between bone and blood through its receptors, and
thereby influence the osteoclastogenesis and bone remolding
(Ishii et al., 2010). Glucocorticoids are shown to induce bone
loss through inhibiting osteoblast function and differentiation
by targeting glucocorticoid receptors and suppressing AP-1-
dependent cytokines (Rauch et al., 2010). Greenblatt et al.
(2015) also found a key regulator of bone turnover—charged
multivesicular body protein 5 (CHMP5); it can suppress the
RANK-induced NF-κB signaling in osteoclasts and thereby
dampen osteoclast differentiation.

An imbalance in bone metabolism regulation can lead to
many diseases, including osteoporosis, which is characterized
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by age-related bone loss and increased fat formation (Moerman
et al., 2004), high bone mass (HBM) resulting from abnormally
increased bone formation (Yang et al., 2019), osteoarthritis,
which is marked by progressive degeneration of articular
cartilage (Rahmati et al., 2017), and so on. For example, the
follicle-stimulating hormone (FSH) could promote activation
of osteoclasts and enhance bone resorption through several
signaling pathways, such as NF-kB, thus leading to a high risk of
osteoporosis associated with menopause (Sponton and Kajimura,
2017). In recent years, scholars have made remarkable progress in
the study of bone remodeling and related diseases as well as the
role exosomes play in bone remolding, and this is attracting more
and more attention.

BMSC-Derived Exosomes
There is a class of stromal stem cells with the capacity for
autologous renewal in bone marrow named BMSCs. They can
differentiate into osteoblasts, chondrocytes, and adipocytes (Fan
et al., 2017; Li et al., 2018), and they can thereby influence bone
formation, maintenance, and reconstruction (Nakajima et al.,
2018). Emerging evidence suggests that BMSCs have the ability
to repair bone tissue damage and promote bone regeneration, but
the specific mechanism involved in this has not been clarified. It
has been reported that transplanted MSCs are not able to exist
in vivo permanently, but the therapy effect still persists even after
MSCs elimination. Recently, scientists have found that this bone-
protective effect may be related to paracrine vesicles, much like
exosomes secreted by BMSC (Ng et al., 2015).

One study revealed that exosomes isolated from bone-
marrow-derived MSCs could rescue the retardation of fracture
healing in CD9−/− mice. The mechanism in this process is more
than the recruitment of stem cells or progenitor cells by cytokines,
but it also involves the induction of osteogenesis and angiogenesis
partly regulated by exosomal miRNAs (Furuta et al., 2016). Fang
et al. (2019) demonstrated that BMSC Exos significantly reverse
the decreased osteogenic differentiation of BMSCs in steroid-
induced femoral head necrosis (SFHN), and they then detected
a total of 84 genes and 20 differentially expressed genes (DEGs),
which consist of 11 upregulated and nine downregulated genes.
Among these, DEGs, Bmps, Mmp9, and Sox9, which are related
to regulating the immune system processes and the BMP/TGF-β
pathway, may play important roles in the pathogenetic process of
SFHN (Fang et al., 2019).

The exosomes’ potential osteogenic capacity in bone
regeneration was declared by Narayanan et al. (2016). They
performed a series of studies to investigate how osteogenic
exosomes derived from HMSCs could be endocytosed by primary
HMSCs and could upregulate the expression of BMP9 and TGF-
β1, which are both potent molecules in osteogenic differentiation
(Luther et al., 2011; Kuroda et al., 2012). In addition, the in vivo
experiments also indicated that both the regular exosomes and
osteogenic exosomes can promote the osteogenic differentiation
of HMSCs and matrix mineralization, while the osteogenic
exosomes have a higher potential to induce better vascularization
and calcium phosphate nucleation (Narayanan et al., 2016). Qin
et al. (2016) found that exosomes isolated from BMSCs could
be internalized into osteoblasts and enhance the expression

of osteogenic genes. To investigate the mechanism by which
exosomes promote osteogenic differentiation, they detected the
miRNA in exosomes by miRNA sequencing and found highly
expressed miR-27a, miR-206a, and miR-196a, among which
miR-196a has the greatest potential in functional testing (Qin
et al., 2016). Liu et al. (2015) indicated that transplantation of
BMMSCs could rescue osteopenia in Fas-deficient-MRL/lpr
mice through secreting exosomes, which were found to transfer
Fas to recipient MRL/lpr BMMSCs, reduce their miR29b levels,
enhance osteogenic differentiation in vitro, and promote bone
formation in vivo.

Despite the critical effect in bone remolding, several
studies have confirmed that BMSC-derived exosomes have the
ability to reduce cartilage destruction and promote cartilage
repair (Pourakbari et al., 2019). Osteoarthritis (OA) is a
kind of rheumatic disease characterized by degeneration of
articular cartilage and osteophyte formation (Findlay and
Kuliwaba, 2016), and previous research has suggested that
bone marrow-derived MSCs could be applied to treating
OA and cartilage lesions in animals and humans (Nejadnik
et al., 2010; Xie et al., 2012). Recently, accumulating evidence
has implied that exosomes isolated from BMSCs function as
vital media to elicit protective responses in cartilage. Cosenza
et al. (2017) identified that BM-MSCs-derived exosomes could
protect cartilage and bone from degradation through reducing
apoptosis of chondrocytes, inhibiting macrophage activation,
and promoting polarization of the M2 macrophage. Toh et al.
(2017) proposed that the mechanism through which MSC
exosomes modulate cartilage repair might rely on their ability
to restore homeostasis in bioenergetics, cell number, and
immunoregulation. Researchers addressed how MSCs are able
to secrete miRNA-enriched exosomes to facilitate intercellular
communication (Chen et al., 2010), and it is thus reasonable to
conclude that exosomal miRNAs may be essential in cartilage
differentiation. For instance, exosomal miRNA-23b could induce
chondrogenic differentiation of hMSCs via inhibiting the
expression of target PKA (Ham et al., 2012). Besides, Ning et al.
(2013) found that miR-92a deficiency could cause a reduced
number of chondrogenic progenitors, impaired chondrogenic
differentiation, and pharyngeal cartilage defects in zebrafish. The
mechanisms involved in the effect of miR-92a on chondrogenic
differentiation rely on its regulation of Bmp signaling through
targeting nog3 mRNA (Ning et al., 2013).

Osteoclast-Derived Exosomes
Osteoclasts are giant multinucleated cells originating from
mononuclear macrophage precursor cells, and they are mainly
responsible for bone resorption in vivo (Nevius et al., 2015).
Osteoclasts participate in the occurrence and development
of many bone diseases, such as osteoporosis (Novack, 2007;
Hsu et al., 2011), rheumatoid arthritis, and so on. Sun
et al. (2016) showed that osteoclasts could secrete miR-214-
containing exosomes, which are transferred into osteoblasts
via ephrinA2/EphA2 recognition to inhibit osteoblast function
(Figure 2). Besides, the level of miR-214 is measured to be
higher in the serum exosomes of osteoporotic patients and
mice compared with healthy ones, which might be a potential
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FIGURE 2 | Exosome-mediated communication between osteoblasts and osteoclasts Osteoblast-derived exosomes containing RANKL could stimulate osteoclast
differentiation through binding to RANK on the surface of osteoclasts. RNAK-enriched exosomes from osteoclasts competitively bind to RANKL and prevent
activation of the RANK signaling pathway in osteoclasts. miR-214-containing exosomes from osteoclasts could be transferred into osteoblasts via ephrinA2/EphA2
recognition to inhibit osteoblast function.

biomarker for osteoporosis (Sun et al., 2016). Moreover, the work
of Zhao et al. (2015) demonstrated that miR-214 plays a catalytic
role during RANKL-induced osteoclast differentiation through
the PI3K/Akt signaling pathway by targeting phosphatase and
tensin homolog (Pten). They also established Acp5-miR-214
transgenic (OC-TG214) mice to explore the effect of miR214
in vivo, and the results indicated that the upregulation of miR-214
in osteoclasts induced lower levels of Pten protein, higher activity
of osteoclast bone resorbing, and poorer bone mineral density
(BMD) (Zhao et al., 2015). Researchers tested the regulation of
osteoclast formation in 1,25(OH)2D3-stimulated mouse marrow;
they firstly found that osteoclast precursor-derived exosomes
significantly stimulated formation of osteoclasts, while exosomes
from mature osteoclasts suppressed osteoclastogenesis. Next,
the presence of enriched RANK was found in exosomes from
osteoclasts. The RANK depletion of osteoclast-derived exosomes
reduced their effect of inhibiting osteoclastogenesis. These results
revealed that RNAK contained in exosomes might be the
active agent that competitively binds to RANKL and prevents
stimulation of the RANK signaling pathway in osteoclasts, and
it thus plays a greater inhibitory role in osteoclastogenesis
(Figure 2) (Huynh et al., 2016). Li et al. (2016) delineated the
role of exosomal miR-214-3p in the intercellular communication
between osteoclasts and osteoblasts, which could be transferred
from osteoclasts to osteoblasts to inhibit osteoblastic bone
formation. More importantly, osteoclast-targeted inhibition miR-
214-3p effectively reversed the suppression of osteoblast activity
and facilitated bone formation, and this is suggestive of
which might be a potential therapeutic method for bone loss
(Li et al., 2016).

Osteoblast-Derived Exosomes
Osteoblasts are derived from bone marrow MSCs with
multidirectional differentiation potential, and they play a critical
role in the synthesis, secretion, and mineralization of the bone
matrix through its capacity to secrete glycoprotein and collagen.

BMSCs first differentiate into osteoprogenitor cells, then turn
into osteoblast precursors, and finally transform into osteoblasts
(Garg et al., 2017), and this process is regulated by miRNAs
(Li et al., 2009), proteins (Zou et al., 2013), signaling pathways,
and so on. One in vitro research conducted by Cui et al. (2016)
demonstrated the intercellular positive feedback mechanism
between mineralizing osteoblasts (MOBs) and bone marrow
stromal cells (ST2 cells). Their experiment results indicated that
MOB-derived exosomes could be incorporated into ST2 cells
and significantly promote their osteogenic differentiation; during
this process, 91 miRNAs were detected as being overexpressed
and 182 miRNAs were downregulated. Additionally, the analysis
of the targeting genes and pathway networks of these miRNAs
revealed that the pro-osteogenic function of MOBs-derived
exosomes may partially depend on activation of the Wnt
signaling pathway through downregulating Axin1 expression
and upregulating β-catenin expression (Cui et al., 2016). Ge et al.
(2017) identified 1,536 proteins in osteoblast-derived exosomes
and sorted out several pivotal proteins that are closely related
to bone diseases through network and pathway analyses. Deng
et al. (2015) indicated that osteoblast-derived microvesicles
can transfer RANKL proteins into osteoclast precursors and
promote their differentiation into osteoclasts through activating
RANKL–RANK signaling, which revealed a new mechanism
involved in communication between osteoblasts and osteoclasts
(Figure 2). Then, they conducted a series of experiments to
further explore the role of microvesicles in bone metabolism
by using imipramine, which was found to block microvesicles
generation (Bianco et al., 2009). The in vitro results showed that
inhibition of microvesicles generation from osteoblasts leads
to significant suppression of osteoclast differentiation. Besides,
the in vivo experiments revealed that OVX mice treated with
imipramine exhibit superior properties in bone mineral density,
bone volume, trabecular number, and thickness, suggesting that
imipramine could prevent progression of bone loss caused by
estrogen deficiency due to its function of blocking microvesicles
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generation (Deng et al., 2017). Through literature review and
analysis, Xie et al. (2017) summarized the role of a number of
mineralizing MC3T3 cell-derived exosomes in bone remolding.
To be specific, miR-30d-5p, miR-133b-3p, and miR-140-3p
were found to inhibit osteoblast differentiation, while let-7,
miR-335-3p, miR-378b can promote osteoblast differentiation
(Xie et al., 2017).

Osteocyte-Derived Exosomes
Bone tissue is formed by the bone matrix and osteocytes
originating from osteoblasts, which are widely distributed in
the bone matrix and are tightly connected through the bone
lacuna–tubule network system (Bonewald, 2007). Sato et al.
firstly indicated the relationship between osteocyte exosomes and
circulating exosomes in the serum. It was hinted that 12 miRNAs
levels were significantly decreased in the circulating exosomes of
OL (osteocyte less) mice plasma in contrast with control mice
plasma. Therefore, it could be concluded that osteocytes release
exosomes containing specific miRNAs that are transferred into
circulating (Sato et al., 2017). The osteocyte-derived exosomes
have been proven to mediate muscle–bone communication, and
Qin et al. (2017) established that osteocyte-derived exosomes,
which express the downregulation of miR-218 after myostatin
treatment, can be incorporated into ostoblastic cells and suppress
osteoblastic differentiation through downregulation of Wnt
signaling; this can be reversed by expression of exogenous miR-
218, suggesting the therapeutic potential of miR-218 in osteocytes
for the treatment of bone disorders. In addition, the work of
Zhang et al. (2014) confirmed the relationship between miR-
218 and Wnt/β-catenin signaling in the osteogenic differentiation
of human adipose tissue-derived stem cells (hASCs). Their
in vitro experiments elucidated that overexpression of miR-218
activates the Wnt signaling pathway via directly downregulating
SFRP2/DKK2 levels and then promotes hASCs osteogenic
differentiation, whereas upregulation of Wnt/β-catenin signal
can enhance the expression of miR-218 (Zhang et al., 2014). It
has been proven that Wnt signaling acts as a positive regulator in
osteoblast differentiation and regulation of bone mass (Esen et al.,
2013). Taken together, miR-218 functions as a signal amplifier in
the complex feed-forward regulatory circuit to activate hASCs
osteogenic differentiation (Zhang et al., 2014), which further
demonstrated the potential application prospect of exosomal
miR-218 in bone regeneration.

THE EFFECT OF BONE-DERIVED
EXOSOMES IN EXTRAOSSEOUS
DISEASES

Recent studies have shown that bone-derived exosomes not
only participate in regulating bone remodeling in the bone
microenvironment but also act as vital communication media
in multiple biological processes, including antigen presentation,
apoptosis, inflammation, cancer progression, and so on
(Gurunathan et al., 2019). As a result, the multiple roles of
bone-derived exosomes in distant tissues and extraosseous
systems attracted much attention.

Role of Bone-Derived Exosomes in
Cancer
So far, people have tried many ways to explore the mechanism of
cancer and conquer oncotherapy. There is no denying that we
have a deeper understanding of cancer in multiple areas, such
as immune responses (Fritz and Lenardo, 2019), inflammation
(Ritter and Greten, 2019), lipid metabolism (Snaebjornsson et al.,
2020), and so on, but there is still no proper method that
could cure cancer without side effects. It is therefore interesting
that bone-derived exosomes were found to participate in the
progression of cancer in terms of regulating gene expression,
angiogenesis, migration, and proliferation. The work of Naseri
et al. (2018) indicated that BMSCs-derived exosomes (MSCs-
Exo), which are loaded with LNA-anti-miR-142-3p, can deliver
their cargos into 4T1 and TUBO breast cancer cells—leading
to downregulation of miR-142-3p and overexpression of tumor
suppressor genes—and thereby exert an efficient anti-tumor
function. Additionally, their in vivo experiments revealed that the
mice treated with LNA-miR-142-3p inhibitor-loaded MSCs-Exos
showed reduced tumor volume and growth rate. These results
confirmed the efficiency of transferring anti-miR molecules
like LNA-anti-miR-142-3p into target tissues via MSCs-Exos
and also provided new outlooks in terms of oncotherapy
(Naseri et al., 2018). In another study, researchers explored
how exosomes isolated from human bone marrow mesenchymal
stem cells (hBMSCs) can promote migration and proliferation
of osteosarcoma and gastric cancer cells through activating the
Hedgehog signaling pathway (Qi et al., 2017). Additionally, it
is reported that the Hedgehog signaling pathway, an essential
regulator in maintaining tissue polarity and cell differentiation,
plays a significant role in multiple cancers, including most basal
cell carcinomas (BCCs) and extracutaneous tumors (Yang et al.,
2010). Bliss et al. (2016) tried to investigate the mechanisms
by which MSCs communicate with BCCs (breast cancer cells)
and promote dormancy of human breast cancer cells in bone
marrow. They demonstrated that MSCs primed by cancer cells
can release exosomes containing miR-222/223, which in turn
favor their survival and enhance drug resistance. Moreover, the
treatment of MSCs transfected with anti-miR222/223 facilitated
chemosensitivity of dormant BCCs in mice (Bliss et al., 2016).

Zhu et al. (2012) figured out another mechanism by which
BMSCs-derived exosomes promote tumor growth in vivo. They
detected higher expression of VEGF and CXCR4 in tumor
cells treated with BMSC-exosomes, suggesting that BMSC-
exosomes could enhance angiogenesis and provide tumors with
a richer blood supply and therefore promote their proliferation
and growth. However, the results of another experiment are
different from these. Bruno et al. (2013) found that human
hepatocellular carcinoma cells (HepG2), human ovarian cancer
cells (Skov-3), and Kaposi’s sarcoma cells incubated with BMSC-
derived microvesicles exhibited lower proliferation ability, higher
expression of negative regulators of the cell cycle, and an
increased number of cells staying in the G0/G1 phase. They
also observed the effect of microvesicles on growth of implanted
tumors in mice, and the data indicated that BMSC-derived
microvesicles could inhibit tumor growth and increase necrosis
areas in tumors (Bruno et al., 2013). These opposing conclusions
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could be derived due to the occasion of MSCs or microvesicles
treatment (Klopp et al., 2011). The injection of BMSC-derived
extracellular vesicles (EVs) into established tumors could inhibit
tumor growth, while the growth of tumors in the early stages
treated with EVs could be facilitated.

Role of Bone-Derived Exosomes in
Neurologic Diseases
Researchers demonstrated that exosomes isolated from MSCs can
mediate the transfer of miR-133b into astrocytes and neurons,
inducing increased axonal plasticity and neurite remodeling in
the ischemic boundary zone (IBZ), and thereby lead to functional
recovery in rats subjected to middle cerebral artery occlusion
(MCAo) (Xin et al., 2012, 2013). Besides, miR-133b + MSC
treatment dramatically downregulated the expression of the
connective tissue growth factor (CTGF) and the Ras homolog
gene family member A (RhoA) (Xin et al., 2013), which are
relevant to central nervous system (CNS) repair, post-injury
restructuring (Hertel et al., 2000) and regulation of axonogenesis
(Hall and Lalli, 2010). In another study, Nakano et al. (2016)
found that rat BM-MSC-derived exosomes can ameliorate
learning and memory impairment in STZ-diabetic mice through
suppressing oxidative stress and recovering decreased synapse
numbers, and this process might rely on the internalization
of exosomes into astrocytes and neurons, causing recovery of
damaged astrocytes and neurons. To further investigate the
specific miRNAs or proteins that participated in improving
diabetes-induced cognitive impairment, they conducted a series
of experiments. The results proposed that the oversecretion of
exosomal miR-146a due to endogenous bone marrow-derived
MSCs within the condition of an enriched environment (EE)
plays a key role in restraining astrocytic inflammation and
preventing cognitive impairment in diabetic rats (Kubota et al.,
2018). Mead and Tomarev (2017) demonstrated that BMSC-
derived exosomes can be efficiently integrated into target retinal
ganglion cells (RGC), thus promoting the recovery of the
RGC function followed by optic nerve crush (ONC) through
enhanced regeneration of RGC axons and inhibiting RGC
loss in an miRNA-dependent manner. It is worth mentioning
that the neuroprotective effect of BMSC-derived exosomes
on RGC after ONC is significantly more potent than simple
BMSC treatment (Mead et al., 2013; Mesentier-Louro et al.,
2014), and this is probably due to their capacity to integrate
into the retina and retain high doses. In conclusion, BMSC-
derived exosomes exert a significant effect on promoting nerve
repair and functional recovery, indicating their potential in
the field of regeneration and remodeling of nervous system
(Qing et al., 2018).

Role of Bone-Derived Exosomes in
Nephropathy
It has been reported in previous researches that BM-MSCs
play a key role in protecting kidney from injury (Morigi and
De Coppi, 2014), although the mechanisms are not entirely
elucidated. Recently, several reports have demonstrated the
critical roles of BM-MSC-derived exosomes in renal injury.

Wang et al. (2019b) elucidated that BMSC exosomes protect
renal tubular epithelial cells (NRK-52E) against apoptosis caused
by ischemia reperfusion at the early reperfusion stage through
transfer of exosomal miR-199a-5p from BMSCs into NRK-52E,
leading to the suppression of endoplasmic reticulum (ER) stress
in target cells by targeting the binding immunoglobulin protein
(BIP) (Wang et al., 2019b). In another experiment, exosomes
derived from MSC-CM were found to play a significant role
in preventing diabetic nephropathy by inhibiting apoptosis of
tubular epithelial cells (TECs) and reversing decreased tight
junction protein ZO-1, thereby enhancing the barrier function
of renal tubules (Nagaishi et al., 2016). In the model of kidney
injury induced by ischemia reperfusion, BMSC-derived exosomes
could inhibit the apoptosis of tubular cells and enhance their
proliferation, thus protecting the kidney against AKI and CKD
(Gatti et al., 2011).

Bruno et al. (2009) reported that the incorporation of
exosomes isolated from bone marrow MSCs into tubular
epithelial cells (TECs) can exert proliferative and antiapoptotic
effects in vitro and significantly alleviate lesions of glycerol-
induced AKI in SCID mice. Moreover, they provided evidence
that the effects mentioned above were completely abolished
by RNase treatment, indicating that the horizontal transfer of
mRNAs contained in exosomes appears to be a requirement of
their protective functions (Bruno et al., 2009). Similarly, one
study revealed that BM-MSC-derived exosomes have a positive
effect on renal PTECs (proximal tubular epithelial cells) after
ATP depletion injury, which could inhibit PTECs apoptosis and
enhance transespithelial resistance (TER), at least partly, via
miRNAs transfer or through transcription modulation stimulated
by exosomes. The GO analysis of modulated miRNAs confirmed
that several upregulated genes in the condition of ATP depletion
injury were suppressed after exosome treatment, including SHC1
(Src homology 2 domain containing transforming protein 1),
caspase-3, caspase-7, and SMAD4 (SMAD family member 4)
genes (Lindoso et al., 2014).

Role of Bone-Derived Exosomes in
Cardiac Diseases
Previous studies have proposed that BMSCs can protect
cardiomyocytes from apoptosis and prevent LV (left ventricular)
remodeling after MI through paracrine signaling (Uemura
et al., 2006), suggesting the potential role of BMSCs in cardiac
diseases. Researchers have carried out numerous experiments
to investigate the underlying mechanism involved in their
cardioprotective effects. Recent studies turned to focus on
exosomes which are known as key transporters of paracrine
factors (Gartz and Strande, 2018) and revealed the emerging
role of exosomes as candidate for treatment of cardiac diseases.
One research completed by Ma et al. (2018) confirmed that
BMSC-derived exosomes loaded with miR-132 could be taken
up by HUVECs (Human umbilical venous endothelial cells),
causing overexpression of miR-132 in HUVECs, and they
could thereby enhance angiogenesis in vitro and promote
recovery of cardiac function in an AMI (acute myocardial
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infarction) model. To clarify the mechanism by which miR-
132 exosomes modulate angiogenesis, they further measured
miR-132 target gene RASA1 (Lei et al., 2015). Their data
indicated that downregulated RASA1, in response to increased
miR-132, can stimulate neovascularization and maintain
the cardiac function in vivo (Ma et al., 2018). Feng et al.
(2014) demonstrated that BMSC-derived exosomes could
mediate the transfer of highly expressed miR-22 in the
condition of ischemic preconditioning (IPC) from BMSCs
into cardiomyocytes, leading to reduced apoptosis and cardiac
fibrosis after myocardial infarction by downregulating the
expression level of target Mecp2. Shao et al. (2017) compared
the efficiency of bone marrow-derived MSCs and MSC-Exo in
myocardial infarction recovery for the first time. The results
displayed that MSC-Exo gained an advantage over MSCs
in preserving myocardial function after infarction through
inhibiting inflammation, suppressing fibrosis, promoting
proliferation, and reducing apoptosis. Moreover, the sequencing
analysis of miRNA indicated that MSC-Exo and MSCs possessed
a similar miRNA profile, including downregulated miR-130,
miR-378, and miR-34 as well as upregulated miR-29 and
miR-24, suggesting that MSC-Exo could be considered as the
replacement for MSCs to develop innovative therapies for
myocardial infarction.

Role of Bone-Derived Exosomes in
Cutaneous Repair
During the cutaneous repair process, a variety of cells, growth
factors, and the extracellular matrix cooperate to replace dead
cells and reconstruct damaged tissues, in which the proliferation
of fibroblasts, angiogenesis, skin cell proliferation, and re-
epithelization are extremely critical (Wu et al., 2018). In a
study conducted by McBride et al. (2017), Wnt3a was detected
as being tethered with human BM-MSC exosomes exteriorly.
Their in vitro results further implied that BM-MSC exosomes
significantly promoted dermal fibroblast proliferation, migration,
and angiogenesis, which simulative function depends heavily
on CD63+ exosomes and Wnt co-receptor lipoprotein-related
proteins (LRP6) (McBride et al., 2017). Shabbir et al. (2015)
found that BM-MSC exosomes can be incorporated into
fibroblasts and stimulate their growth and migration in a normal
and diabetic chronic wound; they could also be uptaken by
HUVEC cells and enhanced endothelial angiogenesis in vitro.
Furthermore, BM-MSC exosomes can activate several pathways
that play important roles in skin wound healing, such as
AKT, ERK 1/2, and STAT3, and enhance the expression of
various growth factors (Shabbir et al., 2015). Considering the
important role of STAT3 signaling in wound healing (Dauer
et al., 2005), they further investigated the content of exosomes
and finally found STAT3 DNA binding activity in BMSC-
derived exosomes.

Role of Bone-Derived Exosomes in
Metabolic Diseases
Nowadays, patients suffering from metabolic diseases are
increasingly widespread through the world, including diabetes,

obesity, hyperlipidemia, and so on (Ling and Rönn, 2019;
Warshauer et al., 2020). Dysfunction of metabolism is found to
greatly promote the occurrence and progression of these diseases
(Newgard, 2017). For example, it is already known that the
function of the pancreatic islet α cell is extremely important to
glucostasis, and researchers have demonstrated that the a kind of
pancreatic lncRNA called Paupar could activate Pax6 α-cell target
genes and help to maintain glucose homeostasis; the deletion of
Paupar in mice resulted in damaged α-cell function (Singer et al.,
2019). Recently, researchers have demonstrated that exosomes
isolated from BM-MSCs in aged mice could be incorporated
into adipocytes, myocytes, and hepatocytes and reduce their
insulin sensitivity through targeting SIRT1 (sirtuin 1). They also
conducted miRNA microarray analysis and detected extremely
high expression of miR-29b- 3p in exosomes from BM-MSCs
of old mice. The injection of nanocomplexes mediating BM-
MSCs-specific inhibition of miR-29b-3p could alleviate the aging-
associated insulin resistance in mice, suggesting the potential
therapeutic role of exosomal miR-29b-3p in aging-associated
insulin resistance (Su et al., 2019).

BONE-DERIVED EXOSOMES AS A
SOURCE OF BIOMARKERS FOR
DISEASE DIAGNOSIS

The content in exosomes are alterative according to the
physiological and pathological state of cells; exosomes can thus
reflect the physiological condition and disease development to
some extent. For example, researchers analyzed human plasma
EV proteomes in rest and exercise, and they found 322 differently
expressed proteins, suggesting transient release of EVs into
circulation in the condition of exercise (Whitham et al., 2018).
Besides, exosomes can be easily collected because of their
existence in blood, urine, milk, and so on (Mori et al., 2019).
In previous studies, researchers have discovered the clinical
value of miRNAs as potential biomarkers in some diseases.
For example, the contents of two miRNAs that are elevated
during osteoclastogenesis, miR16 and miR378, are found to be
correspondingly higher in mice with a heavy bone metastatic
tumor burden or in breast cancer patients, suggesting their
potential as indicators for bone metastasis progression (Eii et al.,
2013). At present, the proteins and nucleic acids contained in
exosomes have been widely researched for their potential as
biomarkers in clinical disease diagnosis (Wang et al., 2018).

Sato et al. (2017) firstly revealed the positive correlation
between osteocytes and 12 miRNAs contained in circulating
plasma exosomes, suggesting that osteocytes released exosomes
that then transferred into blood. Muntión et al. (2016) isolated
BM-MSC-derived exosomes from MDS patients and healthy
donors (HD) and then performed microRNA expression arrays.
The results demonstrated that 21 microRNAs in exosomes
from MDS patients were overexpressed compared with HDs,
among which the microR-10a and miR-15a were extremely
high (Muntión et al., 2016). In MM patients, BMSCs release
exosomes and deliver them into MM cells to regulate tumor
progression. Compared with normal humans, exosomes isolated
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from patients’ BMSCs contain lower levels of tumor suppressor
gene miR-15a and higher levels of oncogenic proteins, cytokines,
and adhesion molecules (Roccaro et al., 2013). It has also been
reported that elevated serum exosomal miR-214-3p is closely
associated with reduced bone formation in elderly women
with fractures and OVX mice, suggesting that there is great
potential for the use of exosomal miR-214-3p in the diagnosis
of osteoporosis (Li et al., 2016). Barrera-Ramirez et al. (2017)
compared miRNA profiling of hMSC-derived exosomes from
patients with acute myeloid leukemia (AML) patients and healthy
people. They identified five differentially expressed miRNAs,
including upregulated miR-26a-5p and miR-101-3p as well as
downregulated miR-23b-5p, miR-339-3p, and miR-425-5p in
AML-derived samples (Barrera-Ramirez et al., 2017); these
candidate miRNAs might serve as biomarkers of AML and
provide new insight into the pathogenesis and treatment of AML.

In addition, exosomes can be used as markers of diseases
progression. Researchers reported exosome profiling in human
ES (exudative seroma) for the first time, which was obtained
from the lymphatic drainage implanted after lymphadenectomy
in melanoma patients. They found that ES-derived exosomes
have richer proteins compared with serum derived exosomes,
including HSP90B, Annexin A1, and S100 A4, which are related
to antigen presentation, the ER–phagosome pathway, and G2/M
transition. In comparison with N1a patients, the number of
ES-derived exosomes as well as the proteins associated with
melanoma tumor cells significantly increased. Finally, they
detected BRAFV600E mutation in ES-derived exosomal nucleic
acids, which could serve as a factor to evaluate the risk of
relapse in patients (García-Silva et al., 2019). In addition,
Broggi et al. (2019) also analyzed the lymphatic exudate of
metastatic melanoma patients undergoing lymphadenectomy
(LAN) and demonstrated that exosomes carrying melanoma-
related miRNAs or proteins could be applied as indicators of
nodal metastatic spread.

APPLICATION OF MSC-DERIVED
EXOSOMES IN BONE TISSUE
ENGINEERING

Many clinical diseases can lead to bone defects and reduced
bone formation, including fractures (Matsumoto et al., 2010),
bone tumors (Waning et al., 2019), osteoporosis (Cao et al.,
2012), and so on. The commonly used treatments, such as bone
transplantation, are still very limited. How to promote bone
formation and repair bone defects has therefore always been
a challenge faced by clinicians. Based on the cytobiology and
materialogy, bone tissue engineering—now a significant research
problem—is focused on promoting bone tissue regeneration by
using seed cells, biological scaffolds, and bioactive factors (Bose
et al., 2012). Previous studies have reported the important role
MSCs play in repairing damaged organs and tissues through
multiple mechanisms (Caplan and Dennis, 2006; Cao et al., 2012).
BMSCs are most commonly used cells in stem cell researches due
to their abundant sources and convenient separation methods

(Morikawa et al., 2009). Recently scientists found that MSC-
derived exosomes—the microvesicles mediating intercellular
communication—have great potential in bone tissue engineering.

Zhang et al. demonstrated that MSC-Exosome/β-TCP
complex scaffolds have a better repair effect on rat skull defects
in comparison with pure β-TCP scaffolds. They found that
the MSC-Exosomes could be internalized into HMBSs and
promote their proliferation, migration, and differentiation
in vitro. They then examined the gene expression in hBMSCs
induced by exosomes, and the results suggested that the
underlying mechanism by which exosomes stimulate osteogenic
differentiation partly rely on the activation of the PI3K/Akt
pathway (Zhang et al., 2016). Qi et al. (2016) indicated that
hiPSC-MSC-Exos could upregulate the expression of RUNX2,
COL1, and ALP and activate the differentiation of osteoblasts
in vitro. They also conducted an in vivo experiment in mice with
calvarial defects, and the results showed that hiPSC-MSC-Exos
could stimulate bone formation in osteoporotic conditions.
Moreover, the three-dimensional micro-CT images showed
higher neovascularization in β-TCP + Exos group compared
with β-TCP group. Taken together, these works suggested
the potential application of MSC-Exos + β-TCP scaffolds in
bone defects due to their effect of facilitating angiogenesis and
osteogenesis (Qi et al., 2016). In another study, researchers
produced two same-sized calvarial bone defects in SD rats and
treated them with hydrogel and hydrogel+ exosomes; the results
showed that exosomes from BMSCs could significantly enhance
the bone formation in rats in the aspects of micro-CT, histological
examinations, HE, and Masson staining (Qin et al., 2016).

In addition to bone remodeling, angiogenesis is also extremely
important for the maintenance of bone homeostasis and bone
regeneration (Saran et al., 2014; Xie et al., 2014). Angiogenesis
refers to the formation of blood vessels from microvascular
endothelial cells through budding, bridging, and microvascular
fusion, all of which aid the transportation of necessary oxygen,
nutrients, and inorganic salts to bone via extensive networks
(Adams and Alitalo, 2007). Previous studies have reported that
MSCs-derived exosomes play a role in promoting angiogenesis
in heart (Bian et al., 2014), renal injury, cutaneous repair
(Zhang et al., 2015), skeletal muscle regeneration (Nakamura
et al., 2015), limb ischemia repair, and so on. Likewise,
in the process of fracture healing, new blood vessels can
provide nutritional support, accelerate local metabolic rate,
as well as improve the efficiency of bone reconstruction
and the speed of fracture healing (Deschaseaux et al., 2009;
Seebach et al., 2012). For example, MSC-derived exosomes
could rescue delayed fracture healing in CD9−/− mice and
facilitate fracture healing in wild type mice; the mechanism is
partly depended on the effect of MCP-1, -3, SDF-1, angiogenic
factors and miRNAs (Furuta et al., 2016). In ischemic femoral
head necrosis, it is also significant to promote angiogenesis
and restrain ischemic necrosis areas (Glueck et al., 2007).
Li H. et al. (2017) indicated that BMSC-ExosMU (exosomes
secreted from HIF-1α-overexpressing BMSCs) could promote
osteogenic differentiation of BMSCs through enhancing the
expression of OCN and ALP in vitro. The MTT assay and cell-
scratched wound evaluation also found that BMSC-ExosMU
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could promote proliferation, migration, and tube formation of
HUVECs. Next, they conducted an in vivo experiment, and
the results revealed that the SANFH (steroid-induced avascular
necrosis of femoral head) model treated with BMSC-ExosMU
was detected higher vessel density and denser trabecular tissue
generation compared with the control group, suggesting the
significant role of BMSC-ExosMU in promoting osteogenesis and
angiogenesis (Li H. et al., 2017).

EXOSOMES AS TARGETED DELIVERY
VEHICLES FOR THERAPY IN SKELETAL
AND EXTRAOSSEOUS DISORDERS

In recent years, the application of pharmaceutical carriers
in clinical diseases has received extensive attention, and this
has particularly applied to nanoscale pharmaceutical carriers,
such as liposomes, microparticles, nanoparticles, etc. They have
several characteristics that contribute to their high delivery
efficiency, including the capacity to encapsulate hydrophobic
drugs, improve drug bioavailability, transport molecules with
high specificity, and so on (Tan et al., 2010). Despite the
advantages mentioned above, the artificial nano drug-loading
systems still face many problems. For example, the carrier
molecules are easily removed by antibodies as well as complement
and coagulation factors. Besides, a toxic reaction cannot be
avoided due to their synthetic lipid membranes. As natural
endogenous nano-microvesicles, exosomes play important roles
in intercellular signal transmission and material exchange. In
contrast, exosomes can overcome multiple limitations of artificial
nano delivery systems and are more suitable candidates for
delivery vehicles. Firstly, the exosomes have higher security
because they can evade the immune detection system; in this
case the immune rejection is eliminated. They also have better
tolerance, which helps to protect cargo from destruction, thus
leading to a longer circulating half-life. Secondly, exosomes have
a natural targeting capacity depending on their cell sources.
Thirdly, the membrane of exosomes can be artificially modified
to enhance their functions. Finally, exosomes can penetrate
cytomembranes and biological barriers easily due to their
nanometer size and specific surface molecules (Ei Andaloussi
et al., 2013; Jiang and Gao, 2017).

Exosome as Compounds Delivery
System
At present, some chemotherapeutic drugs, such as doxorubicin
and paclitaxel, can be effectively loaded into exosomes. Tian et al.
(2014) indicated that exosome-encapsulated Dox (doxorubicin)
can be integrated into breast cancer cells with high efficiency
and significantly enhanced the therapeutic effect of Dox. They
also evaluated the cardiac toxicity in tumor-bearing mice,
a dose-dependent side effect of Dox (Minotti et al., 2004),
and found that intravenously injected iExos-Dox has weaker
cardiotoxicity compared with free Dox, suggesting that exsomes
are ideal drug delivery vehicles with high safety and efficiency
for targeted tumor therapy. Another study revealed that the

PTX (Paclitaxel) incorporated into exosomes by mild sonication
can maintain stability at various conditions for over a month
and has significantly enhanced drug cytotoxicity compared with
PTX alone (Kim et al., 2016). In addition to transporting
chemotherapeutic drugs to target cells with high efficiency,
exosomes can also greatly increase the effects of other drugs,
such as anti-inflammatory agents. For example, Sun et al.
(2010) found that the binding of curcumin to naturally existing
nanoparticle exosomes can significantly enhance the curcumin’s
anti-inflammatory activity through increasing its delivery into
targeted macrophages, which leads to an improved anti-shock
function in mice treated with LPS.

Exosome as siRNA Delivery System
Currently, siRNA technology has been widely used in gene
function research, clinical therapy, and other fields for the reason
that it can induce targeted mRNA degradation and lead to post-
transcriptional gene silencing (Burnett and Rossi, 2012; Crooke
et al., 2018). However, siRNA-based gene treatment still faces
many challenges, such as the poor cellular uptake and low
stability in the circulating system. There is much evidence to
suggest that the nanocarrier exosomes facilitate siRNA uptake
into the targeted cells and improve its pharmacokinetics (Ozcan
et al., 2015; Wang et al., 2017). It was reported that the
exosome/TRPP2 siRNA complex can efficiently deliver TRPP2
(transient receptor potential polycystic 2) siRNA into FaDu
cells and suppress its expression, resulting in the inhibition
of the EMT (epithelial-mesenchymal transition) process and
reduced invasion of FaDu cells (Wang et al., 2019a). Shokrollahi
et al. (2019) treated human neuroblastoma cells (SH-SY5Y)
with exosomes transfected by Hsp27 siRNA and evaluated the
maturation of the human neuroblastoma cells. The data showed
that the uptake of exosomes carrying siRNA HSP-27 by SH-SY5Y
cells significantly inhibited their survival, clonogenic activity,
and differentiation toward neuronal lineage (Shokrollahi et al.,
2019). Shtam et al. (2013) used siRNA-loading exosomes to
deliver RAD51-siRNA into HeLa cells and induce gene silencing,
thereby inhibiting cell survival and proliferation. Exosomes can
also be engineered into more suitable nanocarriers for carrying
siRNA through modification. To enhance the targeting ability,
Alvarez-Erviti et al. (2011) remolded the exosomes through
attaching a neuron-specific RVG peptide to Lamp2b expressed
on the exosomal membrane. The result revealed that the RVG
exosomes were able to transport GAPDH siRNA into targeted
neurons, microglia, and oligodendrocytes, and this resulted in
downregulation of BACE1 gene expression, which plays a key role
in Alzheimer’s disease (Alvarez-Erviti et al., 2011).

Exosome as miRNA Delivery System
miRNAs are a group of non-coding single-stranded RNAs of
approximately 22 nucleotides that exist in plant and animal cells
(Bartel, 2004). A series of studies have shown that miRNAs
can participate in cellular gene network regulation by silencing
target mRNA, and they therefore play important roles in cell
proliferation, differentiation, and apoptosis (Beavers et al., 2015).
It has also been summarized that miRNAs play key roles
in bone formation and may serve as the new breakthrough
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in the treatment of skeletal diseases (Hu et al., 2010). As
previously mentioned, an exosome can transfer its cargo, such
as miRNAs, into targeted cells and regulate their growth and
differentiation (Thomou et al., 2017). For instance, brown
fat-derived exosomes carrying specific miRNA could regulate
liver through targeting Fgf21 (Chen and Pfeifer, 2017). It has
been proposed that the exosome can be used as a vehicle
for transporting functional miRNAs and exerting therapeutic
action. The miRNAs have been proven to be involved in
the pathogenesis of several neurodegenerative diseases, such
as Alzheimer’s disease, Parkinson’s disease, etc. The delivery
of miRNAs packed by exosomes to central nervous system
is therefore widely used for the improvement of neurological
functions (Ridolfi and Abdel-Haq, 2017). Katakowski et al.
(2013) obtained exosomes carrying miR-146b through plasmid
transfection, and they found that miR-146b can be delivered
into tumor cells via exosomes, suppressing expression of EGFR
and NF-jB proteins and leading to inhibition of glioma growth
in vitro. They also demonstrated that M146-exo can significantly
reduce tumor growth in the rat brain (Katakowski et al.,
2013). Chen et al. (2018) demonstrated that the miR-223
transferred by BMSCs-exo can greatly protect hepatocytes from
injury in autoimmune hepatitis. One study conducted by Yu
et al. (2015) revealed that anti-apoptotic miRNAs like miR-19a
can be delivered into cardiomyocytes via MSCGATA−4 (MSC
overexpressing GATA-4)-derived exosomes and promote cardiac
protection, which effect is connected with the inhibition of miR-
19a target PTEN as well as activation of the Akt and ERK
signaling pathway.

CONCLUSION AND PERSPECTIVE

Since the first discovery of exosomes released by mature
erythrocytes in 1983, this topic has attracted much attention
from researchers because of their inherent properties. Exosomes
are a class of extracellular vesicles sized 30–100 nm that

contain cholesterol, sphingomyelin, ceramide, and other lipids
on the surface that can be secreted by a variety of cells,
including BMSCs, osteoclasts, osteoblasts, osteocytes, dendritic
cells, epithelial cells, tumor cells, etc. In the recent years,
researchers have developed various techniques to isolate
exosomes based on their physical, chemical, and biological
properties, and different methods have their unique advantages
and disadvantages which may influence the product quality and
following analysis.

With the development of molecular biotechnology, many
researchers have tended to investigate the bone metabolism
and skeletal disorders from a paracrine perspective, among
which the exosome-mediated intercellular communication
is rapidly gaining increasing attention. Bone-derived
exosomes can regulate cell apoptosis, proliferation, and
differentiation through multiple pathways, thus exerting
important effects during physiological and pathological
processes, such as bone remodeling, bone loss, fracture
healing, and so on. This review has summarized the role
of exosomes derived from BMSCs, osteoclasts, osteoblasts,
and osteocytes in skeletal metabolism. The multiple effects
of bone-derived exosomal miRNAs in bone remodeling
have also been listed in Table 1. Besides, the bone-derived
exosomes are found to participate in development of
extraosseous diseases. For example, bone-derived exosomes
could promote or suppress tumor growth through regulating
genes expression, signaling pathways, angiogenesis, and so
on. There are also numerous experiments illustrating that
bone-derived exosomes are able to protect functional cells
from apoptosis, thereby facilitating nerve repair, preventing
nephropathy, preserving myocardial functions, and so on. It
is reasonable to believe that bone-derived exosomes are highly
relevant to the exploration of mechanisms of extraosseous
diseases based on their ability to reach distant tissues and
extraosseous systems.

In recent years, scientists have discovered the important
role of exosomes in transmitting information between cells.

TABLE 1 | The role of bone-derived exosomal miRNAs in bone remolding.

Exosomal miRNA Cells miRNA expression miRNA function

miR-27a BMSCs High Promote osteogenic differentiation of osteoblasts (Qin et al., 2016)

miR-206a

miR-196a

miR-214 Osteoclasts High Inhibit osteoblasts function Promote RANKL induced osteoclasts
differentiation (Zhao et al., 2015; Sun et al., 2016)

miR-30d-5p Mineralizing MC3T3 cells High Inhibit osteoblasts differentiation (Xie et al., 2017)

miR-133b-3p

miR-140-3p

let-7 Mineralizing MC3T3 cells High Promote osteoblasts differentiation (Xie et al., 2017)

miR-335-3p

miR-378b

miR-218 Osteocytes Low Inhibit osteoblastic differentiation (Zhang et al., 2014; Qin et al., 2017)

miR-1192 Mineralizing osteoblasts (MOBs) High Promote bone marrow stromal cell (ST2) differentiation to osteoblasts
(Cui et al., 2016)

miR-680

miR-302a
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The contents of the exosomes can reflect the physiological and
pathological processes in cells, which can be released into various
body fluids and microenvironments, thereby transmitting carried
signals to distant tissues and cells (Yoshida et al., 2019). Exosomes
can therefore be used for diseases diagnosis. In addition, the
microvesicular structure of the exosomes can protect their
contents from degradation, which demonstrates their stability
in body fluids and enormous potential in the diagnosis and
surveillance of diseases (Kourembanas, 2015). Bone-derived
exosomes have become a research hotspot in the context of their
use as biomarkers for clinical diseases, such as osteoporosis,
MDS, AML, and so on; this provides a great opportunity for the
development of a novel and sensitive diagnosis method.

BMSCs are one of the most commonly used seed cells in tissue
engineering. A series of studies have shown that BMSCs have the
ability to repair bone defects (Rackwitz et al., 2012), but there still
exist some problems in terms of the immune response, ethics,
and so on. Recently, it has been reported that BMSCs release
exosomes containing signaling molecules through paracrine
mechanisms to promote tissue repair (Liang et al., 2014).
Therefore, scientists have started to focus on the application
of BMSC-derived exosomes in bone tissue engineering. It has
been found that BMSC-derived exosomes have the function of
regulating osteoblasts and osteoclasts as well as promoting bone
formation and neovascularization, and exosomes thus have great
application prospects and research value in the field of bone
tissue engineering. In addition, the potential use of exosomes as
drug delivery systems for disease treatment has gained significant

interest from the scientific community since they are of a nano-
size and have strong penetrability and hypotoxicity as well as
low immunogenicity and cell targeting properties. However, the
clinical application of bone-derived exosomes still faces several
challenges. The exosome extraction method currently used is
not efficient enough to be applied in clinic; it is therefore
imperative to design a strategy to increase the yield and purity
of exosomes. Besides, the content and function of exosomes
from different sources differ greatly, and the genetic information
contained in exosomes is thus still not fully elucidated. There
is consequently still a long way to go before exosomes can be
widely used in clinic.

In summary, this article has provided an overview of the effect
and mechanism of bone-derived exosomes in skeletal metabolism
and extraosseous diseases, and it has opened up new perspectives
for exosomes serving as biomarkers and drug delivery carriers.
We have reason to believe that, with the further development
of biotechnology and in-depth exploration of exosomes, the role
of bone-derived exosomes in clinical diagnosis, monitoring, and
treatment will be fully utilized.
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