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1  |  INTRODUC TION

There have been numerous studies aimed at the identification 
of prognostic biomarkers of aging outcomes (Barron et al., 2015; 

Niedernhofer et al., 2017; Sebastiani et al., 2017). Biomarkers could 
be useful to identify biological processes associated with aging, to 
identify the likelihood of important health outcomes, and to assess 
the effectiveness of interventions. Most studies have utilized assays 

Received:	20	April	2020  | Revised:	30	June	2020  | Accepted:	30	August	2020
DOI: 10.1111/acel.13253  

O R I G I N A L  P A P E R

Proteomic assessment of serum biomarkers of longevity in 
older men

Eric S. Orwoll1 |   Jack Wiedrick1 |   Carrie M. Nielson1 |   Jon Jacobs2 |    
Erin S. Baker3 |   Paul Piehowski2 |   Vladislav Petyuk2 |   Yuqian Gao2 |   Tujin Shi2 |   
Richard D. Smith2 |   Douglas C. Bauer4 |   Steven R. Cummings5 |   Jodi Lapidus1 |    
for the Osteoporotic Fractures in Men Study (MrOS) Research Group

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Aging Cell	published	by	Anatomical	Society	and	John	Wiley	&	Sons	Ltd

1Oregon	Health	&	Science	University,	
Portland,	OR,	USA
2Biological Science Division, Pacific 
Northwest National Laboratory, Richland, 
WA,	USA
3Department of Chemistry, North Carolina 
State	University,	Raleigh,	NC,	USA
4Departments of Medicine and 
Epidemiology	&	Biostatistics,	University	of	
California,	San	Francisco,	CA,	USA
5California Pacific Medical Center 
Research	Institute,	San	Francisco,	CA,	USA

Correspondence
Eric	S.	Orwoll,	MD,	Bone	and	Mineral	Unit,	
School	of	Medicine,	Oregon	Health	&	
Science	University,	Portland,	OR	97239.
Email: orwoll@ohsu.edu

Funding information
National Institute on Aging, Grant/
Award	Number:	U01AG027810	and	
U01AG18197;	National	Center	for	
Advancing Translational Sciences, Grant/
Award	Number:	UL1RR024140;	National	
Institute of Arthritis and Musculoskeletal 
and Skin Diseases; National Institute of 
General Medical Sciences, Grant/Award 
Number: GM103493

Abstract
The biological bases of longevity are not well understood, and there are limited bio-
markers	for	the	prediction	of	long	life.	We	used	a	high-throughput,	discovery-based	
proteomics approach to identify serum peptides and proteins that were associated 
with the attainment of longevity in a longitudinal study of community-dwelling men 
age	≥65	years.	Baseline	serum	in	1196	men	were	analyzed	using	liquid	chromatogra-
phy–ion mobility–mass spectrometry, and lifespan was determined during ~12 years 
of	follow-up.	Men	who	achieved	longevity	(≥90%	expected	survival)	were	compared	
to those who died earlier. Rigorous statistical methods that controlled for false positiv-
ity were utilized to identify 25 proteins that were associated with longevity. All these 
proteins were in lower abundance in long-lived men and included a variety involved in 
inflammation or complement activation. Lower levels of longevity-associated proteins 
were also associated with better health status, but as time to death shortened, levels 
of these proteins increased. Pathway analyses implicated a number of compounds as 
important upstream regulators of the proteins and implicated shared networks that 
underlie the observed associations with longevity. Overall, these results suggest that 
complex	pathways,	prominently	 including	 inflammation,	are	 linked	to	the	 likelihood	
of attaining longevity. This work may serve to identify novel biomarkers for longevity 
and to understand the biology underlying lifespan.
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of specific candidate biomarkers that are hypothesized to reflect rel-
evant outcomes (Sanchis-Gomar et al., 2015), but some have also 
used more broad ranging analytical approaches aimed at identifying 
biomarker signatures, for instance using metabolomics (Cheng et al., 
2015).

Mass spectrometry (MS)-based proteomic methods have been 
successfully adopted for biomarker discovery (Huang et al., 2017), 
but such proteomic approaches have been limited by technically 
demanding and time-consuming methods, and have had inher-
ently	low	throughput.	Previous	studies	were	frequently	restricted	
to	 relatively	 small	 sample	 sizes	 that	 are	 inadequate	 to	 assess	
associations on a population scale. Newer approaches, such as 
aptamer-based or antibody-based affinity proteomics, allow mul-
tiplexing	and	larger	sample	sizes	but	are	constrained	to	the	evalu-
ation of candidate proteins (Benson et al., 2019; Gold et al., 2010). 
We	developed	high-throughput	and	sensitive	MS-based	methods	
that allow a broad, discovery-based assessment of the serum pro-
teome (Baker et al., 2010, 2014) and have used those methods to 
interrogate samples from a large longitudinal cohort of older men 
to identify proteins associated with bone loss and mortality (E. S. 
Nielson	et	al.,	2017;	Orwoll	et	al.,	2018).	Similar	pipelines	for	large	
scale discovery proteomics have been employed in several other 
pioneering	studies	(Geyer	et	al.,	2016;	Price	et	al.,	2017;	Surinova	
et al., 2015).

We	 have	 used	 discovery	 proteomics	 in	 a	 12-year	 longitudinal	
study of older men to identify serum proteins that are associated 
with	longevity	and	have	explored	the	biological	pathways	that	may	
be involved in their regulation. Some of these proteins are well doc-
umented to be associated with longevity, while others have not been 
previously reported. These results illustrate the utility of this ap-
proach for biomarker discovery, provide candidate protein biomark-
ers potentially useful to identify individuals who may be long-lived, 
and offer insight into the biological basis of longevity.

2  |  RESULTS

2.1  |  Study participants

We	utilized	serum	samples	and	phenotypic	data	from	men	≥65	years	
enrolled in a large, prospective, longitudinal study (MrOS)(http://
mrosd ata.sfcc-cpmc.net). Of the entire MrOS cohort (N = 5994), a 
randomly selected subcohort (N = 2473) had serum proteomic assess-
ments of baseline serum samples and were followed prospectively for 
11.9	±	4.6	years.	In	these	analyses	(the	analytic	cohort),	we	compared	
those with proteomic measures who achieved longevity, defined as 
reaching	 or	 exceeding	 the	 90th	 percentile	 of	 expected	 age	 for	 their	
birth cohort (N = 554), to those who died before achieving longevity 
(N	=	642)	(Figure	1).	Less	than	1%	of	long-lived	men	died	within	5	years	
of baseline, and all men in this group lived at least 3.7 years (the 10th 
percentile	of	follow-up	time	was	9.1	years).	Just	13	(2%)	of	the	shorter-
lived	men	died	within	1	year	of	baseline,	and	an	additional	30	(5%)	in	
this group died with between 1 year and 2 years of follow-up. Thus, 

our	study	design	explicitly	mitigated	the	risk	of	inadvertently	detecting	
proteins associated with life-threatening acute illness effects. Potential 
confounding	 by	 age	was	minimized	 by	 requiring	 complete	 overlap	 in	
baseline age distributions between the two groups (see 4.2 Analytic 
sample). The characteristics of the overall MrOS cohort, the randomly 
selected subcohort with proteomic measurements, and the analytic co-
hort are shown in Table 1. The randomly selected subcohort with prot-
eomic measures was similar to the entire MrOS cohort. In the analytic 
cohort,	the	mean	age	at	baseline	was	77.4	±	3.2	years	(range	73–84).	
Generally, these men were similar to the overall MrOS cohort, apart 
from being slightly older on average due to the age selection criteria. 
Compared to the shorter-lived men, the men who achieved longevity 
were slightly older, had minimally lower BMI, and had slightly better 
levels of self-reported health, scores in the physical component of the 
SF-12	and	scores	on	the	Healthy	Aging	Index	(lower	scores	are	better).

2.2  |  Proteins associated with longevity

We	analyzed	3831	serum	peptides	mapping	to	224	proteins.	The	raw	
data	are	available	as	a	MassIVE	dataset	(accession	MSV000085611).	
Protein identifiers used in the MassIVE files are provided (in the 
“Symbol” column) in Table S1. The effect sizes of the associations of 
peptides with longevity are shown in Figure 2a. Protein-level meta-
analysis of the peptide associations revealed 25 proteins associated 
with longevity (Table 2), defined as having a meta-analyzed fold change 
of at least 1.1 in magnitude and posterior probability of less than 0.1 
that the effect is opposite of the estimated direction. An additional 34 
proteins (second tier) had significant associations with longevity (Table 
S2), but with slightly smaller fold changes and slightly higher posterior 
probabilities of incorrect sign (see 4.4 Statistical analyses). The effect 
sizes of the protein-level associations are shown in Figure 2b. All 25 
strongly associated proteins (and all but 3 of the 34 second-tier pro-
teins) were of lower abundance in those men who achieved longevity 
(fold	 changes	−1.10	 to	−1.22)	 than	 in	 shorter-lived	men.	Key	quan-
titative results from the mass spectrometric data analysis are avail-
able in Table S3, including the protein identifiers, number of peptides 
quantitated,	mean	 relative	 abundance	 levels	 for	 long-lived	men	and	
controls, fold changes, Bayesian posterior probabilities, and technical 
coefficients of variation (CVs).

The relative abundance levels of the 25 longevity-associated 
proteins in the members of the analytic sample are shown in the 
heatmaps in Figure 2c. Among the men who achieved longevity, 
there was a large fraction with a pattern of consistently lower abun-
dance levels. That pattern was present in a considerably smaller seg-
ment of the men who did not reach longevity, and in the latter group, 
a larger fraction had a pattern of consistently higher abundance of 
the longevity proteins.

In a clustering analysis of the complete set of identified serum 
proteins in the proteomics cohort, there was evidence of 12 clusters 
of intercorrelated proteins, and those clusters were similar when the 
clustering was performed separately in both long-lived men and con-
trols. The 25 longevity-associated proteins grouped into 5 clusters 
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(Figure S1) showing modest to high levels of pairwise correlation 
(r	=	0.33–0.89)	among	proteins	in	each	cluster,	suggesting	that	pro-
teins within a cluster may share some underlying regulation.

Although	 it	 is	 difficult	 to	 equate	 tissue	 levels	 to	 circulating	
protein	levels,	to	explore	the	tissues	that	were	likely	to	contribute	
to the serum proteins associated with longevity, we used stud-
ies	 recently	 published	 by	 Jiang	 et	 al.	 that	 examined	 the	 relative	
abundance	 of	 proteins	 in	 human	 tissues	 (Jiang	 L,	Wang	M,	 Lin	 S,	

Jian	R,	Li	X,	Chan	JY,	Fang	H,	Dong	G,	Tang	H,	Snyder	M	(2019)	A	
Quantitative	Proteome	Map	of	the	Human	Body.	https://www.biorx	
iv.org/conte nt/10.1101/797373v2). Figure S2 shows the tissues 
that	were	most	 frequently	described	as	having	high	 levels	of	pro-
tein	expression	of	the	longevity-associated	proteins.	Cardiovascular	
and neurological tissues were most prominent. The proteins within 
clusters	(above)	did	not	appear	to	originate	more	often	from	unique	
tissue sources.

F I G U R E  1 Study	overview.	Overview	of	the	selection	of	MrOS	participants	(left)	and	the	proteomic	measurement	and	analysis	workflow	
(right)

TA B L E  1 Cohort	characteristics,	mean	±SD

MrOS Proteomics Analytic Long-liveda  Not long-lived

N 5994 2473 1196 554 642

Age at baseline 73.7 ± 5.9 73.6	±	5.8 77.4 ± 3.2 78.5	±	3.1 76.4	±	2.9

BMI 27.4	±	3.8 27.4	±	3.8 27.0 ± 3.5 26.8	±	3.4 27.2 ± 3.7

Self-reported health (1–5)b  4.2 ± 0.7 4.2 ± 0.7 4.2 ± 0.7 4.2	±	0.6 4.1 ± 0.7

SF-12 Physical Componentb  48.8	±	10.3 48.9	±	10.3 47.7	±	10.8 48.8	±	9.9 46.7	±	11.4

SF-12 Mental Componentb  55.6	±	7.0 55.8	±	6.6 55.6	±	7.0 55.7 ± 7.0 55.6	±	7.0

Healthy	Aging	Index	(0–10)c  3.0	±	1.6 2.9	±	1.6 3.1	±	1.6 3.0 ± 1.5 3.3 ± 1.7

aTo	reach	or	exceed	the	90th	percentile	of	expected	age	for	birth	cohort.	
bHigher score is better. 
cLower score is better. 

https://www.biorxiv.org/content/10.1101/797373v2
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2.3  |  Prediction of longevity and mortality

To	 examine	 the	 hypothesis	 that	 baseline	 levels	 of	 proteins	were	
predictive	of	subsequent	longevity	and	mortality,	we	used	several	
complementary analytical approaches. First, the ability of protein 
signatures to predict longevity was analyzed using receiver oper-
ating characteristics (ROC). All possible combinations of the 25 
most robustly associated proteins were evaluated for ability to 
separate the long-lived and control groups, and the most informa-
tive subset of 14 of the proteins was summarized using Bayesian 
model averaging where combinations of proteins were weighted 
by joint posterior model inclusion probability. The Bayesian model-
averaged	classifier	yielded	area	under	the	ROC	curve	(AUC)	of	0.62	
(p	<	0.0001)	(Figure	3a).	While	this	finding	does	not	suggest	these	
proteins are clinically useful for the prediction of which men will be 
long-lived, it does provide additional evidence of their association 
with longevity.

Second, when considering either the entire cohort with proteomic 
measures (N = 2473) or the analytic cohort, higher abundances of each 
one of these 25 proteins were individually predictive of earlier mortality. 
Table 3 shows the age-adjusted hazard ratios of mortality correspond-
ing to standard-deviation changes in protein abundance for the full pro-
teomics cohort (hazard ratios 1.03–1.32, p < 0.0001 for most proteins). 
An	example	of	the	relationships	between	protein	abundance	and	death	
rate in the entire proteomics cohort is shown in Figure 3b; men in the 
highest tertile of C7 levels had a higher risk of death, and those in the 
lowest tertile a lower risk, compared to those in the middle tertile. As 
age increased and time to death shortened (see below), the differences 
were reduced. These analyses yielded similar results in the analytic co-
hort, including both the long-lived men and those who died earlier.

Finally, while the average abundance of the 25 longevity-asso-
ciated proteins was lower, at any age, in the long-lived men than in 
those who died earlier, in both groups the levels of these proteins 
tended to be higher in individuals whose time to death was shorter, 

F I G U R E  2 Protein	associations	with	longevity.	(a)The	associations	of	3831	serum	peptides	identified	by	MS-based	measurements	
with the achievement of longevity during observation. Volcano plot of the effect sizes and negative-log10-transformed p-values. (b) The 
associations	with	longevity	of	224	proteins	mapping	to	the	3831	serum	peptides.	Volcano	plot	of	the	effect	sizes	and	log	p-values.	Proteins	
associated with longevity are identified by dark symbols: large black dots =tier 1 proteins (Table 2); small black dots =tier 2 proteins 
(Supplemental Table 2); small gray dots =nonsignificant proteins. (c) Heatmaps showing the standardized relative abundance of the 25 tier 1 
serum	proteins	associated	with	longevity	in	each	of	the	554	men	who	achieved	longevity	during	observation	(cases,	top)	and	the	642	men	
who died before achieving longevity (controls, bottom). The z-scores for all protein associations were precalcuated using the full cohort, so 
the z-score values (represented as heatmap colors) are directly comparable between the two panels
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even after adjustment for baseline age (p	=	0.026).	In	contrast,	the	
average abundance of all the other measured proteins that were 
not associated with longevity was unrelated to the time to eventual 
death (p	 =	 0.68)	 (Figure	 3c).	 Although	 protein	 abundance	was	 as-
sessed at only one time point, these results suggest that an increase 
in these longevity-associated proteins heralds impending death.

2.4  |  Proteins associated with longevity are 
associated with better health status

Centenarians	have	been	reported	to	have	an	unexpectedly	 low	bur-
den	of	adverse	health	conditions	(Gellert	et	al.,	2018).	Similarly,	in	the	
analytic cohort, lower levels of an overall abundance score summariz-
ing the 25 longevity-associated proteins (lower score indicates lower 
protein abundance overall; see Protein abundance summary score in 
4.4 Statistical analyses) were significantly associated with a better self-
rated	health	status	(Spearman	r	=	−0.127,	p < 0.0001), better scores 
on	the	SF-12	physical	component	index	(r	=	−0.135,	p < 0.0001), lower 
(i.e.,	better)	Healthy	Aging	Index	(r	=	0.155,	p < 0.0001), and a lower 

score	on	 the	Fried	 frailty	 index	 (r	 =	0.192,	p < 0.0001). The results 
were the same when the entire proteomics cohort was considered. 
Moreover,	with	the	exception	of	the	proteins	in	Cluster	5	(CD5L	and	
IGHM; see Figure S1), each of the protein clusters and all of the pro-
teins in each cluster were individually correlated with these health in-
dices in the same direction as the overall protein score, on average at 
similar magnitudes but varying (ranging from ~0.02 to ~0.20 in size) 
depending	on	the	health	index	and	protein.	CD5L	and	IGHM	were	not	
correlated with any of the health indices.

2.5  |  Relationship of proteins associated with 
longevity, mortality and bone loss

In analyses of the MrOS cohort, we previously reported proteins 
that	are	associated	with	early	mortality	(E.	S.	Orwoll	et	al.,	2018)	and	
with	accelerated	bone	 loss	 (Nielson	et	al.,	2017),	and	we	explored	
to	what	extent	 the	proteins	associated	with	 longevity	are	also	as-
sociated with these other two phenotypes. In the Venn diagram in 
Figure 4a, it is apparent that there is considerable overlap among the 

TA B L E  2 Proteins	with	robust	absolute	fold	change	>1.1	for	longevity

Gene UniProt # Peptides Protein Name
Meta Fold 
Change Meta p

C9 CO9 19 Complement component C9 −1.217 0.0002

S100A9 S10A9 3 Protein S100-A9 −1.206 0.0700

CD163 C163A 5 Scavenger receptor cysteine-rich type 1 protein M130 −1.179 0.0179

CRP CRP 6 C-reactive protein −1.170 0.0183

IGHM IGHM 19 Immunoglobulin heavy constant mu −1.157 0.0002

C7 CO7 49 Complement component C7 −1.150 0.0001

FCGR3A FCG3A 4 Low affinity immunoglobulin gamma Fc region receptor 
III-A

−1.148 0.0984

LGALS3BP LG3BP 14 Galectin-3-binding protein −1.148 0.0002

NRP1 NRP1 3 Neuropilin-1 −1.140 0.0966

ALCAM CD166 4 CD166	antigen −1.139 0.0535

GPLD1 PHLD 7 Phosphatidylinositol-glycan-specific phospholipase D −1.136 0.0239

B2 M B2MG 7 Beta-2-microglobulin −1.133 0.0133

A2 M A2MG 21 Alpha-2-macroglobulin −1.133 0.0002

MMP2 MMP2 5 72 kDa type IV collagenase −1.132 0.0286

VWF VWF 58 von	Willebrand	factor −1.120 0.0001

CSF1R CSF1R 5 Macrophage colony-stimulating factor 1 receptor −1.119 0.0390

HPR HPTR 13 Haptoglobin-related protein −1.117 0.0003

CFD CFAD 7 Complement factor D −1.111 0.0078

CD5L CD5L 6 CD5 antigen-like −1.111 0.0788

FCGBP FCGBP 34 IgGFc-binding protein −1.108 0.0001

IGHG3 IGHG3 13 Immunoglobulin heavy constant gamma 3 −1.106 0.0014

F2 THRB 53 Prothrombin −1.104 0.0001

CST3 CYTC 7 Cystatin-C −1.102 0.0569

PTGDS PTGDS 4 Prostaglandin-H2 D-isomerase −1.101 0.0826

MCAM MUC18 7 Cell	surface	glycoprotein	MUC18 −1.101 0.0445
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proteins associated with longevity, mortality, and accelerated bone 
loss. However, almost universally, the directions of the associations 
with longevity are in the opposite direction to those of mortality 
and bone loss. Figure 4b shows the magnitude and direction of fold 
changes for each phenotype with each of the proteins referenced 
in	the	Venn	diagram,	and	with	few	exceptions,	the	protein	signature	
for bone loss and mortality in the top bands of the heatmap is similar 
and diametrically opposed to that of longevity in the bottom band. 
To	show	these	relationships	in	a	more	quantitative	way,	we	also	plot-
ted the values of longevity protein fold changes versus mortality and 
bone loss fold changes (Figure S3).

2.6  |  Pathway analyses: identification of upstream 
regulators of longevity-associated proteins

Ingenuity pathway analysis (IPA) was used to identify upstream reg-
ulators and pathways that could be responsible for the proteomic 

patterns	 associated	with	 longevity.	 Upstream	 regulators	 are	 com-
pounds whose biological actions can be directly linked to a protein 
of	interest.	The	upstream	regulators	with	activation	scores	|Z|>2	(ei-
ther activated or inhibited) of the longevity-associated proteins are 
shown in Table 4, along with the associated target proteins in our 
dataset. Of note, accounting for the direction of association in each 
measured protein that is regulated by the upstream regulator, almost 
all the upstream regulator pathways highlighted are predicted to be 
inhibited in long-lived men. The pathways with high activation scores 
were all associated with multiple longevity-associated proteins, and 
some	proteins	were	members	of	multiple	 (>3)	upstream	regulatory	
pathways, suggesting a potential convergence of multiple pathways 
resulting in an altered protein abundance observed in long-lived men 
in this study.

Several additional analyses supported the relevance of the IPA 
predictions of upstream regulators. First, serum concentrations of 
two upstream regulators with high activation scores in our IPA anal-
yses were available from independent ELISA assays (Cauley et al., 

F I G U R E  3 Prediction	of	longevity	and	mortality.	(a)	Receiver	operating	curve	analysis	showing	the	discrimination	of	long-lived	vs	control	
by	a	Bayesian	model-averaged	classifier	comprising	a	maximally	informative	subset	of	14	of	the	25	tier	1	longevity-associated	proteins.	(b)	
The relationship between C7 abundance at baseline age and death rate in the entire proteomic cohort (N = 2473). Shown are the hazard 
ratios	(HR)	of	death	(±	95%	CI)	for	the	highest	and	lowest	tertiles	of	C7	abundance	compared	to	the	middle	tertile	across	years	of	age	at	
baseline.	(c)	A	plot	of	an	abundance	index	of	the	25	tier	1	longevity-associated	proteins	(left)	as	a	function	of	time	to	death,	compared	to	an	
abundance	index	of	all	165	measured	proteins	not	associated	with	longevity	(right)
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2016):	 IL-6	 and	 IL-10,	 with	 activation	 scores	 −2.834	 and	 −2.166,	
respectively.	As	predicted	by	the	IPA,	 long-lived	men	had	IL-6	and	
IL-10	 concentrations	 that	were	 lower	 than	other	men	 (22%	 lower,	
p	<	0.001,	and	11%	lower,	p = 0.042, respectively). Similarly, serum 
levels were available for 3 other upstream regulators with less ro-
bust	activation	scores:	TNF	(activation	score	=	−1.14),	TNF	receptor	
1	(activation	score	=	−1.41),	and	TNF	receptor	2	(activation	score	=	
−0.85).	Their	levels	were	also,	as	predicted	by	IPA,	lower	in	the	long-
lived	men:	12%	lower	for	TNF	(p	=	0.18),	13%	lower	for	TNF	receptor	
1 (p	<	0.001),	and	6%	lower	for	TNF	receptor	2	(p = 0.004). Second, 
the relative abundance levels of proteins assessed in the present 
MS-based analyses that were not associated with longevity, but that 
were linked by IPA to upstream regulators, were also generally in 
the	directions	predicted	by	IPA.	For	example,	73%	(29	of	40)	of	the	
abundance	 levels	 of	 proteins	 linked	 to	 IL-6	 regulation	were	 in	 the	
direction	predicted,	and	83%	(10	of	12)	of	the	relationships	were	as	
predicted for proteins linked to IL-10 regulation.

Using	IPA	analyses,	we	also	examined	how	the	activation	pat-
terns of the upstream regulators of the proteins associated with 
longevity may differ from those of the mortality and accelerated 

bone loss phenotypes. In Figure 5a, we show the 35 regulatory 
pathways with strong activation scores for longevity (activation 
score	|Z|≥2),	along	with	a	heatmap	displaying	the	patterns	of	acti-
vation for the regulators across the 3 phenotypes. The directions 
of activation or inhibition in longevity are uniformly opposite 
those for bone loss and mortality. Finally, with the hypothesis that 
the 5 clusters of intercorrelated longevity-associated proteins de-
scribed	above	may	reflect	shared	biological	foundations,	we	exam-
ined the upstream regulators that might be involved in regulating 
the proteins in each cluster. An IPA-derived network analysis of 
the largest cluster (including the proteins in the cluster and other 
biologically associated proteins) is shown in Figure 5b, illustrating 
the	 importance	of	 IL6	 (which	participates	 in	31	of	 the	120	 con-
nections in the network) and alpha V integrin (IGTAV, participat-
ing	 in	10	 connections,	 including	one	 to	 IL6)	 in	 its	 regulation.	By	
way of comparison, the average number of connections per gene 
(beta	index)	for	the	network	is	just	2.14,	indicating	that	the	typical	
amount of connectivity for genes in the network is considerably 
lower	than	that	displayed	by	IGTAV	and	especially	IL6.	Excluding	
the connection between them, these two genes account for nearly 
25%	(39/120)	of	the	total	number	of	edges	in	the	network.	Similar	
network analyses of the other 4 highly intercorrelated clusters 
containing at least 1 of the 25 longevity proteins are shown in 
Figure S4. Each of these networks contains at least one hub gene 
with	 a	 node	 degree	 3	 to	 5	 times	 larger	 than	 the	 beta	 index	 for	
the network. A comprehensive mapping between the gene names 
used	 by	 IPA	 (and	 in	 this	 paper)	 and	 the	 corresponding	 UniProt	
names and identifiers for our 224 measured proteins is provided 
in Table S1.

3  |  DISCUSSION

High-throughput proteomic analysis of population-based study sam-
ples provides the opportunity to identify biomarkers for important 
health	outcomes.	Using	those	methods,	we	identified	serum	proteins	
that are associated with longevity in a longitudinal study of older, 
community-dwelling men with a long follow-up period. Further, 
we	used	 those	 findings	 to	 explore	 biological	 pathways	 that	might	
be involved. The majority of the proteins we identified have been 
associated with inflammation, although some have multifunctional 
biological roles and their associations with longevity may reflect 
other mechanisms. Pathway analyses suggested that several major 
upstream regulators may be causally responsible for the associa-
tions. The proteins and regulatory pathways that are associated with 
longevity are also associated, but in opposite directions, with the 
adverse health outcomes of bone loss and mortality. Moreover, late-
life	disability	and	morbidity	are	lower	among	people	who	experience	
extreme	longevity	(Hitt	et	al.,	1999).	In	concert	with	those	findings,	
the longevity-associated proteins in this study were associated with 
several indices of better health status. Finally, we observed a gradual 
increase in the abundance of longevity-associated proteins as time to 
death shortened in both long-lived and shorter-lived men. Although 

TA B L E  3 Hazard	ratios	of	longevity-associated	proteins	with	
mortality. The hazard ratios were adjusted for baseline age of the 
participants

Gene UniProt Hazard Ratio p-value

A2 M A2MG 1.18 <0.0001

B2 M B2MG 1.20 <0.0001

CD163 C163A 1.03 0.2891

ALCAM CD166 1.14 <0.0001

CD5L CD5L 1.08 0.0109

CFD CFAD 1.16 <0.0001

C7 CO7 1.32 <0.0001

C9 CO9 1.22 <0.0001

CRP CRP 1.17 <0.0001

CSF1R CSF1R 1.15 <0.0001

CST3 CYTC 1.21 <0.0001

FCGR3A FCG3A 1.14 <0.0001

FCGBP FCGBP 1.14 <0.0001

HPR HPTR 1.11 0.0001

IGHG3 IGHG3 1.10 0.0001

LGALS3BP LG3BP 1.16 <0.0001

MMP2 MMP2 1.13 <0.0001

MCAM MUC18 1.07 0.0142

IGHM IGHM 1.08 0.0030

NRP1 NRP1 1.14 <0.0001

GPLD1 PHLD 1.15 <0.0001

PTGDS PTGDS 1.16 <0.0001

S100A9 S10A9 1.13 <0.0001

F2 THRB 1.11 0.0001

VWF VWF 1.15 <0.0001
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the apparent linkage between the abundance of these proteins and 
death cannot be directly attributed to death per se, this finding sug-
gests a shift in underlying biological processes that might be linked 
to impending death. An understanding of those events would be of 
obvious interest.

The search for biomarkers of important health outcomes has 
been a biomedical research priority. Biomarkers can provide tools 
for prediction and diagnosis, insight into pathophysiology, and tar-
gets for the development of therapeutics. To our knowledge, this 
study represents the largest non-targeted proteomic effort to dis-
cover biomarkers of longevity. Previous proteomic analyses have 
been limited to smaller numbers of participants, cross-sectional 
analyses, and/or to the assessment of specific candidate proteins or 
other compounds. Some of those studies have used aptamer-based 
approaches to scan large numbers of proteins to identify interesting 

patterns linked to age and health-related phenotypes and outcomes 
(Emilsson	et	al.,	2018;	Menni	et	al.,	2015;	Sun	et	al.,	2018;	Tanaka	
et	al.,	2018).	Our	approach	offers	an	unbiased	opportunity	to	iden-
tify serum peptides/proteins associated with long life. In fact, our 
unbiased approach yielded longevity-associated proteins that were 
also measured in a recent analysis using a very large aptamer-based 
array	(Emilsson	et	al.,	2018),	but	also	identified	a	number	(4	of	25;	
FCGR3A, HPR, FCGBP, MCAM) that were apparently not assessed 
by that aptamer approach, highlighting the benefit of discovery 
proteomics.

The fact that many proteins were associated with longevity is not 
only biologically interesting but also supports the usefulness of pop-
ulation proteomic approaches to identify peptides and proteins of 
potential usefulness as biomarkers. MS-based discovery proteomic 
methods	 are	 evolving	 quickly	 and	 more	 in-depth	 measurements	

F I G U R E  4 Comparison	of	protein	associations	for	longevity,	mortality,	and	bone	loss.	(a)	Venn	diagram	of	the	overlap	of	proteins	associated	
with longevity, mortality, and bone loss. The accompanying table lists the overlapping proteins, with protein overlap groups color-coded to 
match the regions of the Venn diagram. Shown in parentheses are the directions of protein associations for each phenotype in the order (left 
to right): longevity, bone loss, mortality. (b) A heatmap of the relative protein abundance of proteins associated with longevity, mortality, and/
or bone loss. Shown are the signed fold changes for all proteins that were significantly associated with at least one of the phenotypes using 
the same criteria for significance that is used in this study (meta-fold change at least 1.1 in magnitude and meta-p less than 0.1)



    |  9 of 18ORWOLL et aL.

TA B L E  4 Regulatory	pathways	for	longevity-associated	proteins.	Tier	1	proteins	associated	with	longevity	appear	in	boldface,	tier	2	
proteins appear with neither boldface nor parentheses, and proteins that we did not find significant for longevity but that were linked to 
the	upstream	regulators	in	the	IPA	knowledge	base	appear	in	parentheses.	UniProt	names	and	identifiers	corresponding	to	the	gene	names	
appearing in the table can be found in Supplemental Table S1

Upstream
Regulator

Activation
z-score Target proteins measured in cohort

Alpha catenin 3.403 C6A3,	(IGF1),	(IGF2),	(IGFBP2),	(IGFBP6),	(IL6ST),	(LUM),	MMP2,	S100A8,	S100A9, (TIMP1), (VCAM1)

APOE 2.280 ACTB,	ADIPOQ,	(APOD),	(APOE),	CD44,	CLU,	ECM1,	(GPX3),	(HABP2),	(HSP90B1),	HSPA5,	HSPG2,	
(IGF1),	(IGFBP6),	(LRP1),	MMP2,	S100A8,	S100A9, (SERPINA3), (TIMP1), (VCAM1)

LRP1 2.213 (C1R), (C1S), (LRP1), MMP2, (SERPINF1), (SERPING1)

AIRE −2.000 (AMBP), (IGF2), ITIH3, S100A9

PRKCE −2.000 CRP,	HSPA5,	(IL6ST),	(VCAM1)

SOX9 −2.000 (COMP),	(KIT),	PTGDS, (VNN1)

NOS2 −2.058 ADIPOQ, (AZGP1), CD14, CD44, CFD, (CP), (ITIH4), LGALS3BP,	S100A8,	(SERPINA3),	(TIMP1)

Creb −2.157 ADIPOQ, CD14, CD5L, CSF1R,	DBH,	(IGF1),	(KRT1),	MCAM, MMP2, (PCOLCE), (PRG4)

CSF1 −2.159 (APOE), CD163, CSF1R, FCGR3A,	(FN1),	(HSP90B1),	HSPA5,	(IGF1),	(IL6ST),	(PTPRJ),	THBS1,	(VCAM1)

IL10 −2.166 (APCS), CD14, CD163, CD44, CSF1R, FCGR3A,	(IL6ST),	MMP2,	S100A8,	(SELL),	(TIMP1),	(VCAM1)

CHUK −2.178 CLU,	(CP),	ENPP2,	(IGFBP6),	MMP2, (NID1), (SOD3), (VCAM1)

GLI1 −2.182 CLU,	(FUC2),	(IGF1),	(IGF2),	(IGFBP6),	MMP2, (PVR), S100A9

Vegf −2.194 A2 M,	(ANPEP),	(APOM),	CD44,	(CRTAC1),	ENPP2,	(FN1),	(IGFBP3),	(IL6ST),	LYVE1,	MMP2, NRP1, 
(PVR), (TIMP1), (VCAM1), VWF

F3 −2.195 F2, LCP1, MMP2, (SERPINC1), (VCAM1)

CXCL12 −2.209 (C5),	CD14,	CD44,	(FN1),	(KIT),	MMP2, THBS1, (TIMP1)

STAT −2.219 A2 M, (AGT), CRP,	(IL6ST),	(SERPINA3),	(TIMP1)

HNF4A −2.313 (A1BG), (AGT), (AHSG), ALCAM, (AMBP), (ANPEP), (APCS), (LPA4), (APOC1), (APOC2), (APOC3), 
(APOE),	APOH,	(APOM),	(C1S),	(C2),	(C4B),	C6,	(C8G),	(CP),	(CPB2),	CRP,	DNAJC14,	(F11),	(F12),	
(F13B),	(F7),	(F9),	(FETUB),	GPLD1,	(GSN),	(HPX),	(HSP90B1),	HSPA5,	(IGF1),	(IL1RAP),	(IL6ST),	
ITIH3,	(ITIH4),	(KNG1),	(LPA),	MBL2,	(MST1),	(PEPD),	(PLG),	(PON1),	PROZ,	PTGDS, (PTPRG), 
S100A9, (SERPINA10), (SERPINA3), (SERPINA4), (SHBG), (TTR), VTN

CCL2 −2.334 ADIPOQ, (IGF1), MMP2, PTGDS, (TIMP1), (VCAM1)

IL1B −2.337 A2 M, (APCS), (APOC2), (APOE), B2 M, (C1R), CD14, CD44, (CFB), (CP), (CPB2), CRP, ENPP2, (FN1), 
HSPA5,	HSPG2,	(IGF1),	(IGFALS),	(IGFBP3),	(IGFBP5),	(IGFBP6),	(IL1RAP),	LCP1,	MMP2, NRP1, 
PTGDS,	RNASE1,	S100A8,	S100A9, (SELENOP), (SERPINA3), (SERPINF2), (SPARC), THBS1, 
(TIMP1), (VCAM1)

SREBF1 −2.348 ADIPOQ, (ALDOA), (APOC3), CD14, CFD,	(CFI),	(FN1),	(GPX3),	HSPA5,	IGHM, PTGDS, (SELENOP), 
(SERPINA3)

CTNNB1 −2.375 ACTB, ADIPOQ, ALCAM,	(AOC3),	(APOD),	C6,	CD44,	CFD,	CLU,	DBH,	ECM1,	ENPP2,	(FN1),	(IGF2),	
(IGFBP2), (IGFBP5), IGHM,	(JCHAIN),	(KIT),	(KRT1),	MMP2,	NCAM1,	(PTPRJ),	(RBP4),	S100A8,	
(SERPINA3), (TIMP1), (VCAM1)

IL1 −2.395 (APOC3), (APOE), (C2), (CFB), (CP), CRP, CSF1R,	(FN1),	(IGF1),	(KIT),	(LRP1),	MMP2, (RBP4), S100A9, 
(SAA4), (SELL), (SHBG), (SPARC), (TIMP1), (VCAM1)

CEBPD −2.408 (AGT),	(APOC3),	CD14,	CLU,	(CPB2),	CSF1R, (IGF1), (IGFBP5)

LDL −2.429 (APOE),	(HSP90B1),	HSPA5,	(HYOU1),	(IGF1),	(IGFBP2),	(IGFBP3),	(LRP1),	MMP2,	S100A8,	(VCAM1),	
(VNN1)

ANGPT2 −2.464 (C1R), (CFB), (FN1), HSPA5, MMP2, (PROS1), (SERPING1), (SOD3), THBS1, (VCAM1)

MYD88 −2.550 (APCS), CD14, CD44, HSPA5, (IGF1), (IGFBP5), MMP2,	S100A8,	(TIMP1),	(VCAM1)

CEBPA −2.601 A2 M, ADIPOQ, (AGT), (ANPEP), (LPA4), (APOC3), (APOC4), CD14, CFD, (CPB2), CSF1R, (F9), GGH, 
HPR, HSPA5, (IGF1), (IGFBP3), NRP1,	(RARRES2),	S100A8,	S100A9, (SERPINF1), THBS1, (VCL)

EGF −2.629 ALCAM,	(ANPEP),	CD44,	CLU,	(CPB2),	CSF1R, (FN1), (IGF1), (IGF2), (IGFALS), (IGFBP2), (IGFBP3), 
(IGFBP5), MMP2, (MST1), NCAM1, NRP1, S100A9, (SERPINA3), (SPARC), THBS1, (TIMP1), 
(VCAM1), (VCL)

(Continues)
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should allow a more comprehensive evaluation of similar biomark-
ers. In addition to the potential value for biomarker development, 
the identification of factors that are lower in longer-lived, health-
ier people may conceivably have eventual therapeutic implications. 
Parabiosis	experiments	in	animal	models	suggest	that	modulation	of	
circulating	factors	can	extend	lifespan	and	improve	health	(Ashapkin	
et al., 2020).

The proteins we found to be reduced in long-lived men strongly 
reinforce previous findings that implicate a low level of inflamma-
tion in the genesis of longevity. For instance, lower CRP was asso-
ciated with long life in our participants. Similarly, a variety of the 
longevity-associated proteins in this study was related to regulation 
of complement activation, an integral element in both adaptive and 
innate immune systems that yields the generation of potent inflam-
matory	mediators	and	cell	destruction	(Dunkelberger	&	Song,	2010).	
Members of the complement cascade that were lower in men who 
experienced	longer	life	included	complement	factor	D,	complement	
C7, and complement C9. Additional proteins negatively associated 
with longevity in our analysis are also implicated in inflammatory 
pathways,	including	CD166	(activated	leukocyte	cell	adhesion	mol-
ecule)	(Bowen	et	al.,	1995),	(Zimmerman	et	al.,	2006),	CD5	antigen	
(Aziz	 et	 al.,	 2015),	 galectin-3–binding	 protein	 (Yang	 et	 al.,	 2008),	
macrophage	colony-stimulating	factor	1	receptor	 (Chitu	&	Stanley,	
2006),	 cell	 surface	 glycoprotein	 (MCAM)	 (Stevenson	 et	 al.,	 2017),	
and	S100-A9	 (Wang	et	 al.,	 2018).	Adding	 to	 these	 findings,	 lower	
levels of several immunoglobulin-related proteins were associated 
with longevity (low affinity immunoglobulin gamma Fc region recep-
tor III-A, immunoglobulin heavy constant mu, immunoglobulin heavy 
constant gamma 3, IgGFc-binding protein).

Other longevity-associated proteins have functions linked to 
inflammation but are involved in other potentially relevant biolog-
ical processes as well. Metalloproteinase 9 (72 kDa type IV collage-
nase)	 is	critical	for	remodeling	of	the	extracellular	matrix	(Van	den	
Steen	 et	 al.,	 2002)	 and	 cardiovascular	 physiology	 (Yabluchanskiy	
et al., 2013). It is linked to atherosclerosis (Zhu et al., 2017) and 
heart	failure	(Meschiari	et	al.,	2018)	as	well	as	some	elements	of	the	

inflammatory response to injury. Scavenger receptor cysteine-rich 
type	1	protein	 (CD163)	 is	exclusively	expressed	 in	monocytes	and	
macrophages, is involved in the clearance of hemoglobin/haptoglo-
bin	complexes,	and	may	protect	tissues	from	free	hemoglobin-me-
diated	oxidative	damage.	 It	 is	also	expressed	during	the	resolution	
phase	 of	 inflammation	 (Alvarado-Vazquez	 et	 al.,	 2017;	 Etzerodt	&	
Moestrup, 2013). Neuropilin is a cell surface receptor that plays im-
portant roles in semaphorin and VEGF signaling, and thus in the con-
trol of neuronal cell regulation as well as endothelial cell migration 
and	proliferation	 (Nakamura	&	Goshima,	2002;	Pellet-Many	et	 al.,	
2008).	It	is	also	expressed	in	T	cells	and	may	help	mediated	prolifer-
ation in response to antigenic stimuli. Beta-2-microglobulin (B2 M) is 
known as a marker of aging and cellular senescence (Althubiti et al., 
2014) and is associated with declines in neurogenesis (Villeda et al., 
2011).	B2	M	is	the	small	extracellular	immunoglobulin-like	subunit	of	
the	major	histocompatibility	complex	(MHC)	class	I	molecule,	and	its	
levels are elevated in inflammation, liver or renal dysfunction, some 
viral	infections,	and	malignancies	(Li	et	al.,	2016).	Finally,	cystatin	C	
levels were lower in men who achieved longevity. Cystatin is a small 
molecular weight protein and is typically used as a marker of renal 
function, but higher levels have also been linked to the development 
of late-onset Alzheimer's Disease (Chuo et al., 2007) and it has been 
implicated in diverse aspects of immunity/inflammation and apopto-
sis	(Zi	&	Xu,	2018).

To provide biological insight into the upstream regulators that 
could be involved in the generation of the proteomic patterns ob-
served in our data, we utilized IPA analysis that is based on cu-
rated predictions from cause–effect relationships reported in the 
literature	(Kramer	et	al.,	2014).	IPA	analysis	is	strengthened	by	the	
inclusion of knowledge of the direction of pathway interactions (ac-
tivation or inhibition). In nearly all cases, the activity of the identified 
regulators is predicted to be inhibited. Although they represent a di-
versity of biological functions, the list is highly enriched in cytokines 
and transcription factors which play key roles in the regulation of in-
flammation and immunity, including IL1α,	IL17,	CEBPA,	PRDM1,	IL6,	
IL1β,	IL5,	IL10,	CXCL12,	and	others.	A	variety	have	been	identified	as	

Upstream
Regulator

Activation
z-score Target proteins measured in cohort

PRDM1 −2.642 (APOM), CD44, (CFH), CRP, ECM1, (F5), (F9), IGHM,	(JCHAIN),	S100A8,	S100A9, (SELL), (SERPINA3), 
(TTR)

IL5 −2.763 A2 M, (ALDOA), (HSP90B1), HSPA5, IGHM,	(JCHAIN),	(LUM),	QSOX1

cytokine −2.763 CLU,	CRP, (IGFBP2), MMP2, (PON1), (SPARC), (TIMP1), (VCAM1), VWF

IL17A −2.937 ACTB, CD14, CD163, CRP, MMP2, NRP1,	S100A8,	S100A9, (SERPIND1), (TIMP1), (VCAM1), VWF

IL1A −2.987 (APOD),	CD44,	HSPG2,	(IGF1),	(IGFBP5),	(KIT),	MCAM, MMP2,	S100A8,	S100A9, (SERPINA3), 
(SPARC), (VCAM1)

IL6 −3.053 A2 M, (ADAMTS13), (AGT), (ANPEP), (APCS), (APOE), CD14, CD163, CD44, CFD,	(CFH),	(CFP),	CLU,	
(COMP), (CP), (CPB2), CRP, CST3,	ENPP2,	(F12),	(FN1),	(GP1BA),	(GP5),	(HPX),	HSPA5,	(IGF1),	
(IGF2),	(IGFBP3),	(IGFBP5),	(IGFBP6),	IGHM,	(IL6ST),	(JCHAIN),	(KIT),	LCAT,	(LPA),	LRG1,	MMP2, 
(PLG), (PON1), (PPBP), S100A9, (SAA4), (SERPINA3), (SERPINA7), THBS1, (TIMP1), (TTR), (VCAM1)

ADCYAP1 −3.162 (ATRN),	(CRTAC1),	ENPP2,	(LUM),	(MAN1A1),	MCAM, (SERPINA3), (SERPINF1), (SPARC), (TGFBI)

Table	4 (Continued)
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being part of the senescence-associated secretory phenotype (SASP) 
(Basisty	et	al.,	2020;	Coppe	et	al.,	2008;	Matjusaitis	et	al.,	2016),	del-
eterious products released by senescent cells that accumulate with 
aging	(van	Deursen,	2014;	Kirkland	&	Tchkonia,	2017).	In	fact,	many	
of the longevity-associated proteins (11 of 25) are considered SASP, 
and	four	(galectin-3-binding	protein,	CD166	antigen,	72	kDa	type	IV	
collagenase, cystatin-C) are considered "core" SASP—proteins that 
are consistently stimulated by a variety of senescent stimuli (Basisty 
et al., 2020). Moreover, there is overlap between the longevity-as-
sociated	proteins	we	have	identified	(e.g.,	S100A9,	S100A8),	or	their	

upstream regulators (e.g., APOE, IL1β,	IL6,	IL17),	and	the	genes	that	
are	 differentially	 expressed	 in	 response	 to	 caloric	 restriction	 and	
are related to inflammation (Ma et al., 2020). These findings further 
highlight the strength of the association of reduced inflammation to 
longevity and may support the hypothesis that lower levels of cell 
senescence facilitates longer life. Also represented are a number 
of factors important in cell development or proliferation (including 
SOX9,	ATF4,	P53,	GLI1,	CTNNB1)	and	metabolism	(PRKCE,	SREBF1).

Recent work had highlighted the potential importance of circu-
lating protein clusters as biomarkers for important health outcomes 

F I G U R E  5 Upstream	regulators	of	proteins	associated	with	longevity.	(a)	Heatmap	showing	upstream	regulators	of	longevity-associated	
proteins	as	determined	by	Ingenuity	Pathway	Analysis	(IPA).	Only	those	regulators	with	large	activation	scores	(|Z|	≥2)	are	included.	
Orange shades indicate IPA-predicted activation and blue shades indicate predicted inhibition of the regulator. (b) Network analysis 
(IPA) of the largest cluster (Cluster 1) of intercorrelated serum proteins associated with longevity. To derive these networks, we used IPA 
network-building tools in a systematic and algorithmic manner to connect the proteins appearing in the clusters to one another and to 
annotate their relationships to other closely connected proteins. Green symbols show measured proteins that were decreased in long-
lived men, red symbols measured proteins that were increased, and blue symbols unmeasured proteins or regulators that are predicted 
by IPA to be inhibited. Blue lines represent inhibitory relationships that were consistent with IPA predictions, orange lines activating 
relationships	consistent	with	IPA	prediction,	yellow	lines	relationships	inconsistent	with	IPA	prediction,	black	lines	relationships	that	exist	
in the IPA knowledge base but without a prediction, solid lines direct relationships and dashed lines indirect relationships. Arrows indicate 
directionality of activation, and flat ends show directionality of inhibition. Lines with neither arrows nor flat ends indicate only a general 
relationship	or	interaction	of	the	molecules.	The	names	appearing	in	the	figure	are	IPA	gene	names,	not	UniProt	identifiers;	a	mapping	of	
gene	names	and	current	UniProt	identifiers	is	in	Supplemental	Table	S1
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(Emilsson	et	al.,	2018),	and	similarly,	we	found	that	the	proteins	as-
sociated with longevity in the current study also clustered. Of the 25 
longevity-associated	proteins	we	identified,	18	were	also	measured	
by	Emilsson	et	al.	 (Emilsson	et	al.,	2018)	and	12	were	found	to	be	
part of clusters in their cohort (AGES). Two of their clusters were 
enriched in proteins we also found to be associated with longev-
ity.	 Four	 of	 our	 longevity-associated	 proteins	 (neuropilin,	 CD166,	
alpha-2 microglobulin and 72 kDa type IV collagenase; members of 
our related clusters 1 and 2, Figure S1) were part of their cluster 
PM27,	 a	 378-protein	module	 associated	with	 prevalent	 heart	 fail-
ure and reduced survival. Three (beta-2-microglobulin, complement 
factor D and cystatin-C; members of our cluster 3, Figure S1) were 
part	of	their	cluster	PM26,	a	390-protein	module	that	was	positively	
association with prevalent and incident coronary heart disease and 
heart failure as well as reduced overall survival probability. Clusters 
such as these may suggest shared biological underpinnings, and our 
integrative analyses using IPA yielded pathways that appeared to 
converge on nodes that tied together the longevity-associated pro-
teins and related proteins and regulators. These analyses may yield 
targets for additional research evaluation aimed at uncovering caus-
ative events related to longevity.

Our analysis has important strengths. It takes advantage of a 
large,	prospective	observational	study	that	includes	excellent	fol-
low-up	 and	 ascertainment	 of	 longevity.	 We	 analyzed	 discovery	
proteomic measures in almost 1200 men, thus representing the 
largest	 such	experiment	available.	We	utilized	very	 robust	 statis-
tical methods to link peptides to proteins and to reduce the likeli-
hood of type II error. Several limitations should also be mentioned. 
The proteomic analysis we performed is limited in terms of sen-
sitivity, but on the other hand, it is relatively comprehensive and 
we	examined	a	very	large	number	of	participants.	As	our	pathway	
and protein–protein interaction analyses demonstrate, many of the 
longevity-associated proteins we report are linked, and although 
we can implicate major pathways as being associated with longer 
life, it is more difficult to evaluate the relative importance of each 
peptide/protein. Since the numbers of minority participants were 
limited,	we	could	not	examine	these	associations	in	non-white	men.	
We	did	not	include	women.	Observational	studies	such	as	ours	are	
limited in their ability to disentangle correlative from the causal 
factors, and from these analyses, we cannot determine the time 
of life at which potentially advantageous pathways become associ-
ated with longevity. Moreover, we did not include a direct assess-
ment of health, but ultimately it will be important to understand 
both	 longevity	 and	 disease-free	 longevity.	 Future	 experimental	
studies may help to elucidate the relationships among proteins and 
with outcomes relevant to human health.

In summary, we performed broad based serum proteomic analy-
ses on a large number of older men and describe peptides and pro-
teins that are associated with longevity. Many of the proteins we 
identified as being reduced in those who were long-lived are involved 
in inflammation, and a number were previously found to be linked 
to early mortality but in the opposite direction. Pathway analyses 
were highly enriched in regulators of inflammation and immunity, 

reinforcing the importance of inflammation in the determination of 
lifespan. These results provide the opportunity to further evaluate 
these peptides and proteins as biomarkers and highlight the poten-
tial importance of the biological pathways they implicate in the ori-
gins of long life.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study participans

The Study of Osteoporotic Fractures in Men (MrOs) is a prospec-
tive	observational	cohort	study	of	men	aged	≥65	years.	The	design	
and recruitment have been previously described (Blank et al., 2005; 
E. Orwoll et al., 2005). Briefly, 5994 community-dwelling, ambula-
tory	men	were	recruited	from	six	areas	of	the	US	(Birmingham,	AL;	
Minneapolis, MN; Palo Alto, CA; Pittsburgh, PA; Portland, OR; and 
San Diego, CA) between March 2000 and April 2002. Eligible par-
ticipants were able to walk without assistance from another person 
and had not had bilateral hip replacements. Participants or their sur-
rogates	were	 regularly	 contacted	with	 triannual	questionnaires,	 in	
part	to	determine	vital	status.	Rates	of	follow-up	were	high:	~95%	
of	 all	 questionnaires	were	 completed.	Reported	deaths	were	 con-
firmed	with	death	 certificates.	Written	 informed	 consent	was	ob-
tained from all participants. The institutional review board at each 
study site approved the protocol.

4.2  |  Analytic sample

For the current analysis, 2473 non-Hispanic white participants were 
randomly selected from MrOS (Figure 1). Too few non-white men 
were	enrolled	 (~10%)	 to	enable	 analyses	of	 racial	 or	 ethnic	differ-
ences.	Within	 the	 subcohort	 of	 2473,	 we	 selected	men	who	 had	
the	 potential	 to	 achieve	 longevity,	 specifically	 to	 reach	 or	 exceed	
the	90th	percentile	of	expected	age	for	their	birth	cohort.	That	ex-
pected age for each birth cohort was defined by an analysis of actu-
arial	life	tables	from	the	United	States	Social	Security	Administration	
(see Supplemental Methods). Men who enrolled at ages less than 73 
were	excluded	because	they	did	not	have	sufficient	time	to	reach	the	
90th percentile of age for their birth year cohorts. Men who enrolled 
at	ages	greater	than	84	were	excluded	because	they	were	already	
quite	close	to	the	90th	percentile	of	their	birth	year	cohorts;	almost	
none of them failed to reach the 90th percentile during follow-up, 
and there were few or no same-aged controls to compare them to. 
In	order	to	guard	against	leverage	effects,	we	required	overlap	in	the	
age distributions of the long-lived and not-long-lived groups such 
that each discrete stratum by year of age would contain at least 5 
participants	from	each	group.	Using	these	criteria,	1196	men	were	
eligible. Control participants were MrOS subjects with enrollment 
ages	in	the	selected	baseline	age	range	[73-84]	who	died	during	ob-
servation	 (or	were	 lost	 to	 follow-up;	8%)	before	 they	 reached	 the	
90th percentile of age for their birth year cohort.
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4.3  |  Serum proteomic analysis

The proteomics workflow is illustrated in Figure 1 and has been de-
scribed	in	detail	in	(E.	S.	Orwoll	et	al.,	2018).	Briefly,	150	µL	of	serum	
from	the	baseline	MrOS	visit	 that	had	been	stored	at	−80°C	since	
collection	was	depleted	of	14	high-abundance	proteins	using	IgY14	
immunoaffinity depletion columns (Sigma-Aldrich, St. Louis, MO, 
USA)	 and	 digested	with	 trypsin.	A	 pooled	 serum	 from	 102	MrOS	
participants served as technical control of sample processing and 
analysis; they were embedded throughout the proteomic runs. The 
tryptic peptide samples were analyzed using a LC-IMS-MS platform 
(Baker et al., 2010, 2014). Specifically, the analytical platform uti-
lized in this work coupled a 1-m ion mobility drift tube and an Agilent 
6224	 time-of-flight	 (TOF)	 mass	 spectrometer	 with	 an	 upgraded	
1.5-m TOF flight tube providing resolution of ~25,000. The coupled 
high-performance LC (HPLC) system was a fully automated in-house 
built	4-column	system	equipped	with	in-house	packed	capillary	col-
umns	(30-cm	long	having	an	o.d.	of	360	µm,	i.d.	of	75	µm,	and	3-µm	
C18	packing	material)	 and	operated	under	a	 constant	 flow	 rate	of	
1	µL/min	 (Livesay	et	al.,	2008).	Ten	µL	of	each	sample	was	 loaded	
onto	a	reverse-phase	column	and	separated	over	a	58-min	gradient	
from	100%	of	mobile	phase	A	(0.5%	formic	acid	in	water)	to	60%	B	
(0.5%	formic	acid	in	100%	acetonitrile).	Specifically,	the	percentage	
of	mobile	phase	B	for	0,	1.2,	12,	51,	58,	59,	and	62	minutes	was	0,	
8,	 12,	 35,	 60,	 95,	 and	 finally	 0%	 completing	 the	 separation/wash	
cycle.	The	acquisition	range	for	the	MS	spectra	extended	from	100	
to 3200 m/z. The details of the platform performance have been de-
scribed	elsewhere	(Baker	et	al.,	2010).	Detection	and	quantification	
of LC-IMS-MS features with characteristic (mass, charge, LC elution 
time, IMS drift time and abundance) was performed using Decon2LS 
(Jaitly	et	al.,	2009)	and	FeatureFinder	(Crowell	et	al.,	2013)	software	
tools. The detected features were identified by mapping their mass, 
elution time, and drift time using VIPER software tools (Crowell et al., 
2013;	Zimmer	et	 al.,	 2006)	 and	 linked	 to	known	proteins.	Peptide	
abundances were log10	 transformed.	We	 removed	outliers	 flagged	
by a multivariate distance measure. Data normalization was based 
on estimates of technical variability that were computed from meas-
ured abundances of peptides that were detected in all 102 pooled 
control samples.

4.4  |  Statistical analyses

4.4.1  |  Peptide and protein-level associations with 
long-lived status

We	have	published	portions	of	our	statistical	analysis	pipeline	pre-
viously	 (Nielson	 et	 al.,	 2017;	 E.	 S.	 Orwoll	 et	 al.,	 2018).	 We	 used	
bias-corrected estimates from linear regression models to estimate 
associations between individual peptide abundances and long-lived 
status, followed by Bayesian meta-analyses that combined peptide-
level	results	to	yield	associations	at	the	protein	level.	We	then	used	a	
resampling procedure to ensure protein-level estimates were stable.

The linear regression model used normalized log10 peptide abun-
dance levels as the dependent variable, and incorporated adjust-
ments only for participant age and the population-based birth-cohort 
cumulative hazard at age to account for differential hazard at the 
same	 age	 in	 different	 subcohorts.	 Measures	 of	 body	 mass	 index	
were essentially identical in long-lived and control groups. The mod-
els included indicators for MrOS clinical site (to ensure no variabil-
ity based on unappreciated differences in study conduct between 
sites) and an indicator for peptides whose abundance was partially 
imputed during mass-spectrometry analysis. The fold difference be-
tween peptide abundance in the longevity group and the short-lived 
group was estimated as the antilog of �1 from the following model:

Our approach to account for bias in the peptide fold changes 
caused by missing peptide values was application of the Heckman 
selection model (Heckman, 1979), the details of which have been 
previously described (Nielson et al., 2017).

Peptide associations were combined by Bayesian meta-analysis 
to yield protein-level effects ("meta-effects") based on all peptides 
mapped to a protein. The sampling variance of each individual peptide 
estimate	was	estimated	by	the	squared	standard	error	of	the	association	
effect	(from	the	peptide-level	model)	and	assumed	to	be	a	known	fixed	
quantity.	We	 imposed	mildly	 informative	Bayesian	 prior	 distributions	
for the mean and variance of the peptide associations, specifically that 
they were normally distributed with mean 0 and variance 1 on the log10 
abundance scale, and that the variance was inverse-gamma distributed 
with both shape and scale parameters set to 1/100. Estimation was 
done via Gibbs sampling, and the model was estimated using Markov 
Chain Monte Carlo (MCMC) with an adaptive burn-in of 2500 samples 
and	initial	MCMC	sample	size	of	10000,	times	a	scaling	factor	equal	to	
the base-10 log of the peptide count (or 1, if the peptide count was less 
than	10),	with	interim	checks	for	convergence	and	adaptive	expansion	
of the MCMC sample size if needed. As a sensitivity analysis, the pep-
tide	models	were	re-estimated	with	the	inclusion	of	the	first	4	GWAS	
principal	components	(accounting	for	>75%	of	the	variance	in	a	GWAS	
analysis of the MrOS cohort) to adjust for potential genetic biases in the 
cohort composition and then meta-analyzed by protein as above, but 
the impact of this additional adjustment was negligible.

To investigate stability of effect size estimates, we performed a de-
lete-half jackknife resampling sensitivity analysis based on a bootstrap 
of 200 jackknife replicates sampled with replacement (Efron, 1994; 
Shao,	1989).	For	each	replicate,	we	ran	each	protein	through	the	en-
tire estimation pipeline and compared the bootstrap distribution of 
meta-effect	estimates	to	the	full-cohort	estimate.	We	found	that	the	
replicate distribution of effects for proteins represented by at least 2 
peptides reliably reproduced the credibility bounds obtained from the 
full-cohort meta-analysis. Singleton peptides were often less stable. 
Therefore, protein-level meta-effects were reported only for the 224 
proteins represented by at least 2 measured peptides.

log10peptide abundance∼�+�1alive 90th+

�2age+�3cumhazard+(adjustment variables)+error
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Proteins with differential abundance between the longevity and 
control groups were selected based on their meta-effect size and "me-
ta-p" value (posterior probability that the sign of the meta-effect is in-
correctly estimated). Proteins were prioritized if their bootstrap meta-p 
was less than 0.1 and the absolute value of their bootstrap log10 me-
ta-effect was at least 0.041 (corresponding to a fold change of about 
1.1 or 0.9). This rule led to the selection of 25 proteins (referred to as 
"tier 1"; see Table 2). A second tier of 34 proteins with absolute me-
ta-fold	change	>1.05	and	meta-p < 0.2 that also were in the top third of 
ranks	generated	by	an	empirical	Bayes	ranking	procedure	(https://arxiv.
org/abs/1312.5776)	were	tabulated	as	well	 (Table	S2).	 It	 is	 important	
to note that these meta-p values are Bayesian posterior probabilities 
and do not carry the same interpretation as p-values. They have already 
been	adjusted	for	our	prior	expectations	(via	the	Bayesian	prior	distri-
butions)	and	do	not	require	any	correction	for	multiple	comparisons.

To facilitate comparisons of longevity proteomic associations 
with	those	of	the	mortality	and	bone	loss	phenotypes	that	we	ex-
amined in previous papers (Nielson et al., 2017; E. S. Orwoll et al., 
2018),	we	reanalyzed	both	phenotypes	using	methods	 identical	 to	
those employed for this study and selected robustly associated pro-
teins using the same selection criteria (absolute meta-fold change 
>1.1	and	meta-p < 0.1). The selected proteins for these phenotypes 
are presented in Figure 4a.

4.4.2  |  Estimates of protein abundance

Protein clustering, receiver operating characteristic (ROC) curves, 
and correlations with health phenotypes were based on estimates 
of protein abundance, which were derived via a crossed-random-
effects model that included all peptides observed for each protein 
(Nielson et al., 2017). Protein levels for each participant were es-
timated	using	predicted	values	for	the	total	effects	 (i.e.,	 fixed	plus	
random effects) minus the best linear unbiased prediction of the cor-
responding random effect for each peptide.

4.4.3  |  Clustering

To identify clusters of proteins that might share biological regula-
tion, protein abundance estimates were standardized by protein, and 
pairwise distances between all proteins were calculated using the 
Gower dissimilarity measure. These distances were clustered hierar-
chically	using	Ward's	linkage,	yielding	12	clusters	by	the	Duda-Hart	
stopping rule, 5 of which contained longevity-associated proteins 
(from either tier 1 or tier 2).

4.4.4  |  Protein abundance summary score

Briefly, we standardized the measured abundances within each pro-
tein, combined these standardized values across the 25 longevity-
associated proteins (additionally noting the subtotals separately for 

each cluster), and then standardized the combined total; it is this 
final overall standardized value that we refer to as the "overall abun-
dance score" above. Scores were additionally calculated for each of 
the 5 clusters as averages of the (standardized) abundance values of 
the proteins in each cluster. Hence, a lower score indicates generally 
lower protein levels. The total protein score was correlated (using 
Spearman's correlation) with self-reported health, the SF-12 physical 
component,	the	Healthy	Aging	Index	(Sanders	et	al.,	2014),	and	the	
Fried	Frailty	 Index	adapted	for	MrOS	 (Cawthon	et	al.,	2007;	Fried	
et al., 2001), all measured at the MrOS baseline visit.

4.4.5  |  Multiprotein longevity signatures

To investigate whether and which combinations of proteins were 
predictors of long-lived status, we performed logistic regression 
modeling	and	plotted	ROC	curves.	We	calculated	Mahalanobis	dis-
tances for participants based on all 25 tier 1 proteins and compared 
this to alternative calculations of Mahalanobis distances computed 
from smaller subsets, finding that a set of 14 proteins separated 
the	 groups	 just	 as	well	 as	 the	 full	 25.	We	 then	 fit	 logistic	 regres-
sion models on all possible combinations of these 14 proteins and 
computed	area	under	the	ROC	curve	based	on	predicted	values.	We	
used	a	Bayesian	model-averaging	procedure	(Burnham	KP,	Anderson	
DR. 2002. Model Selection and Multimodel Inference: A Practical 
Information-Theoretic Approach,	 2e.	 New	 York:	 Springer-Verlag	
DOI:	 10.1007/b97636)	 to	 approximate	 the	 average	 classification	
performance of multiprotein models and reported this in Figure 3a.

4.4.6  |  Mortality and death-proximity associations

We	investigated	associations	between	the	25	longevity-associated	
proteins and mortality, anticipating that each protein's mortality 
association	would	be	approximately	the	inverse	of	its	longevity	as-
sociation. For each protein, we fit a semiparametric time-to-event 
model (using cubic splines), adjusted for participant age, on data 
from the entire proteomics cohort (N = 2473) as well as the analytic 
cohort, to obtain a hazard ratio of mortality. Furthermore, to inves-
tigate	whether	proteins	were	correlated	with	proximity	to	death	(to	
calculate	the	slopes	in	Figure	3c),	we	fit	a	structural	equation	model	
(SEM) for the top 25 longevity-associated proteins, and another for 
the	set	of	165	proteins	that	were	not	associated	with	longevity	(i.e.,	
including neither tier 1 nor tier 2 proteins; note that tier 2 proteins 
were not used in either model). The models included a measurement 
component summarizing the protein abundances into a single fac-
tor score. The structural portion of each model assumed the effect 
of age on protein abundance levels was at least partially mediated 
by	proximity	to	death.	To	disentangle	the	effect	of	death	proximity	
from	the	expected	aging	effect,	we	used	as	 instrumental	variables	
health status (as measured by the physical component of the SF-
12)	and	cumulative	hazard	of	death	(from	US	population	statistics).	
Finally, we calculated protein abundance score predictions from the 

https://arxiv.org/abs/1312.5776
https://arxiv.org/abs/1312.5776
http://DOI:%A010.1007/b97636
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models and performed a kernel-weighted (Epanechnikov) local poly-
nomial spline smoothing of those predictions along a time-to-death 
axis.	 The	 linear	 association	 between	predicted	 protein	 abundance	
scores and time to death was estimated as the average time deriva-
tive of the spline in each instance.

4.5  |  Pathway analyses

We	 used	 the	 Ingenuity	 Pathway	 Analysis	 software	 (IPA,	 Spring	
2019	 release,	 QIAGEN	 Inc.;	 https://digit	alins	ights.qiagen.com/
produ cts-overv iew/disco very-insig hts-portf olio/analy sis-and-
visua	lizat	ion/qiagen-ipa/)	 to	 identify	networks	of	 interacting	pro-
teins associated with longevity, predicted upstream regulators 
of those associations, and causal networks potentially related to 
those	 effects	 (Kramer	 et	 al.,	 2014).	 The	 proteomic	 dataset	 was	
input into ingenuity pathway analysis (IPA) using the Core Analysis 
platform (Ingenuity Systems, Redwood City, CA) under default set-
tings: Direct and indirect relationships between molecules sup-
ported	by	experimentally	observed	data	were	considered,	de-novo	
networks	did	not	exceed	35	molecules,	and	all	sources	of	data	from	
human,	mouse,	 and	 rat	 studies	 in	 the	 Ingenuity	Knowledge	Base	
were considered. IPA provides an upstream regulator analysis to 
determine likely direct regulators of the proteins in our dataset, 
designating them as "activated" or "inhibited" based on a z-score 
calculated from the fold change directions and magnitudes among 
the proteins in our data that could be mapped to the regulator. 
Regulator	associations	are	quantitated	by	the	activation	state,	 in-
cluding the predicted direction of the associations (activated or 
inhibited), and the salience of the activation of the putative regula-
tor, as measured by the magnitude of the z-score. For each cluster 
(see Clustering), we used IPA network-building tools in a systematic 
and algorithmic manner to create networks of genes that according 
to the IPA knowledge base are closely connected to the proteins 
comprising each of the 5 protein clusters associated with longev-
ity. Connectivity of genes within each network was assessed by 
the degree of the gene node (i.e., the number of other genes in 
the network with a connection to that node) and compared to the 
overall	beta	index	for	the	network,	which	characterizes	the	average	
number of connections per node (counting each pair only once).
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