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Abstract: Cardiovascular disease is the most common cause of death among diabetic patients world-
wide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease
management. Recent studies have demonstrated that protein kinase C activation plays a vital role
in the development of cardiovascular complications via its activation of mitogen-activated protein
kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia
in diabetic conditions contribute to preserved PKC activation mediated by excessive production of
diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular
responses, including enhancing oxidative stress and activating signalling pathways that lead to
uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review,
we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in
the development and progression of diabetic cardiovascular complications, and their potential as
therapeutic targets for cardiovascular management in diabetic patients.
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1. Introduction

Diabetes mellitus (DM) has now devoured people on a global scale regardless of
socioeconomic status, and it has been estimated that 537 million people worldwide are
living with diabetes presently. International Diabetes Federation (IDF) forecasted that this
number would rise to 643 million by 2030 and 738 million by 2045 [1]. An uncontrolled
state of diabetes could bring about multiple health risks to its sufferers. Over time, diabetes
could cause irreversible damage to the heart, nerves, eyes, and kidneys. Often, morbid-
ity among diabetic patients is caused by untreatable complications following chronic or
prolonged diabetes.

Past reports have strongly associated cardiovascular diseases (CVDs) with diabetes.
Diabetes, a condition brought upon by the failure and/or insufficiency of insulin action
that prevents the body from taking up and utilising glucose, is characterised by chronic
hyperglycaemia and is a significant factor in the development of CVDs [2–4]. This condition
provokes many deleterious pathogenic pathways that could increase the risk of morbidity
and mortality in a diabetic patient without early intervention.
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Many theories prove that chronic hyperglycaemia in diabetes could implicate CVDs,
one of them being its direct activation of protein kinase C-mitogen-activated protein kinase
(PKC-MAPK) pathways [5,6]. The activation of PKC by hyperglycaemia highlighted PKC
as a potential therapeutic target in diabetes mellitus. PKC is a family of isoforms that are
subdivided into the classical PKCs (PKCα, PKCβ1, PKCβII, and PKCγ), novel PKCs (PKCδ,
PKCε, PKCη, and PKCθ) and atypical PKCs (PKCζ and PKCι) [7]. These isoforms play
critical roles in regulating cell proliferation, apoptosis, differentiation, angiogenesis and
tumour development. The stimulation of PKC activates multiple pathways, including the
mitogen-activated protein kinase (MAPK) via activation of MAPK kinases (MAPKKs) [8].
Overt activation of PKC-MAPK has been widely debated to play a significant role in the
development of many diabetes-induced pathologies, including nephropathy and diabetic
liver [9]. However, the role of PKC-MAPK activation in the development of diabetes-
induced cardiovascular complications has yet to be discussed in detail. Therefore, in this
review, we aimed to elucidate the role of the overt activation of PKC-MAPK signalling
pathways in the development of diabetes-induced cardiovascular complications.

The literature search was completed using the PubMed database and relevant key-
words (protein kinase C; mitogen-activated protein kinase; protein kinase C- mitogen-
activated protein kinase; p38; ERK1/2; JNK; cardiovascular; diabetes mellitus; vascular;
heart; hypertrophy; remodelling; fibrosis; inflammation; oxidative stress) were used as a
search strategy. This article will highlight the role of PKC-MAPK signalling pathways in
the development of diabetes-induced cardiovascular complication and its potential as a
therapeutic target for cardiovascular management.

2. Protein Kinase C-Mitogen Activated Protein Kinase (PKC-MAPK) Signalling
Pathways in Diabetes

Studies have demonstrated that essential factors of hyperglycaemia promote cardio-
vascular complications, which include the promotion of oxidative stress, inflammation,
and apoptosis on myocardial and vascular tissues, eventually leading to irreversible func-
tional and structural damage upon persistent stimulation. These three pathophysiological
mechanisms result from the hyperglycaemic activation of various signalling pathways,
including polyol and hexosamine pathways, and notably in this review, protein kinase
C [10]. Hyperglycaemic activation of PKC signalling leads to increased endothelial inflam-
mation, endothelial relaxation dysfunction, and foam cell formation, which induces the
expression of permeability-enhancing factor vascular endothelial growth factor (VEGF)
and decreases nitric oxide (NO) generation in vascular smooth muscle cells [11,12]. All the
results emphasise the unique characteristics of diabetes-associated atherosclerosis. In fact,
it is also well established that increased myocardial PKC activity could be observed after
chronic or persistent diabetes [13,14].

2.1. PKC Subfamilies

PKC is a group of serine/threonine protein kinases that play many roles in various
cellular activities across different systems. Their activation regulates cell growth, differenti-
ation, and cell death as well as transformation [15–17]. Each PKC isoform mediates various
biological and cellular activities. Structurally, PKC contains an NH2-terminal (regulatory
domain) and COOH-terminal (catalytic domain). All PKC have a pseudosubstrate side
that keeps them in their inactive forms (Figure 1). What differentiates each PKC from
another is its structure and cofactor requirement as well as substrate specificity. According
to these variations, PKCs are divided into three major groups (i) the classical PKC (cPKCs)
including the α, βI, βII, and γ isoforms; (ii) the novel PKC (nPKCs) including the θ, η, ε,
and δ isoforms; and lastly (iii) atypical PKC (aPKCs) including ς and ι\λ isoforms.
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Figure 1. Classification and structural characteristics of PKC isoforms. Although the catalytic domain
of PKC is conserved, the three subgroups have different regulatory domains. The classical PKC
isoforms (cPKC) share all typical regulatory features: the autoinhibitory pseudosubstrate motif, two
DAG-binding C1 domains and the calcium-binding C2 domain. Novel PKC isoforms (nPKC) lack
a calcium-binding motif but contain an extended N-terminal domain that can receive regulatory
signals, and they are still being regulated by DAG. On the other hand, the catalytic activity of atypical
PKC isoforms (aPKC) is independent of DAG and calcium.

The members of the cPKC subfamily have conserved (C1–C4) and variable (V1–V5) re-
gions, and they require calcium, phosphatidylserine, and diacylglycerol (DAG) or phorbol
ester to be activated. nPKC differs from cPKC in that they lack a C2 homologous domain
and are not activated by calcium. PKC is kept in an inactive form in the absence of its
cofactors by the binding of the PS to the substrate binding cavity. aPKC is insensitive to
DAG, phorbol esters, and calcium as they lack both C2 and half of the C1 homologous
domain. Therefore, in diabetic conditions with high blood glucose levels, cPKC and nPKC
are majorly activated. Unlike other kinases such as Akt, activation of PKCs does not require
acute phosphorylation of the enzyme: phosphorylation necessary for catalytic competence
occur shortly after synthesis, and the enzyme is constitutively phosphorylated at these
sites [18,19]. As a result, changes in phosphorylation do not provide an indication of PKC ac-
tivity; rather, signalling-induced translocation of the enzyme to the membrane/particulate
fraction represents the most reliable means of monitoring the kinase activation.

It is well known that activated PKC triggers the MAPK cascade. Recently, the impor-
tance of MAPK in diabetic complications has been discussed. Some recent reports studied
the role of PKCs and MAPKs in the development and progression of diabetic nephropathy.
PKC was reported to directly activate MEK and ERK, leading to overexpression of TGF-β
that promotes cardiomyocyte remodelling, especially hypertrophy, which only worsens
over time. Activation of the PKC-MAPK pathway has been well established by studies at
the protein level, that is, by detecting increased serine/threonine phosphorylation in high
glucose conditions.

2.2. Activation of PKC in Hyperglycemic Condition

The activation of cPKCs and nPKCs isoenzymes requires correct phosphorylation and
the presence of cofactors such as diacylglycerol (DAG) and Ca2+. Upon proper phospho-
rylation, increment in both Ca2+ and DAG will induce its translocation from the cytosol
onto the membrane to exert biological actions [20,21]. In diabetic conditions, activation of
PKCs mainly occurs due to the high production of DAG and an increase in oxidative stress
(Figure 2).
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Figure 2. Mechanism of DAG–PKC activation. Hyperglycaemia induces mainly the de novo pathway
of DAG synthesis from glucose to glycerol 3-phosphate with subsequent PKC activation. ROS,
reactive oxygen species; DAG, diacylglycerol; DHAP, dihydroxyacetone phosphate; FDP, fructose 1,6-
diphosphate; F6P, fructose 6-phosphate; GAP, glyceraldehyde 3-phosphate; G3P, glycerol 3-phosphate;
G6P, glucose 6-phosphate; lysoPA, lysophosphatidic acid; PA, phosphatidic acid; PKC, protein kinase
C; MAPK, mitogen-activated protein kinase. Arrows represent the subsequent event/product in the
pathway; red arrow represents increased production.

The abundance of DAG produced in hyperglycaemic conditions could only further
promote the excessive activation of PKC as it is one of the cofactors needed to activate both
cPKCs and nPKCs [22]. In diabetic conditions, an increase of DAG contents occurs through a
few pathways. One of the most common ways is by increasing de novo DAG synthesis from
the glycolytic intermediate dihydroxyacetone phosphate (DHAP) through its reduction
to glycerol-3-phosphate (G3P) and stepwise acylation [23]. Increased synthesis of DAG is
caused by inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) from the conversion of glyceraldehyde 3-phosphate (GAP) into the glycolysis-
energy production pathway [24]. Thus, the increment of GAP metabolites results in
increased flux of DHAP into DAG production. In addition, DAG can also be derived from
the hydrolysis of phosphatidylinositides from the metabolism of phosphatidylcholine by
phospholipase C (PLC) [25].

Hyperglycaemia-induced increases in oxidants such as H2O2 are also known to acti-
vate PKC. In fact, the presence of antioxidants prevented PKC activation, as reported by
Tuttle and colleagues [26]. Complete inhibition of PKC activation by several distinct antiox-
idants implicates oxidative stress as one of the primary PKC activators as seen in mesangial
cells [26]. Although oxidative stress does not induce the formation of DAG, Konishi and
colleagues [27] found that H2O2 induces PKC modification by tyrosine phosphorylation,
thus activating the enzyme. This mainly applied to PKCα and PKCδ [27].

2.3. Roles of PKC in Diabetic Cardiovascular Pathology

Understanding the distribution of PKC isoenzymes in cardiovascular function requires
knowledge of the expression of PKCs in the cardiovascular tissues. PKCs, after all, are
the central enzymes in the regulation of cell growth and hypertrophy aside from playing
a major role in signal transduction in the heart. They also regulate endothelial function.
It is a consensus that activation of PKCs may exert different effects in both normal and
pathological conditions.

Among the different classical PKC isoenzymes expressed in cardiac tissues, PKCα is
the most predominant member and has been widely discussed in literature. While it has
been shown to play a role in regulating cardiac muscle contractility [28], PKCα has also
been inferred to be over-expressed in cardiac pathology and transition to heart failure [29].
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Both PKCβ and PKCγ also were shown to play minor roles in heart physiology; similarly,
they were upregulated in dysfunctional heart and endothelial [30–34].

In contrast, novel PKC isoenzymes were critical in protecting the heart against ischemia
and reperfusion. Deletion of the gene encoding for PKCθ was followed by a reduction
in fractional shortening, increased fibrosis, and elevation of cardiac injury markers [35].
However, in chronic pathology such as diabetes, in which overexpression of the kinase
is persistent, cardiac hypertrophy was observed [36] and is believed to be a result of its
activating action on JNK and p38 MAPK pathways [35]. Takeishi et al. [36] suggested
that the preserved systolic function of the hypertrophic heart could result from PKCθ
activation. However, PKCδ was reported to show contradicting effects. While it was
found to be cardioprotective against reperfusion injury [37], PKCδ also was found to
mediate cardiomyocyte apoptosis by promoting mitochondrial ROS production in the
hyperglycaemic heart [38].

3. Mitogen-Activated Protein Kinases (MAPKs)

The MAPK kinases is a family of serine/threonine kinases that play roles in signal
transduction pathways that regulate intracellular events, such as acute responses to hor-
mones and developmental changes in organisms [39]. Complex regulatory mechanisms are
utilised to direct the functional outcomes mediated by MAPKs. MAPK pathways can be
activated by several stimulators, including extracellular stressors, cytokines, growth factors,
and PKCs among others [40–42]. Following stimulation, activation of MAPK requires a
three-tiered kinase cascade; in which a MAPK kinase kinase (MAPKKK, MEKK, MAP3K
or MKKK) activates a MAPK kinase (MAPKK, MEK, MAP2K or MKK), which in turn
activates the targeted MAPK through serial phosphorylation (Figure 3). Once activated, the
MAPK phosphorylates diverse substrates in the cytosol and nucleus to execute intended
biological responses [43,44].
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Figure 3. MAPKs cascades: MAPK signalling cascades are organized hierarchically into three-tiered
modules. MAPKs are phosphorylated and activated by MAPK-kinases (MAP2Ks), which in turn are
phosphorylated and activated by MAPKK-kinases (MAP3Ks). The MAP3Ks are in turn activated by
interaction with the family of small GTPases and/or other protein kinases, connecting the MAPK
module to cell surface receptors or external stimuli.

MAPKs are involved in a wide range of biological processes, including cell prolif-
eration, differentiation, metabolism, motility, survival, and apoptosis [39]. Hence, dys-
regulation or improper functioning of these cascades is involved in the induction and
progression of diseases. It is one of the signalling pathways involved in the development
and progression of cardiac and vascular complications. It is activated in response to a
wide variety of extracellular stimuli and induces changes in critical intracellular processes
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promoting cell growth, apoptosis, and transformation. These extracellular stimuli include
cellular stress, adhesion molecules, and neurohormones as well as PKC [45–47]. Increasing
evidence shows that different members of the MAPK family are critically involved in
regulating signalling pathways, ultimately leading to cardiac remodelling and vascular
complications [48–53]. These biological events result from signal transduction and reg-
ulation by the four MAPK subfamilies, which are extracellular-signal-regulated kinases
(ERK1/2), c-Jun NH2-terminal kinases (JNK 1, 2 and 3), and p38 MAPK.

It is a well-established fact that activated PKC triggers the MAPK cascade. Recently,
the importance of MAPK in diabetic complications has been widely studied. From some
recent reports that examined the role of PKCs and MAPKs in the development and/or
progression of diabetic nephropathy, PKC was reported to directly activate ERK and
JNK pathways [54,55], leading to overexpression of TGF-β that promotes cardiomyocyte
remodelling, especially hypertrophy, which only worsens over time [56,57].

3.1. Extracellular-Regulated Kinase (ERK) 1/2

ERK1 and ERK2 are 83% identical, share most signalling activities, and, as a result, are
usually referred to as ERK1/2 [58,59]. ERK1/2 regulates many cell processes, including
proliferation, transcription, differentiation, migration, and cell adhesion [60]. Due to its
wide range of roles in biological processes, dysregulation of ERK1/2 has been shown to
significantly take part in the development of various pathologies, including diabetes and
cardiovascular diseases [61–63].

ERK1/2 is activated via a three-tiered kinase cascade by both extracellular and in-
tracellular stimuli, and it could also be triggered by G-protein-coupled receptors [64],
cytokines [65], microtubule disorganisation [66] and other stimuli including PKC [67].
Cheng et al. [68] reported that PKC-α and PKC-ε act as Raf-1 activators, leading to a
prolonged effect on the ERK1/2 signalling pathway. Activated Ras recruits and activates
Raf (MAP3K) at the plasma membrane. Once activated, Raf phosphorylates and activates
MEK1/2 (MAP2K). MEK1/2, in turn, activates ERK1/2 by phosphorylation at the Thr
and Tyr residues in the conserved Thr-Glu-Tyr motif within its regulatory loop. Acti-
vated ERK1/2 can then phosphorylate downstream proteins in the cytoplasm or nucleus,
including many transcription factors.

3.2. c-Jun N-Terminal Kinase (JNK)

JNK plays a role in several biological processes, including cell proliferation, differenti-
ation, apoptosis, cell survival, actin reorganisation, cell migration, metabolic programming,
and inflammation [69–73]. This translates into JNK’s physiological role in the develop-
ment of various pathologies upon its aberrant signalling. Activation of the JNK pathway
occurs in response to several different stimuli. As a stress-activated protein kinase, JNK
responds most robustly to inflammatory cytokines and cellular stresses such as heat shock,
hyperosmolarity, ischemia-reperfusion, UV radiation, oxidant stress, DNA damage, and
ER stress [74]. After the cell is stimulated, signalling occurs, eventually leading to the
activation of the first tier. The MAP3Ks that can activate JNKs are MEKK1, MEKK2, and
MEKK3, as well as mixed lineage kinase 2 and 3 (MLK2 and MLK3) among others. These
kinases then activate the subsequent MAP2Ks in the cascade, which are MKK4 and MKK7.
MKK4/7 then activates JNK by phosphorylation.

Given the role of MKK4 and/or MKK7 in activating JNK, it is essential to define the
relationship between these kinases and PKC in JNK activation. Inhibition of MKK4 and/or
MKK7 expression attenuated PKC’s ability to activate JNK, suggesting that MKK4 and
MKK7 are required for PKC-dependent JNK activation [75].

3.3. p38

Like the former MAPK subfamilies mentioned earlier, p38 kinases also play numerous
biological roles in normal physiology and pathology. Most prominently, p38 signalling is
involved in the immune response, promoting the expression of proinflammatory cytokines,
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cell adhesion molecules, and other inflammatory-related molecules and regulating the
proliferation, differentiation, and function of immune cells [76,77]. p38 also plays a role in
many biological processes in the cardiovascular system, namely, apoptosis, cell survival,
cell cycle regulation, differentiation, senescence, and cell growth and migration [78]. Physi-
ologically, this implies that p38 plays a role in chronic inflammatory diseases, including
cardiovascular disease.

p38, as one of the stress-activated kinase, responds to many of the same stimuli
as JNK, as well as some that are unique to p38. Stress stimuli such as UV radiation,
heat, osmotic shock, pathogens, inflammatory cytokines, growth factors, and others can
activate p38. p38 plays a complex and involved role, responding to over 60 different
extracellular stimuli in a cell-specific manner, making elucidating its exact functional
role in vivo difficult. PKC has been shown to directly activate p38, which also functions
upstream of p38 [79–81]. The canonical pathway of p38 activation is the same as that of
ERK and JNK, regardless of the exact stimuli. Several upstream kinases are implicated in
the phosphorylation cascades leading to the activation of p38, including MEKK1–4, TAK1,
and ASK1 at the MAP3K level and MKK3, −6, and, possibly, −4 at the MAP2K level are
implicated in the phosphorylation cascades leading to p38 activation. These MAP2Ks work
by phosphorylating p38’s conserved Thr-Gly-Tyr motif [44].

3.4. Activation of MAPK by PKC

Studies have consistently demonstrated that aberrant regulation of MAPK cascades
and its upstream activators predispose to the development of numerous pathological
conditions. The mechanisms involved in the activation events for the MAPK cascade
have been studied extensively. As discussed, all MAPK subfamilies are activated upon
stimulation of various stimuli. Regardless, all stimuli are to be able to phosphorylate
within the activation loop of the kinase to achieve activation, and the immediate upstream
kinases catalyse these. In that regard, evidence showed that PKC isoforms could activate
MAPK pathways via multiple mechanisms, as overexpression of both PKCδ and PKCη has
previously been shown to activate MAPKs [82,83].

Among the most commonly discussed activation mechanisms of PKC on MAPK would
be via Ras/Raf activation [84], especially on the PKC/ERK pathway [85]. Activated Ras
by PKC prompts recruitment of Raf onto the membrane, thereby activating it. Activated
Raf then acts on MEK dual specificity kinase that phosphorylates ERK on both the Thr and
Tyr residues [86,87]. In addition, activated Raf activates other MAP3K kinases that would
subsequently activate MAP2Ks and MKK/MEK, which then phosphorylate the MAPK
effectors JNK and p38 [88–90]. In addition, Receptor for Activated C Kinase 1 (RACK1)
was also found to be an essential regulator of JNK signalling, as it converges both MKK4
and/or MKK7 and PKC components [75].

4. Effects of Activation of PKC-MAPK Pathways to Cardiovascular in
Hyperglycaemic Conditions

It is already a well-established premise that prolonged exposure to hyperglycaemia
in diabetic conditions leads to the development and progression of cardiovascular com-
plications that only worsen with time if early intervention is not initiated. Cardiovascular
complications mainly result from the unrestrained remodelling of both cardiac and vascular
structures that prompt functional disturbances in both systems. As such, hyperglycaemia in-
duces cardiac and vascular structural changes by promoting oxidative stress, inflammation,
and apoptosis to the cardiac and vascular components. Hyperglycaemia-induced pathways,
including PKC-MAPK pathways, stimulate all these pathological mechanisms. The MAPK
signalling pathway is related to inflammatory, oxidative, and apoptotic processes and
therefore has a crucial role in the development of diabetes-induced cardiovascular com-
plications. Figure 4 summarises the mechanism involved in the development of diabetic
cardiovascular complications via the PKC-MAPK pathway.
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Figure 4. Proposed mechanisms involved in the pathogenesis of diabetic cardiovascular complications
via the PKC-MAPK pathway. Persistent hyperglycemia induces de novo production of diacylglycerol
(DAG), which along with reactive oxygen (ROS), would induce the activation of PKC. Hyperglycemia
also generates ROS and nitrogen species (RNS) in excess via NADPH oxidase, generating oxidative
stress in the cardiac and vascular tissues. By activating Raf dependently and independently of Ras
activation, PKC phosphorylates MAP3Ks of the MAPK subfamilies cascades. Following a stimulation,
activation of MAPK requires a three-tiered kinase cascade; in which a MAPK kinase kinase (MAPKKK,
MEKK, MAP3K or MKKK) activates a MAPK kinase (MAPKK, MEK, MAP2K or MKK), which
in turn activates the targeted MAPKs (ERK1/2, JNK and p38) through serial phosphorylation.
Uncontrolled activation of MAPKs induces inflammation and cell apoptosis, leading to pathologic
cardiac remodelling and vascular dysfunction. Arrows represent the subsequent event/product
in the pathway; tappered line represents inhibition action; dotted tappered line represents halted
inhibition action.

4.1. Cardiovascular Oxidative Stress

Oxidative stress is one of the major aetiologies for various complications in diabetes,
including both cardiac and vascular complications. The redox imbalance in the cell causes
oxidative stress, in which the endogenous antioxidant capability is overwhelmed by the
increasing ROS generation [91]. The accumulation of reactive oxygen species (ROS) and
their persistent high levels is enhanced by impaired antioxidant defence and leads to
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diabetes-associated cell inflammatory and apoptotic responses. Activated PKC would lead
to the generation of reactive oxygen species (ROS) via activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [92,93]. This is proven by the fact that inhibitory
action on PKC-βwas found to reduce the induction of several subunits of NADPH oxidase
in a high glucose environment [94,95].

Superoxides produced by activated NADPH oxidase could readily react with nitric
oxide (NO), forming highly reactive and damaging peroxynitrite species [96]. Cellular
resources of superoxides within the heart include cardiac myocytes, endothelial cells, and
neutrophils. The reactive, unstable superoxide could lead to cellular damage via several
mechanisms (oxidation, interference with NO, and modulation of detrimental intracellular
signalling pathways). Direct damage exerted by these superoxides causes cardiac dysfunc-
tion by inducing apoptotic and inflammatory responses, thereby stimulating the cardiac
remodelling process [97]. The cardiac remodelling process is a compensatory response
against structural and functional damage that include activation of matrix metallopro-
teinase (MMP) to alter the architecture of the extracellular matrix and modulation of signal
transduction pathways that initiate cardiomyocyte hypertrophy in order to preserve normal
functions of the heart [98,99]. However, uncontrolled and excessive cardiac remodelling in
persistent diabetic conditions further disturbs the ability of the heart to contract and relax
efficiently, resulting in the development of diastolic and systolic dysfunctions along with
the appearance of prominent cardiac structural changes [100].

In the vessels, the imbalance between NO bioavailability and the accumulation of ROS
in hyperglycaemic conditions induce alterations in the vascular function, eventually leading
to endothelial dysfunction [101]. Indeed, hyperglycaemia-induced generation of superoxide
anion inactivates NO to form peroxynitrite, a powerful oxidant which quickly penetrates
across phospholipid membranes and induces substrate nitration. Protein nitrosylation
blunts the activity of antioxidant enzymes and endothelial NO synthase (eNOS) [97].

4.2. Cardiovascular Inflammation

A maladaptive proinflammatory reaction has been implicated in the development
of diabetic cardiovascular complications. Activation and expression of proinflammatory
cytokines, such as tumour necrosis factor α, interleukins 6 and 8, monocyte chemotactic
protein 1, adhesion molecule intercellular adhesion molecule 1, and vascular adhesion
molecule 1, all contribute to cardiac oxidative stress, remodelling and fibrosis, and diastolic
dysfunction [102]. The nuclear transcription factor, NF-κB, regulates cytokine expression.
Finally, toll-like receptor-4 also plays a crucial role in initiating NF-κB, proinflammatory,
and innate immune system responses. These proinflammatory reactions occur in numerous
populations of cardiac cells, coronary endothelium and smooth muscle cells, as well as
fibroblasts and cardiomyocytes [103,104]. Persistent hyperglycaemia was found to induce
the expression of these cytokines in the heart by activating the MAPK pathways (JNK and
p38-MAPK) [105–107], causing cardiac damage and exacerbating leukocyte infiltration and
accumulation at the affected site [108].

Moreover, oxidative stress is further exacerbated by persistent hyperglycaemia and
hyperlipidaemia, in which PKC activation also plays a role by activating mitochondrial
NADPH oxidase [109]. Inhibition of Nrf-2 by ERK 1/2 exaggerates oxidative stress [110],
activating NF-κB [111,112]. This evidence shows that via activation of NF-κB, which
promotes the production of pro-inflammatory cytokines and causes hyperglycaemia and
hyperlipidaemia, the PKC/ERK pathway can induce cardiac and vascular inflammation.

4.3. Cardiovascular Apoptosis

In diabetes, several mechanisms, including hyperglycaemia, hyperlipidaemia, ox-
idative stress, increased circulating inflammatory cytokines, mitochondrial dysfunction,
caspase activation, altered expression of anti- and pro-apoptotic proteins, and ER stress can
increase the rates of apoptosis in cardiomyocytes [113]. Hyperglycaemia-induced cardiomy-
ocyte apoptosis occurs through activation of the mitochondrial cytochrome c-stimulated
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caspase-3 pathway, which may be triggered by high glucose-derived ROS production [114].
In addition to the direct effect of oxidative stress on the activation of mitochondrial cy-
tochrome c stimulated caspase-3 pathway, DNA damage induced by ROS can also activate
p53-dependent apoptosis [115,116]. The p53 protein was shown to induce apoptosis by
activating pro-apoptotic members, including Bax, and interacting with and inhibiting
anti-apoptotic members of the Bcl-2 family, thereby stimulating the mitochondrial pathway
of apoptosis [117].

In the mitochondrial death pathway, the pro-apoptotic protein Bax is induced and
inserted into the mitochondrial membrane to form a channel allowing the release of cyt c
and subsequent activation of caspase-3 through the formation of the cyt c/APAF-1/caspase-
9-containing apoptosome complex [118]. The effector caspase-3 proteolytically cleaves
cellular proteins and DNA, causing the apoptotic demise of the cell [119,120]. Activated
caspase-3 can lead to DNA fragmentation by activating the specific nuclease caspase-3-
activated DNase (CAD), allowing CAD to enter the nucleus, where its activity leads to
DNA fragmentation [121]. Consequently, the membrane phospholipid phosphatidylserine,
a phospholipid embedded in the plasma membrane oriented toward the cytosol, inverts
and becomes exposed on the cell’s surface. The phosphatidylserine, which acts as a “eat me”
signal, attracts the phagocytic cells that, in turn, engulf the apoptotic cells [120]. Addition-
ally, caspase- 3-mediated PKCδ cleavage is mandatory for oxidative stress-induced vascular
smooth apoptosis, and PKCδ acts both upstream and downstream of caspase-3 [122].

5. Involvement of PKC-MAPK Pathway in Diabetic Heart Complications
5.1. PKC-MAPK Pathway in Cardiac Hypertrophy

Cardiac complications mainly arise following alterations to its structure and functions,
and in the context of diabetes, develop following uncontrollable persistent hyperglycaemia.
Cardiac remodelling is a compensative process following alteration of the structure of
the heart in response to mechanical, electrical, or neurohormonal stimuli, and diabetes is
one of the triggering factors [123]. Both cardiac hypertrophy and fibrosis refer to cardiac
remodelling processes. Cardiac hypertrophy is a thickening of the interventricular wall
and/or septum in the cells, and it involves multiple complex and progressive alterations
of the heart’s geometry [124]. Although short-term subcellular changes associated with
cardiac hypertrophy may be beneficial, the cardiac system becomes maladaptive when
sustained for longer intervals. This eventually leads to decompensation resulting in fibrosis,
apoptosis, and cardiac remodelling, among other cardiac diseases, before transitioning to
heart failure. Hypertrophy is therefore an early indication during the clinical course of
heart failure and plays a significant risk factor for subsequent cardiac death.

Numerous studies have suggested that the Ras/Raf/MEK1/ERK signalling pathway
contributes to the development of cardiac hypertrophy. Hunter et al. [125] first demon-
strated that transgenic expression of a constitutively active Ras in the mouse heart resulted
in left ventricular hypertrophy accompanied by cardiomyocyte hypertrophy but not an
increase in cardiac fibrosis. Similar overactivation of Ras has been observed upon over-
expression of MEK 1, the upstream activator of ERK1/2. In vitro, constitutively active
MEK1 promotes cardiomyocyte hypertrophy, whereas dominant negative MEK1 inhibits
this response [126]. In vivo, activated cardiac-specific MEK1 expression promotes hyper-
trophy [127]. However, unlike Ras overactivation, the MEK1 transgenic heart exhibits no
increase in fibrosis and preserved cardiac function, indicating that MEK-ERK may not be
the most crucial downstream signalling pathway for Ras-induced pathological remodelling.

In addition to these gain-of-function strategies, Mutlak et al. [128] demonstrated
that inhibition of the ERK pathway by dominant negative Raf reduced hypertrophy and
foetal gene induction in response to pressure overload. In addition, Yamaguchi et al. [129]
also demonstrated that cardiac-specific deletion of c-raf-1 causes heart failure in the ab-
sence of hypertrophy. Despite the apparent lack of hypertrophy, a significant increase in
apoptosis was observed in response to Raf inactivation. This is consistent with the observa-
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tion that overactivation of the ERK pathway induces hypertrophy and partial apoptosis
resistance [130].

Several reports have associated PKC activation with either cardiac hypertrophy, heart
failure, ischemic injury, or agonist stimulation. Overexpression of either wild-type or a
constitutively active deletion mutant of PKCβ in the experimental heart was reported to
induce cardiomyopathy [131,132]. Many studies implicated the role of ERK1/2 activation
in the detrimental processes of oxidative stress, inflammation, remodelling, and apoptosis
of the heart. Cardiomyocyte apoptosis is one of the crucial components in early cardiac
responses that may lead to the devastating complications of cardiomyopathy. Interestingly,
studies showed that ERK1/2 activation might exert both pro and anti-apoptotic effects on
the heart. This is due to the role of ERK1/2 in regulating cell proliferation and differentia-
tion. Thus, its upregulation may protect the heart against acute cardiac injuries, such as
ischemic reperfusion and myocardial infarction [133]. This is supported by the protective
effect of ERK1/2 against mitochondrial fragmentation and cardiomyocyte apoptosis in an
infarcted heart. This protective effect of ERK1/2 shows that ERK1/2 does regulate hyper-
trophic response. However, this response depends heavily on the duration and strength
of the signals and crosstalk with other intracellular signals [134]. That explains why, in
hyperglycaemic conditions whereby DAG-PKC is extendedly prolonging ERK1/2 activa-
tion, its hypertrophic, pro-apoptotic, and ROS-productive traits hasten the development of
cardiomyopathy, especially hypertrophy.

In addition, Wang et al. [135] reported that overactivation of JNK by MKK7, an
upstream MAP2K, leads to a hypertrophic characteristics in cultured cardiomyocytes. Simi-
larly, another upstream MAP2K, MKK4, suppressed the endothelin-1-induced hypertrophic
response in cultured myocytes [136]. Similarly, early in vivo studies in rats revealed that
dominant-negative MKK4 inhibited JNK activity as well as pressure overload-induced
hypertrophy [137]. These findings suggest that JNK activity is involved in the promotion
of cell hypertrophy. An in vivo study found that targeting p38 in the heart did not result in
significant cardiac hypertrophy. Transgenic overexpression of MKK3 or MKK6 in the heart,
on the other hand, increased interstitial fibrosis, ventricular wall thinning, and premature
death due to cardiac failure. These findings are supported by Klein et al. [138], in which
loss of PKC-ε resulted in increased activation of p38 in the myocardium following pressure
overload. These animals displayed a similar phenotype to the MKK3/MKK6 animals,
including no increase in hypertrophy but a significant increase in fibrosis and impaired
diastolic function. These findings indicate that, in vivo, p38 activity alone is not sufficient to
promote cardiomyocyte hypertrophy. Conversely, initial studies involving cardiac-specific
p38 dominant negative transgenic mice showed that loss of p38 activity either did not affect
hypertrophy [139] or sensitised the heart to hypertrophy in response to pressure overload.
Cardiac-specific deletion of p38 did not alter pressure overload hypertrophy. It resulted
in a similar degree of myocyte hypertrophy between p38 CKO and wild-type animals
following pressure overload [140]. However, these mice exhibited an increase in apoptosis,
fibrosis, chamber dilation, and reduced LV function. Taken together, these findings would
indicate that p38 activity is not involved in promoting hypertrophy in vivo but may play
an important role in pathological remodelling.

5.2. PKC-MAPK Pathway in Cardiac Fibrosis

Activation of the JNK pathway in the heart resulted in lethal restrictive cardiomyopa-
thy with selective extracellular matrix remodelling. Prolonged activation of JNK activity in
the heart was also associated with abnormal gap junction structure, loss of the main com-
ponent (connexin-43), and slowed conduction velocity in the heart [141]. Recent evidence
suggests that the loss of gap junctions in JNK- activated hearts is associated with the loss of
connexin-43 protein expression as well as improper intracellular targeting [142]. On the
other hand, deletion of JNK1 in the heart resulted in an increase in fibrosis following pres-
sure overload [143]. Similarly, chronic treatment with a JNK inhibitor increased apoptosis
and cardiac fibrosis in the cardiomyopathic hamster model [144].
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JNK has also been implicated in promoting cardiac remodelling downstream of various
pathways. For example, ASK-1/JNK has been shown to play a role in β-adrenergic-induced
cardiac remodelling and apoptosis in vivo [145]. Hsp20, a protein with known cardiopro-
tective effects [146], inhibited the activation of JNK in this setting. In a rat model of pressure
overload, cardiac remodelling was inhibited by inhibiting MAPK signalling, including
JNK activity, by upregulating mitogen-activated protein kinase phosphatase [147]. Finally,
MMPs are well known to contribute to cardiac remodelling. Recent in vitro studies have
shown that in response to β-adrenergic signalling, extracellular matrix metalloproteinase
inducer (EMMPRIN) expression and MMP-2 activity were increased in a JNK-dependent
manner in cardiomyocytes [148]. These findings are supported by other in vitro work in
which JNK activation in H9c2 cardiomyoblasts resulted in the up-regulation of MMP-2 (but
not MMP-9) activity [149]. Likewise, in vivo studies on the loss of β1-integrins showed
that increased JNK activity was associated with increased MMP-2 but not MMP-9 activity,
which corresponded with less cardiac fibrosis in this setting. ROS signalling is emerging
as an important player in cardiac remodelling. Since JNK activation is a downstream
consequence of ROS induction, there might be a more significant role for JNK in cardiac
remodelling than originally thought.

As with JNK and ERK1/2, the other stress-activated MAPK, p38, appears to play
an important role in cardiac remodelling. Liao et al. [150] discovered that targeted p38
activation in the myocardium led to restrictive cardiomyopathy with significant interstitial
fibrosis. In this setting, p38 induced cytokine release from myocytes, including TNF-α and
IL-6 [151]. Interestingly, in these in vitro studies, blocking p38 activity did not appear to pre-
vent cytokine production in the myocytes, only their release from the cell. Proinflammatory
cytokines such as TNF-α and IL-6 are known to act in both autocrine and paracrine fashions.
Acting in an autocrine manner, they are known to have negative inotropic effects [151].
Acting in a paracrine fashion, they play a significant role in myocardial remodelling [152].
These initial studies are supported by the findings of Tenhunen et al. [153], in which DNA
microarray analysis of animals with cardiac-specific overexpression of p38 revealed that
genes related to inflammation and fibrosis were among the most significantly upregulated.

P38 is also activated by proinflammatory cytokines, including transforming growth
factor (TGF)-β. This type of p38 activation also contributes to cardiac remodelling. Indeed,
p38 is activated via a TGF-β1/TAK1-dependent mechanism in myocytes following my-
ocardial infarction in rats [154]. As discussed previously, p38 activity can induce cytokine
production, thus creating a type of feed-forward mechanism for cytokine action and produc-
tion. This autocrine and paracrine signalling can lead to the recruitment and proliferation
of cardiac fibroblasts and inflammatory cells, resulting in remodelling. Recent work in aged
hypertensive rats (which naturally develop significant amounts of cardiac fibrosis) has
shown that treatment with a TGF-β antagonist dramatically reduces both hypertrophy and
interstitial fibrosis [155]. A decrease in phosphor-p38 levels accompanied this. This fits with
other studies showing that inhibition of p38 reduces remodelling following myocardial
infarction [156].

5.3. PKC-MAPK Pathway in Endothelial Dysfunction

Endothelial dysfunction is one of the initiating factors in the development of macro-
and microvascular complications in diabetic conditions due to endothelial cells’ role in
regulating vascular homeostasis [157]. Endothelial dysfunction in macrovascular compli-
cations is characterised by reduced nitric oxide bioavailability and increased production
or action of endothelium-derived vasoconstrictor [158]. On the other hand, in microvas-
cular complications, endothelial dysfunction is portrayed by a reduced release of nitric
oxide, excessive oxidative stress, increased production of inflammatory factors, abnormal
angiogenesis, and impaired endothelial repairs [159]. Huang et al. [160] demonstrated
that endothelial dysfunction in diabetic mice was mediated by both p38 and JNK acti-
vation with significant impairment in endothelial nitric oxide synthase (eNOS). In fact,
phosphorylated vascular p38 and JNK were found to directly enhance the production of
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superoxides, which scavenge NO and contribute to its reduced bioavailability. As PKC
has been reported to be activated incessantly in diabetic vessels [161], the reduced NO
bioavailability found in the endothelium may be mediated by MAPK/NFkB pathways.
Tabit and colleagues [162] reported that PKCβ was upregulated and linked to endothelial
dysregulation in diabetic conditions.

In addition, it is also found that inhibition of p38 and JNK brought down the produc-
tion of superoxide in a manner identical to the of inhibition of NADPH oxidase [160]. While
it has been well understood that NADPH oxidase does play a role in activating the stress-
induced MAPK p38 and JNK via excessive production of ROS [163,164], a study found that
activation of p38 itself could also promote NADPH oxidase activation, thus further wors-
ening oxidative stress in vascular endothelial tissues [165]. Considering that both aPKCs
and nPKCs were also found to directly phosphorylate NADPH oxidase, specifically on its
p47phox and p60phox subunits [166], this suggests a tight crosstalk between PKCs and
MAPKs pathways, especially in promoting endothelial dysfunction via oxidative stress.

Mediating via ERK1/2 cascade, PKC stimulates the entry of arginine into endothelial
cells by inducing cationic amino acid transporters 2 (CAT2) arginine transporter. Con-
sequently, this increases arginase expression and activity in the endothelial cells, hence
shifting arginine metabolism from NO synthesis to ornithine and urea production, further
enhancing eNOS phosphorylation, and thus reducing NO production [167]. In addition,
p38 also stimulates inducible NO synthase (iNOS) expression, producing superoxide anions
that react with NO into oxidant peroxynitrite, further exacerbating endothelial oxidative
stress [168].

Meanwhile, in the kidney, MAPKs were found to be activated in response to high
glucose, thereby inducing an inflammatory response in the tubular epithelial cells [169].
While previous studies inferred that angiotensin II could activate MAPKs in the diabetic
kidney and renal cells [170,171], other studies showed that the activation of MAPKs them-
selves may regulate angiotensin-converting enzyme (ACE) gene expression. The promotion
of ACE, in turn, activates the renin-angiotensin system (RAS) and further promotes the
phosphorylation of ERK1/2, JNK and p38 [172–174]. In addition, a previous study sug-
gested that PKC-MAPKs pathways mediated the upregulation of ACE [172]. As MAPKs
are known to mediate renal nephropathy by promoting inflammation, macrophage infiltra-
tion, and subsequent renal dysfunction, inhibiting these kinases effectively prevented the
development of diabetic nephropathy [175]. Pan and colleagues [176] further confirmed
that phosphorylation of MAPKs indeed promotes ACE by inducing activator protein-1
(AP-1) activity.

5.4. PKC-MAPK Pathway in Atherosclerosis

Persistent hyperglycaemia in diabetic conditions could induce the development of
atherosclerosis as well as exaggerate its progression [177]. Atherosclerosis is a widespread
chronic inflammatory disorder that affects the arterial wall. It is characterised as a lesion
of the intimal layer of the arterial wall and accumulation of plaques which could trigger
potentially fatal thrombotic events upon its erosion or rupture [177]. In addition, atheroscle-
rosis is typically associated with impairment in lipid metabolism and hypercholesterolemia
accompanied by high low-density lipoprotein (LDL) in the blood, heightening the risk for
cardiovascular diseases [178,179]. Pathogenesis-wise, the development and progression
of this condition involve the interplay of various cell types, including endothelial cells,
vascular smooth muscle cells (VSMCs), macrophages, and other immune cells [180]. In-
flammatory mediators and leukocyte adhesion molecules such as intercellular adhesion
molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) attract migration
and infiltration of monocytes into the subendothelial space. These monocyte-derived
macrophages are involved in forming foam cells along with the uptake of LDL or oxLDL.
The foam cells and oxLDL accumulate in the intima, generating oxidative stress and re-
leasing platelet-derived growth factors that trigger the switch of VSMC phenotype. The
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switching of VSMC results in necrotic core formation and inflammation and produces
extracellular matrix in the fibrous cap [181].

In the vascular wall, the VSCMs typically display a contractile phenotype which is
crucial for maintaining vascular tone. However, VSMCs can differentiate upon stimulation
into a synthetic phenotype, and this phenotype switching process is a critical mechanism
in arterial remodelling [182,183]. The difference between the phenotype is that in the
contractile phenotype, the VSMCs contain high levels of contractile genes such as α-smooth
muscle actin (αSMA), smooth muscle 22α (SM22α), and heavy-caldesmon (h-Cad) as
well as having low proliferation rates, migration, and extracellular matrix production.
On the other hand, synthetic VSMCs contain low contractile gene expression and higher
rates of proliferation, migration, and extracellular matrix production [184]. In this regard,
PKC was suggested to mediate apoptosis of proliferated synthetic VSMCs and continuous
uptake of oxLDL [185]. Even though apoptosis of the synthetic VSMCs may reduce intimal
hyperplasia that promotes the formation of atherosclerotic plaque, it also increases the risk
of plaque instability and rupture [33].

As in many other cells, PKC activation is associated with phosphorylation of ERK1/2
in the vascular smooth muscle cells [186,187]. Hu et al. [188] reported that smooth muscle
cells in lesions expressing activated ERK1/2. Abundant ERK1/2 proteins were observed
in the atherosclerotic lesions. ERK1/2 protein in intima and media was also significantly
higher than in control. In in vivo study, ERK1/2 activation was seen sharply elevated
with lesions, suggesting that hyperexpression of these kinases may play a central role in
regulating cell proliferation in the pathogenesis of atherosclerosis.

Moreover, PKC is also involved in the signalling pathways that mediate the different
roles of macrophages during atherogenesis. Upregulation of inflammatory cytokines by
resistin in the macrophages is also mediated by PKCε [189]. In the vascular endothelial and
smooth muscle cells, JNK phosphorylation also triggers the release of pro-inflammatory
cytokines and promotion of plaque formation downstream of stressors and PKC acti-
vation [190–192]. On top of that, PKCδ via ERK signalling pathways was found to in-
crease inflammatory cytokines expression, oxLDL uptake and foam cell formation in
macrophages [193]. PKCδ can be found highly expressed in human atherosclerotic arteries
and CD68-positive macrophages; it shows that PKCδ indeed plays a significant role in the
formation of foam cells.

6. PKC-MAPK as Therapeutic Target for Cardiovascular Management in
Diabetic Patients

Preventing the development and progression of cardiovascular complications is the
primary goal of cardiovascular management in diabetic patients. As the PKC-MAPK
pathway has shown to play a significant role in the development of diabetes-induced
cardiovascular illnesses, it may serve as a potential therapeutic target to manage this issue
in diabetic patients. Applying PKC and MAPK modulation in clinical trials aimed to
retard cardiovascular complications has been attempted with mixed results in recent years.
Promising results have been observed in using the PKCβ inhibitor ruboxistaurin, whereby
its usage was found to protect against diabetic nephropathy progression in type 2 diabetes
patients as reflected by reduced albuminuria and controlled eGFR [194]. Similar results were
replicated by Gilbert et al. [195] and Casellini et al. [196], showing reduced urinary levels
of TGF-β, suggesting truncation of renal fibrosis and diabetic nephropathy; these findings
indeed demonstrated the promising potential of PKC inhibitors to be used to protect against
diabetes-derived microvascular complications. Regarding cardiac protection, albeit lack of
clinical trials, cardiac function improvements were observed on the use of ruboxistaurin
on the porcine model of heart failure [197] and require clinical testing to support its use
in humans.

However, using ERK1/2 inhibitors in clinical trials seems to be discouraging for
managing cardiac function. A few studies showed that instead of exerting protective
effects, inhibiting ERK1/2 instead increases the risk of hypertension and cardiac function
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disturbance [198,199]. This is probably due to the fact that ERK1/2 also plays a role in
regulating cell proliferation, which is a crucial function, especially in post-traumatic events
such as myocardial infarction and ischemic reperfusion injury. Nevertheless, evidence of
its effect in the diabetic setting has been scarce. As promising results were revealed in a
pre-clinical study in a diabetic model [200], this warrants a clinical investigation to explore
this possible protective effect of modulating ERK1/2 activation with extra precautions
given to its adverse effects too.

In contrast, modulating stress MAPKs p38 and JNK with their specific inhibitors seems
to be more effective in clinical findings. Treatment with p38 inhibitors BMS-582949 [201]
and losmapimod [202] were both well-tolerated in patients, showing no adverse effects
on atherosclerotic and myocardial infarcted patients with reduced hypertrophy markers
observed. In fact, losmapimod treatment was found to improve nitric oxide-mediated
vasodilatation, showing that p38 inhibition by this drug was able to improve nitric oxide
activity in line with pre-clinical findings [203]. Losmapimod was also found to reduce
vascular inflammation in atherosclerotic patients [204]. However, the use of JNK-specific
inhibitor is lacking and not well-explored. In fact, only a few JNK inhibitors have been
tested in clinical trials for various indications, yet none for the treatment of cardiovascular
pathology. Preclinical studies on the use of JNK-specific inhibitors such as AS601245 and
SP600125 have been found to exert cardiovascular protective effects by attenuating cardiac
inflammation, endothelial dysfunction, as well as protecting against diabetic nephropathy
progression [205–207].

Even so, the majority of the research on the use of PKC-MAPK inhibitors has been
unable to identify the isoenzymes of interest, as well as the specific downstream signalling
events that lead to cardiovascular complications. Despite a great deal of evidence from
preclinical studies that support the modulation of this pathway independently or in broad,
the experimental model used does not mimic well the disease progression in humans, thus
affecting the reproducibility of the positive results in humans. Nevertheless, given the
importance of PKC-MAPK signalling pathways in both normal physiology and disease
pathogenesis, these kinase families remain an appealing target for drug development.

7. Conclusions

Our review suggests that PKC-MAPK pathways play an extensive role in the patho-
physiology of diabetes-induced cardiovascular complications and hence may serve as an
excellent therapeutic target for cardiovascular management. Identifying the critical PKC
isoforms involved in the activation of MAPKs that exert pathogenesis, and the determi-
nation of potential synergistic effects of the combinations of isoform-specific inhibitors
in the treatment of diabetes-associated cardiovascular complications, are two potential
challenges in developing therapeutic agents targeting the PKC-MAPK pathway. Although
further confirmatory in vitro, in vivo, and human studies are required, we anticipate that
the promising role of the PKC-MAPK pathway can potentiate the treatment of diabetes-
associated cardiovascular complications in human.
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