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Abstract

Translation of any inventions into products requires manufacturing. Development of drug/gene/

cell delivery systems will eventually face manufacturing challenges, which require the establish-

ment of standardized processes to produce biologically-relevant products of high quality without

incurring prohibitive cost. Microfluidicu technologies present many advantages to improve the

quality of drug/gene/cell delivery systems. They also offer the benefits of automation. What re-

mains unclear is whether they can meet the scale-up requirement. In this perspective, we discuss

the advantages of microfluidic-assisted synthesis of nanoscale drug/gene delivery systems, forma-

tion of microscale drug/cell-encapsulated particles, generation of genetically engineered cells and

fabrication of macroscale drug/cell-loaded micro-/nano-fibers. We also highlight the scale-up chal-

lenges one would face in adopting microfluidic technologies for the manufacturing of these thera-

peutic delivery systems.
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One aspect of biomanufacturing is the use of technology to fabricate

biologically relevant materials and devices wherein biological com-

ponents and/or processes are included. In development of pharma-

ceutical and medicinal products, biomanufacturing represents one

critical step in translating the process performed in academic labora-

tories into commercial-scale manufacturing. In cell-based thera-

peutics e.g. the successful cases of product approval by the Food and

Drug Administration (FDA) and subsequent commercialization are

vastly out-numbered by prevalent failures of product development,

which can be partly attributed to high cost of products and technical

hurdles encountered when the manufacture process is scaled up [1].

Currently, the laboratory-scale preparation of human cells or tissues

is a highly specialized activity that is subjected to user-to-user vari-

ation. Automation ought to be introduced for standardizing proced-

ures and achieving flexibility in production to adapt to potential

market changes.

Meanwhile, biomanufacturing plays a significant role in com-

mercializing delivery systems for drug and gene therapies that are

predominantly in micro-/nano-particulate form. Since the first FDA

approval of drug delivery system (DDS), Lupron Depot, in 1989,

more than 30 DDS are now commercially available to treat a wide

range of diseases (Fig. 1). In contrast, the commercialization of gene

therapy has stalled [2]. The first commercialized gene therapy,

Glybera (approved in Europe only in 2013), leverages on viral vector

to deliver the target gene and is expected to cost>$1 million/treat-

ment [3]. Since viral vectors are associated with toxicity, immuno-

genicity and high cost, development of gene delivery systems using

non-viral vector has continued to gain momentum as demonstrated

by the steady increase of research articles published on the topic [2].

In general, the low transfection efficiency is an obstacle of non-viral

gene delivery [4]. In addition to material composition, fabrication

methods have been shown to affect the transfection capability of

non-viral gene vector [5]. Moreover, in vitro and in vivo properties

of drug/gene delivery systems depend on a number of characteristics

such as size, surface charge, and drug/gene loading efficiency that

are in turn controlled by fabrication methods [6].

The current Good Manufacturing Practices (cGMP) for bioma-

nufacturing issued by FDA require standardized manufacturing

processes to be established to ensure products (e.g. drugs) possess

the desired characteristics in terms of identity, strength, quality and

purity [7]. Microfluidics, the manipulation of fluid flow in small

scale (nano- or pico-liter), has been studied for fabricating biologic-

ally relevant materials owing to the multiple advantages it offers.

Here, we review the rationale and examples of adopting
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microfluidics for fabrication or formulation in the fields of/drug/

gene/cell therapies, and highlight how microfluidics may address

existing and future biomanufacturing challenges.

Introduction of microfluidic technologies for
biofabrication

Microfluidics is a rapidly evolving field with applications encompass-

ing diagnostics, molecular biology, high-throughput screening and

material fabrication [8]. The basic components of microfluidic tech-

nology comprise a device with one or more channels that are <1 mm

in dimension and a pump such as syringe or peristaltic pump to drive

liquid flow [9]. The general benefits of microfluidic platform include

but not limited to miniaturization, reduced reagent consumption,

rapid heat and mass transfer due to high surface-to-volume ratio and

enhanced processing accuracy and efficiency in predictable liquid

flow at small scales [10]. Conventional macroscale bioprocessing can

be reproduced in microfluidic device with minimal reagent input and

device footprint, leading to reduced cost and better controllability. In

particular, emulsion droplets are produced when two or more immis-

cible streams, supplemented with a surfactant, are introduced in

microfluidic platform concurrently [11, 12]. These emulsion droplets

compartmentalize the bulk reaction mixture into isolated, uniform-

sized reactors. This results in consistent material fabrication and pre-

vents cross-contamination of reagents across droplets.

Examples of adopting microfluidic technologies for biomanu-

facturing in the fields of cell/drug/gene therapies can be categorized

by the length scale of products, ranging from nano- to macro-scale

(Fig. 2). Within the category of nanoscale products, nanoparticles

(NPs) loaded with drugs through physical encapsulation, adsorp-

tion or covalent conjugation and nanocomplexes (NC) carrying nu-

cleic acid through electrostatic binding can be synthesized in

microfluidic platform [13]. At the microscale, microparticles can

be produced for controlled drug delivery [14]. In a variation of the

theme, cells can be transfected or loaded with macromolecules in

microfluidic platform to secrete therapeutic products for cell-medi-

ated drug delivery [15]. Alternatively, cells can be encapsulated in

hydrogels within the droplets for immunoprotection in artificial

organ applications [16]. At the macroscale, scaffolds of microflui-

dic-generated microfibers can be applied as a patch for controlled

drug/gene delivery or implantable engineered tissue [17, 18]. We

will examine each category and discuss the advantages of micro-

fluidics-mediated fabrication followed by the challenges of

biomanufacturing.

Microfluidic synthesis of nanoscale Drug/gene
delivery system

Nanoscale DDS holds tremendous promise for disease treatment

since it can encapsulate poorly soluble drugs and release them in a

Figure 1. Timeline showing some examples of DDS approved by FDA
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controlled manner, protect therapeutic molecules from premature

excretion or immune reaction and be chemically modified for tar-

geting specific disease tissues [19]. Examples of commercially

available nanoscale DDS include liposome-based (e.g. Doxil) and

protein-based NP (e.g. Abraxane). Despite the advantages associ-

ated with nanoscale DDS and decades of research, translation of

NP to the clinic has been slow compared with small-molecule

drugs [13]. One critical barrier is the difficulty of synthesizing NPs

with tunable physicochemical properties and minimal batch-to-

batch variations and in sufficient quantity for clinical applications

[20]. Synthetic protocol dictates the size of a NP and its subsequent

biodistribution, one of the most important parameters that deter-

mines the efficacy of a NP delivery system. NP <20 nm will be

removed from circulation via the reticuloendothelial system within

a few hours, whereas larger ones will be trapped in the liver and

the spleen within minutes [21]. Polymeric micelles with a diameter

of 30 nm only (but not with a diameter of 50, 70 or 100 nm) could

effectively penetrate poorly permeable pancreatic tumors [22].

Traditional bulk mixing such as nanoprecipitation and emulsifica-

tion-based methods rely on self-assembly of precursor molecules

when there is a change in solvent quality. NP synthesized by bulk

mixing are prone to polydispersity, large particle size (often

>150 nm in the case of emulsification-solvent evaporation) and

batch-to-batch variations [23]. In bulk mixing, longer timescale of

solvent exchange (in the order of seconds) than that of precursors

to nucleate and grow results in undesired NP aggregation [13].

Using microfluidic device, nanoprecipitation can be conducted in

hydrodynamic flow focusing, where the precursor solution is

focused into a thin stream between two streams of anti-solvent and

rapid solvent exchange occurs via diffusion through the interface

(Fig. 3A) [24]. The short mixing time (in the order of microsec-

onds) yields smaller NP (<100 nm) with more uniform size [23]. A

microfluidic device capable of focusing stream hydrodynamically

in 3D could reduce the particle size further since NP aggregation

Figure 2. Illustration of nano- to macro-scale products manufactured with microfluidics
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on channel wall was prevented [25]. Nevertheless, the nanoprecipi-

tation approach requires the utilization of two miscible solvents

(e.g. acetone and water) in which the drug and polymer dissolve in

one but not the other, thereby introducing variation in drug encap-

sulation efficiency (EE) depending on the nature of the drug, poly-

mer and solvent [26, 27]. In the case of fabricating docetaxel-

loaded PLGA NP, the EE was not high in both microfluidic synthe-

sis (51%) and bulk mixing (45%) because docetaxel precipitated at

a different solvent condition than the polymer [23]. Entrapping

hydrophilic drug is especially challenging for nanoprecipitation

[26]. On the other hand, the emulsification-based approach has

been shown to better encapsulate hydrophilic drugs and protein

due to the shielding effect of disperse phase [28, 29]. One study re-

ported the entrapment of hydrophilic drug in NP using a microflui-

dic device to generate water-in-oil-in-water (w/o/w) emulsion with

significantly higher EE (97%) than that obtained by bulk mixing

(57%) [30]. The authors attributed reduced drug loss to fewer

steps involved in microfluidic-assisted emulsion production com-

pared with sequential bulk mixing of multiple phases. The size uni-

formity of NP also improved; however, a particle size limit of

>70 nm was observed [31]. Future development of generating

nanoemulsion in micro- or nano-fluidic device is expected to con-

tribute to synthesizing NP of smaller size, better uniformity and

higher EE.

The expansion of potential genetic targets for intervention of in-

herited and acquired diseases has fueled the development of gene

therapy. The therapeutic potential of gene therapy depends largely

on effective intracellular delivery systems [32]. As a safer and more

cost-effective alternative to viral gene delivery, non-viral gene deliv-

ery often requires the use of cationic polymers or lipids to condense

negatively charged nucleic acids (e.g. plasmid DNA, mRNA,

siRNA) into nano-sized polyplex and lipoplex, respectively.

Innovations in carrier design have given rise to sophisticated delivery

systems [33]. Nevertheless, issues such as low transfection efficiency

and toxicity of unreacted cationic molecules render non-viral gene

delivery prohibitively inefficient for clinical translation [34]. In add-

ition to carrier material composition, the process of NC production

assumes an important role in optimizing the physicochemical attri-

butes of NC [35, 36]. The assembly of NC by charge neutralization

is a highly energetic process that occurs in milliseconds [37, 38].

Bulk preparation by pipetting, or vortex mixing introduces great

variability into the quality of the NC formed, leading to poor

Figure 3. (A) Top: illustration of nanoprecipitation performed in hydrodynamic flow-focusing channel where solvent exchange occurs via rapid diffusion along

the interface of two phases. Bottom: the size distribution of NP generated by different approaches (flow ratio¼0.03 and 1 refer to ratio of flow rates in microfluidic

fabrication) (reprinted (adapted) with permission from [23]. Copyright (2008) American Chemical Society). (B) Illustration of microfluidics-assisted assembly of

NC in picoliter droplets. Plasmid DNA, buffer, gene carrier and oil are introduced into each channel with syringe pumps. The DNA and gene carrier are then con-

fined into individual droplets and subsequently self-assembled through electrostatic interaction (reprinted (adapted) with permission from [36]. Copyright (2011)

American Chemical Society). (C) Schematic of the 3D-hydrodynamic flow focusing for NC synthesis. The DNA solution is injected through inlet A, while the poly-

mer solution is injected from inlets B–D (reprinted (adapted) with permission from [41]. Copyright (2011) American Chemical Society).

90 Chan et al.



biological reproducibility [39]. The difficulty of manufacturing NC

in a controlled, reproducible and scalable manner also hinders their

clinical translation. Similar to the case of nanoscale DDS, emulsion-

based approach and hydrodynamic flow focusing in microfluidics

have been shown to improve the quality of NC produced [35, 37,

40, 41]. Employing water-in-oil emulsion droplets, approximately

same amount of reagents are encapsulated in each droplet. Confined

diffusion within droplets and rapid mixing as the droplets move

along the channel facilitate charge neutralization between oppositely

charged molecules [36]. The resulting NC displayed smaller and

more uniform size, lower surface charge (lower zeta-potential), bet-

ter stability, higher transfection efficiency and lower cytotoxicity

than NC created by bulk mixing (Fig. 3B). A quantum dot-Förster

resonance energy transfer assay revealed slower unpacking of micro-

fluidic-generated NC to release its payload intracellularly, which

might result in higher chances of nucleic acids penetrating the nu-

cleus [21]. In hydrodynamic flow focusing, nucleic acid stream is

focused by streams of cationic lipids and polymers into a narrow

stream where rapid mixing occurs through diffusion across the inter-

face in microseconds [42]. The resulting NC again were smaller and

more monodispersed, transfected cells better without inducing

higher toxicity than the bulk mixed counterparts. Furthermore, to

prevent aggregation of NC on channel wall and enhance the vertical

diffusion, a ‘microfluidic drifting’ technique was developed to

achieve 3D hydrodynamic focusing in a single-layered microfluidic

device (Fig. 3C) [41]. Favorable attributes were exhibited by the NC

produced and they were further enhanced when acoustic perturb-

ation was applied.

In addition to particle size, particle shape has been shown to af-

fect cellular uptake and in vivo transport of NP and NC, with rod-

or worm-like structure exhibiting superior circulation profile and

cellular uptake over spherical particles [43, 44]. It is challenging

to fabricate non-spherical drug-loaded particles with traditional

mixing procedures. To address the issue, a top-down lithographic

fabrication method called PRINT (Particle Replication In Non-

wetting Templates) was developed to fabricate micro- and nano-

particle of defined shapes [45]. A non-wetting elastomeric mold

containing cavities of predefined shapes is used to contain precur-

sor solution for gelling or crosslinking that allows high-throughput

production of NP. In contrast to the static production of PRINT,

continuous flow lithography combines the advantages of photo-

lithography and microfluidics to continuously form morphologic-

ally complex particles [46]. Precursor solution flows along a

microfluidic channel underneath which a photomask with defined

shapes is placed and pulses of UV light are applied. Particles of

defined shapes are formed and flushed to the outlet for collection.

This technology has the potential to be scaled up for mass produc-

tion of NP but is currently limited to photocrosslinking reaction.

An improved version of the technology is called stop-flow lithog-

raphy, where fluid flow is stopped during polymerization to boost

the resolution of particles form [47]. Recently, it was discovered

that the shape of micellar polyplex could be tuned by controlling

the solvent polarity during particle formation [48]. According to

the report, a higher degree of uniformity of various polyplex struc-

tures was obtained by titrating solvent polarity after the polyplex

was prepared than bulk mixing the reagents under the same solvent

condition. Since bulk mixing introduces variability into polyplex

condensation, the use of microfluidic platform such as emulsion

droplet or hydrodynamic focusing may circumvent the problem

and provide a more controllable environment for direct synthesis

of polyplex of defined shape.

After discussing the potential of microfluidic platform to achieve

reproducible fabrication of nanoscale drug/gene delivery system, we

now examine the throughput and scalability of microfluidic plat-

form. The example of NP dose ranges from 50 to 500 mg/human for

Doxil and Abraxane in each administration. This would require a

multi-kilogram manufacturing process operating under cGMP to

meet the production requirement. For hydrodynamic flow focusing,

the early design leveraged on diffusive mixing between the focused

and surrounding streams that occurred only at low flow rate (i.e.

low Reynolds number), which gave a productivity of NP at 0.003 g/

h [23]. Subsequent designs introduced convective and microvortex

mixing in high speed flow that increased the productivity to 0.005

and 3 g/h, respectively [49, 50]. The vortex and turbulence seen in

high speed flow would enable even shorter mixing time and forma-

tion of smaller NP. A coaxial turbulent jet mixer could operate at a

Reynolds number of above 3500 that resulted in a production rate

of 130 g/h [51]. Another study demonstrated the incorporation and

operation of multiple flow focusing channels on a same device that

enhanced the throughput tremendously and proved the scalability of

the technology [52]. Achieving sufficient productivity for clinical ap-

plication is one target. Developing a high-throughput platform for

rapid, combinatorial synthesis and optimization of NP also receives

considerable attention. A microfluidic flow focusing device with

multiple inlets was described that could mix different NP precursors

prior to NP synthesis for screening [53]. In the emulsion-based

approach, the disperse phase flow rate used to generate poly(lactic-

co-glycolic acid) NP was �32 lg/ml versus �50 mg/ml in the hydro-

dynamic microvortexing approach [50, 54]. For NC synthesis, the

typical working flow rate of nucleic acid and carrier combined for

emulsion formation was �7.5 ll/min compared with �60 ll/min in

the case of hydrodynamic flow focusing [27, 55]. Increasing flow

rate during emulsion formation is tricky as variation of the flow con-

ditions can lead to transition between stable droplet production and

occurrence of jetting [56]. Nevertheless, it is feasible to increase

throughput by running multiple droplet generators in parallel, such

as utilizing a microfluidic module containing 128 cross-junctions

that can produce droplets at a rate of 5.3 ml/min [57]. Overall, con-

certed efforts have been made to verify the potential of microfluidics

to advance nanoscale drug/gene delivery system production and fu-

ture work should focus on improving drug encapsulating efficiency

and fabricating particles of defined shape.

Encapsulation of cell/drug in microfluidic-
generated microparticle/microgel for
delivery of therapeutic products

Degradable microparticles/microspheres have been widely used as

matrices for drug delivery [58], in which encapsulated drug is

released by diffusion through the matrix or erosion of the matrix

itself [59]. One example is Lupron Depot, a FDA-approved drug-

loaded microsphere intended for controlled drug release after intra-

muscular injection. Particle size is one important determinant of

drug release profile [60]. Traditional procedures of fabricating

microparticles are based on droplet formation via sonication and

mechanical homogenization followed by solidification of particles

(e.g. solvent evaporation, polymerization) [61], which result in size

polydispersity and necessitate further filtration step to modulate par-

ticle size distribution.

Microfluidic platform offers a unique advantage in generating

uniform-sized emulsion droplet, with tunable size ranging from a

few to hundreds of microns. Homogeneity can be seen in particle
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size as well as drug distribution inside the particle, leading to more

sustained drug release and the possibility of injecting larger particles

since the chance of clogging a needle by the large size fraction is

reduced (Fig. 4A) [14]. Bypassing the filtration step also increases

the overall yield of production. Moreover, the microfluidic plat-

form, especially that made of glass, is compatible with various

chemical compounds and therefore can be adapted for the synthesis

of different smart drug particles including temperature-, stimulus-

and pH-responsive microparticles for triggered drug release [62–64].

The controlled generation of emulsion droplets also facilitates the

production of designer microparticles that are impossible to be con-

structed before. For example, uniform-sized double-emulsion of w/

o/w or oil-in-water-in-oil (o/w/o) droplets can be formed via two

emulsification steps in one or two microfluidic devices [65, 66].

They can serve as template to produce core-shell microparticles with

two different drugs encapsulated in distinct compartments for se-

quential drug release or the shell modulating the rate of drug release

from the core [67–69]. Biphasic, also referred to as Janus, or multi-

phasic microparticles can be made by emulsifying two or more par-

allel-flowing streams of disperse phase and subsequently solidifying

the multiphasic droplets (Fig. 4B) [70, 71]. The benefits of such a

structure are that drugs encapsulated in two hemispheres can be

released simultaneously so they can be of different nature (e.g.

hydrophilic and hydrophobic) [72]. Using microfluidic platform, the

microparticles can be created with shapes such as sphere, circular

disk and rod although the influence of particle shape on drug diffu-

sion properties needs to be determined [73]. In regard to drug encap-

sulation, the presence of immiscible phase surrounding the emulsion

droplets prevents drug loss leading to higher drug EE (>75%) than

that achieved with conventional extrusion (40–60%) [74, 75].

Nevertheless, as in the case of NP formation, the emulsion-based ap-

proach is hampered with relatively low throughput (�300 mg/h for

single-channel device adopting a disperse phase flow rate of 2 ml/h)

[14]. Incorporating multiple (e.g. 15 and 128) droplet generators in

2D or 3D array is possible for single or double-emulsion manufac-

turing which could significantly increase the overall disperse flow

rate to 24–320 ml/h [57, 76].

Immobilizing cells in biocompatible hydrogels offers many attract-

ive features for tissue engineering, such as providing support for an-

chorage-dependent cells and presenting biochemical cues to module

cell behavior [77]. In particular, microencapsulated cells that express

therapeutic proteins or growth factors can be transplanted for sus-

tained delivery of therapeutic products in vivo [78]. The hydrogel

layer can serve as immunoisolation barrier to allow transplantation of

foreign cells, such as animal cells or genetically modified cell lines.

For effective cell culture and delivery, a few obstacles related to the

microencapsulation process need to be overcome. First, conventional

microcapsule/microgel formulations rely on droplet extrusion from a

nozzle or needle and create large hydrogel (500–1000lm) [79]. A

small gel size is preferred to ensure short diffusion distance and high

surface-to-volume ratio for rapid exchange of nutrients and waste.

Second, existing problem of size polydispersity results in differential

profile of oxygen and nutrients diffusion of each gel and thus diffi-

culty of predicting overall cell survival [80]. Finally, deformed micro-

gels are formed during droplet dripping which might cause fibrotic

overgrowth on surround tissue after implantation [81].

To address the challenges, microfluidic-generated emulsion

droplet (usually <500 lm) provides a promising alternative for

encapsulating cells in equal-sized compartments before the droplet

phase is polymerized to produce uniform-sized, cell-laden, spherical

microgel [16]. The polymerization of alginate inside droplets has

been studied extensively and is carried out through external and in-

ternal calcium ion-triggered mechanisms [82]. External gelation is

conducted by delivering the cell-containing alginate droplets to a

reservoir containing calcium ions that diffuse into the droplets [83].

For the internal gelation, alginate droplets containing insoluble cal-

cium salts (e.g. calcium carbonate) are generated (Fig. 4C) [16, 84].

The continuous phase is then acidified to promote the release of cal-

cium ions from the insoluble salts. A few other biomaterials encap-

sulated inside droplets can be polymerized externally via applying

heat (e.g. collagen), cooling (e.g. agarose, gelatin) and UV light (e.g.

poly(ethylene glycol) diacrylate) etc [85–89]. One critical challenge

of the microfluidic-assisted biomanufacturing process is to preserve

cell viability during droplet formation, polymerization of droplet

phase and finally oil phase removal. The cell viability immediately

after droplet formation was reported to be over 80% although the

presence of immiscible oil phase impeded nutrient replenishment

and hence a gradual drop of cell viability inside the droplet over

time was observed [90, 91]. For polymerization, mild conditions

like transient temperature variation and UV exposure were compat-

ible with cell culture. However, triggering calcium release from in-

soluble calcium salt by lowing pH could be detrimental after

prolonged exposure to acid (e.g. acetic acid), thus alternative

method using slow hydrolyzing acid was reported [92]. In some

cases, on-chip exchange of acid to another organic phase was neces-

sary to enhance cell survival [93]. Finally, the immiscible phase was

typically removed by centrifugation of the microgels suspended in a

mixture of culture medium and an oil phase highly immiscible with

water. The choice of oil could significantly affect the viability of

cells since any residual organic solvent left on microgel surface could

be harmful to cells [16]. The centrifugation process could also lead

to collapse of microgels or exert excessive mechanical force on the

cells that led to reduction in cell survival [85]. Although the immedi-

ate cell viability after organic phase removal was reported to be

>74%, a number of studies demonstrated a gradual decrease in cell

viability or proliferation rate after microgels were extracted and cul-

tured [84, 85], suggesting cell quality could be compromised during

the microgel formation and extraction process. An on-chip microgel

extraction process was reported to circumvent the centrifugation

step to improve cell viability and proliferation [85, 94]. Microgel

formation based on double-emulsion droplet generation was also an

alternative to avoid the use of hazardous organic phase and centrifu-

gation (Fig. 4D) [95, 96]. Overall, improving the microgel formation

process for preserving cell viability and expanding the scope of

hydrogel materials used are imperative to the successful translation

of the technology.

Intracellular delivery of macromolecules
using microfluidics

Genetically modified cell lines can serve as depot for sustained secre-

tion of therapeutic products (such as factor VIII and IX for treating

hemophilia A and B, respectively) [97, 98]. Primary cells such as

dendritic cells can be transfected to present antigen for inducing can-

cer immunity [99]. In addition, stem cells such as mesenchymal stem

cells can be genetically modified to overexpress therapeutic proteins

to increase their survivability and migration in cell therapy, as well

as loaded with non-peptidic drugs or magnetic NPs for enhanced ef-

ficacy and externally regulated targeting [100]. The challenge of the

approach is to achieve sufficient efficiency of intracellular delivery,

especially for some hard-to-transfect cell types including lymphoma

cells and embryonic stem cells. In earlier section, we have covered
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the formulation of NC for non-viral gene delivery by applying

microfluidics. Although NC is efficient in nucleic acid delivery, they

are in general inefficient for the delivery of proteins.

Different microfluidic platforms have been developed with an

aim of conducting in situ transfection or intracellular delivery at

higher efficiency than using conventional methods (e.g. NP-medi-

ated transfection and electroporation) in normal cell culture [15, 95,

101, 102]. For example, water-in-oil droplet was used to encapsu-

late cells and transfection reagent in order to increase the probability

of interaction between them due to confinement effect [90].

Figure 4. (A) Top: optical microscopy image showing the flow-focusing device used to generate microparticles. Bottom: SEM image of monodisperse PLGA

microparticles generated in microfluidics (reprinted from [14]. Copyright (2009), with permission from John Wiley and Sons). (B) Top: schematic of formation of

janus particle in a microfluidic device with three inlets. Bottom: varying the flow rates of the two outer polymer phases, the untagged center polymer phase, and

the emulsifying oil phase yields particles with different inner morphology (reprinted (adapted) with permission from [71]. Copyright (2010) American Chemical

Society). (C) Top: schematic view of alginate hydrogel microbeads production in a T-junction type microfluidic device. Droplets of Na-alginate containing CaCO3

NPs are formed at the T-junction. A stream of “acidic oil” merges with the mainstream and induces Ca2þ release by reducing pH for alginate gelation. Bottom:

bright field and live-dead images of cell-encapsulated alginate microbeads (reprinted from [16], Copyright (2009), with permission from John Wiley and Sons).

(D) Top: schematic diagram showing double-emulsion droplets are generated for spheroid production. The spheroid can then be encapsulated in microgel after

oil shell removal. Bottom: (a) Live/dead staining of spheroids encapsulated in alginate microgel (adapted from [95]).
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Although improved transfection efficiency compared with transfec-

tion conducted in culture plate was not observed, higher transfection

efficiency was noted in small droplets than in large droplets,

indicating the likely effect of microscale confinement. Further devel-

opment of the technology is required for it to be applicable in rou-

tine transfection operation. By forcing cells to flow through a

constriction in microfluidic channel, transient holes in membrane

were generated to facilitate intracellular delivery of nanomaterial,

protein and nucleic acid while maintaining excellent viability

(>80%) (Fig. 5A) [15]. The technique was more effective in deliver-

ing transcription factors intracellularly than electroporation and

transfecting lymphoma cells and mouse embryonic stem cells than

using commercial reagents (Fig. 5B). Genome editing was also

achieved by deforming cells in the microfluidic channel for single-

guided RNA and Cas9 protein penetration without requiring any

gene vector [102]. Most importantly, the throughput of the technol-

ogy is very high, reaching a rate of 20 000 cells/s [15]. Given the po-

tential of scaling up by incorporating multiple channels or operating

multiple devices simultaneously, this technology should play a vital

role in advancing intracellular delivery for cell and drug therapies in

the future.

Microfluidic-generated micro-/nano-fibers as

macroscale cell/DDS

Scaffolds composed of micro- and nano-scale fibers hold great

promise as macroscale cell/DDS. The small diameter of fibers pro-

vides short diffusion distance and high surface-to-volume ratio for

mass exchange and drug release, making the fibers favorable cell

culture platform and localized drug delivery vehicle [103]. The por-

ous structure enables cell ingrowth to facilitate tissue regeneration

and drug uptake by cells. A range of methods have been reported for

manufacturing fibers [104]. Melt spinning begins with heating poly-

mer above its melting point before extruding it through a spinneret.

The high temperature (>150�C) required demands the use of expen-

sive equipment and prevents the encapsulation of cell and protein

inside the fibers. Wet spinning, which forms fibers by injecting

a pre-polymer solution into a coagulation bath for polymerization

to occur, faces possible limitation of prolonged exposure of harm-

ful chemical in the bath for cell and protein encapsulation.

Electrospinning, which has been intensively studied in the past dec-

ade, can effectively fabricate nanoscale fibers of dimension compar-

able to native extracellular matrix, hence can be used to construct a

Figure 5. (A) Left: illustration of intracellular delivery mechanism whereby the microfluidic constriction generates transient membrane holes on cells when they

are deformed. Right: siRNA delivery promotes gene knockdown in live destabilized GFP-expressing HeLa cells, the extent of which depends on device type and

cell speed. Lipofectamine 2000 was used as a positive control (adapted from [15], Copyright by the National Academy of Sciences). (B) Left: illustration of delivery

mechanism and microscopic image of the device structure in which transient membrane holes are generated when cells pass through the microconstriction be-

tween the diamond arrays. Right: efficiency of delivery of plasmids encoding GFP in different cell lines [102] (Copyright 2015, the authors, AAAS)
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biomimetic scaffold to direct cellular behavior. The disadvantage

lies in the use of high voltage to draw the charged solution that pre-

cludes the loading of sensitive biological materials. Moreover, dehy-

dration and fiber stretching during fiber formation contribute to

significant death of cell encapsulated [105]. For drug loading, large

discrepancies in level of loading efficiency were reported, with one

study claiming the EE was 0.003% whereas two others reporting

values of 41% and >90%, respectively [18, 106, 107]. The differ-

ence in charge densities between the protein and polymer solutions

was suggested to be the cause of inefficient encapsulation.

Using microfluidics, coaxial flow of a pre-polymer and a cross-

linking agent in flow focusing channel resulted in continuous pro-

duction of fibers [17]. The typical diameters of the fabricated fibers

are between ten to several hundreds of micrometers; however, one

study leveraged on dehydration of polymer stream inside the chan-

nel to produce nanoscale fiber (>70 nm in width) [108]. Because the

polymerization reaction occurs in a hydrated environment and the

cross-linking agent can be rapidly diluted or removed by transferring

the fibers into a buffer bath, excellent viability of cell encapsulated

(>80%) was reported (Fig. 6A) [109–111]. Furthermore, the con-

trolled polymerization inside the microfluidic channel reduces drug

loss during encapsulation, with EE reported to be 58–90% (Fig. 6B)

[112, 113]. The flexibility of microfabricated platform design also

allows the generation of fibers of various structures, such as fibers

coded with varying chemical composition and topography for spa-

tially controlled co-culture of encapsulated cells and controlled

presentation of topographical cues for cells cultured on the fibers,

respectively [114]. Nevertheless, the drawback of this technology is

that the flow rate of the pre-polymer solution used is typically low

(several ll/min compared with several ml/min in the case of electro-

spinning) [18, 112]. The low flow rate is important to maintain

small diameter of the fiber and to prevent the flow becoming turbu-

lent. The throughput can be increased by integrating multiple flow

focusing channels in the same device, as in the case of NP and micro-

particle synthesis.

Future perspectives

High cost and process variability hinder the translation of labora-

tory-scale technology into product commercialization. To comply

with cGMP, technologies that offer reproducible and scalable

production of biologically relevant materials must be developed.

Microfluidics has emerged as a potential platform to advance

biomanufacturing in the field of drug/gene/cell therapies via im-

proved synthesis of nanoscale drug/gene delivery system, microen-

capsulation of drug/cells, intracellular delivery of macromolecules

and fabrication of macroscale construct of micro-/nano-fibers.

Microfluidics not only can improve the quality of drug/gene/cell de-

livery systems, it can also help establish precise structure-function

relationships of NP and understand the intracellular delivery bar-

riers. As nanotherapeutics become more sophisticated, requiring the

integration of therapeutic, imaging and targeting modalities into the

Figure 6. (A) Top: microfluidic system for fabricating alginate hydrogel microfibers containing hepatocytes and 3T3 cells. Bottom: illustrations correspond to

cross-sectional images at (a) and (b) in the upper image (reprinted from [109], Copyright (2012), with permission from Elsevier). (B) Top: the diagram of the micro-

fluidic system and fabrication of alginate microfiber loaded with drug and magnetic iron oxide NPs for triggered drug release. 1, CaCl2 solution; 2, deionized

water; 3, solution of alginate, drug and iron oxide; 4, oil. Below are photographs of observation positions. Bottom: release profiles of drug from microfibers with-

out magnetic stimulation as the control (empty triangle), with 2-min stimulation at the 10th, 30th and 60th minute (filled triangle), with a 10-min stimulation after

the 20th minutes (filled circle) and with a continuous stimulation from the beginning (empty circle) (adapted from [113])
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same NP, a reproducible fabrication process such as that afforded

by microfluidic synthesis becomes even more important. As opti-

mization of stem cell niche becomes more complex and requires

precise patterning of physical and biochemical cues, microfluidics-

assisted fabrication of biofunctional scaffolds can also play a more

prominent role. There is no question that microfluidics can enhance

the quality of drug/gene/cell delivery systems. The challenge is scal-

ing-up these microfluidic technologies. Perhaps one can draw inspir-

ation from the advance of computer science and engineering, where

massively parallel processing systems have led to computational

power capable of dealing with big data. One would think that the

scale-up challenges highlighted in this perspective are solvable. At

least that might be the case for precision medicine, where the scale

of individualized therapeutic products would be addressable by

microfluidic technologies.

As biomaterials innovations in the past decades have led to excit-

ing conceptual advances in sophisticated device design, one of the

grand challenges of biomaterials research in the 21st century has to

be biomanufacturing. To date, translation of biomaterials innov-

ations has been inadequate and under-appreciated. To address this

deficiency, academia-industry collaboration, funding priority and

innovation program establishment must be supported and rein-

forced. In parallel, training will be paramount. Innovations cannot

be sustained without training, from the student to the professional

level. Students should be taught principles such as automation,

micro/nanofabrication, interface of physics and biology for biomate-

rials design and manufacturing principles. To facilitate this training,

professors and industrial scientists should spend time in each other’s

domains to learn the respective principles and practices. In essence,

the field of biomaterials needs a new model for partnering industry

and academia in the 21st century so as to increase the rate of transla-

tion for benefiting the society.
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