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Resistance prediction and mutation ranking are important tasks in the analysis of

Tuberculosis sequence data. Due to standard regimens for the use of first-line

antibiotics, resistance co-occurrence, in which samples are resistant to multiple drugs,

is common. Analysing all drugs simultaneously should therefore enable patterns

reflecting resistance co-occurrence to be exploited for resistance prediction. Here,

multi-label random forest (MLRF) models are compared with single-label random forest

(SLRF) for both predicting phenotypic resistance from whole genome sequences and

identifying important mutations for better prediction of four first-line drugs in a dataset

of 13402 Mycobacterium tuberculosis isolates. Results confirmed that MLRFs can

improve performance compared to conventional clinical methods (by 18.10%) and

SLRFs (by 0.91%). In addition, we identified a list of candidate mutations that are

important for resistance prediction or that are related to resistance co-occurrence.

Moreover, we found that retraining our analysis to a subset of top-ranked mutations

was sufficient to achieve satisfactory performance. The source code can be found at

http://www.robots.ox.ac.uk/∼ davidc/code.php.

Keywords: drug resistance, mutation ranking, MLRF, SLRF, tuberculosis

1. INTRODUCTION

As reported by the World Health Organization, resistance co-occurrence is very common, and is
especially so between first-line drugs for treating tuberculosis (TB): isoniazid (INH), ethambutol
(EMB), rifampicin (RIF), and pyrazinamide (PZA) (World Health Organization, 2017). Two types
of resistance co-occurrence are especially important: (i) multi-drug resistant TB (MDR-TB) defined
as cases that are resistant to at least INH and RIF; and (ii) extensively drug-resistant TB (XDR-
TB), defined as isolates that are resistant to INH and RIF plus any of the fluoroquinolones such as
levofloxacin or moxifloxacin and at least one of the three injectable second-line drugs, including
amikacin, capreomycin, or kanamycin. Hence, resistance co-occurrence to anti-TB drugs has
become an urgent public health concern (World Health Organization, 2017).

Conventional methods for resistance prediction fromwhole genome sequences are usually based
on identifying specific known resistance-conferring variants (i.e., single nucleotide polymorphisms;
insertions or deletions) and interpreting (i) the presence of any of them as indicating resistance;
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and (ii) the absence of all of them as indicating susceptibility to
an individual drug (Schleusener et al., 2017). Most techniques
are based on a library of resistance-conferring variants for
each individual drug (Georghiou et al., 2012; Coll et al., 2015;
Walker et al., 2015). However, due to high dimensionality
of the sequencing data and unknown resistance mechanisms,
these techniques do not necessarily result in high classification
performance especially for less-studied drugs. Moreover, such
methods predict resistance drug-by-drug based on known
mutations for each drug, rather than by jointly predicting MDR-
or XDR-TB.

Some mutations are commonly seen in strains that are
resistant to multiple drugs (e.g., MDR-TB and XDR-TB isolates).
This is likely to be because they have no, or very limited,
fitness cost (Eldholm et al., 2015). This suggests that predicting
the global phenotype (e.g., MDR-TB), rather than individually
predicted phenotypes (e.g., resistance to INH), could be a
promising approach. katG_315 was the most common MDR-
TB mutation in a dataset of 608 susceptible and 403 MDR-
TB isolates in Hazbón et al. (2006) and also a recent study of
5310 isolates (Manson et al., 2017). Moreover, the proportion
of isolates with katG_315 mutations was higher in MDR-TB
isolates than mono-resistant isolates, supporting the hypothesis
that these strains have a lower fitness cost and are better able to
acquire and tolerate additional mutations. Similarly, katG_315,
rpoB_445, and rpoB_450 mutations were found to be associated
with MDR-TB isolates in another study (Van Rie et al., 2001)
which identified 90% of all MDR-TB in their 5-year dataset.
Borrell et al. (2013) observed that the gyrA_D94G mutation was
associated with greater fitness than the gyrA_G88C mutation
when co-existing with rpoBmutations in strains that are resistant
to both RIF and quinolones. The later points to a likely epistatic
interaction between gyrA_D94G and rpoB.

Multi-label learning provides a potential solution to such
challenges. Multi-label learning is an important classification
technique if each sample in a dataset is associated with multiple
labels (e.g., resistance/susceptibility to multiple drugs) and if
there are correlations between labels (e.g., for resistance co-
occurrence, there are around 2,000 isolates that are resistant
to both INH and RIF). In this case, learning each label
independently, ignoring correlations between labels, results in
lower performance. Instead of considering resistance to each
drug individually, the multi-label technique learns a single
model for all drugs, and makes a prediction at the sample
level. This method is closer to the clinical reality, where drug
resistance phenotypes are not typically independent of one
another due to using regimens made up of a combination of
drugs. Resistance co-occurrence is especially common in first-
line drugs, since standard regimens require them to be used
together. Existing machine learning methods for TB prediction
in the literature have focused on single-drug prediction (Periwal
et al., 2011; Zhang et al., 2013; Farhat et al., 2016; Yang
et al., 2018; Deelder et al., 2019), and ignored epistasis and
correlation of resistance between drugs. Building a multi-label
model to account for both of the latter may improve predictive
performance and be useful for extracting important MDR-
or XDR-TB resistance-associated mutations. In the context of

this study, we compared multi-label random forests (MLRFs)
with single-label random forests (SLRFs) for the prediction of
phenotypic TB resistance. Analysing drugs with high resistance
co-occurrence (e.g., RIF and INH) simultaneously should enable
patterns reflecting resistance co-occurrence to be exploited for
resistance prediction. MLRF and SLRF models, on the other
hand, would perform closely for drugs that the resistance co-
occurrence is less common. We also conduct feature analysis
for mutation ranking. We trained our models on a database of
13402 isolates with resistance phenotypes for up to 11 first- and
second-line anti-TB drugs (INH, EMB, PZA, RIF, streptomycin,
amikacin, moxifloxacin, fluoroquinolones-ofloxacin, kanamycin,
capreomycin, ciprofloxacin). Resistance/susceptibility to all first-
line drugs individually, MDR-TB, and cases with resistance to the
four first-line drugs (denoted FDR-TB) were considered as labels
(i.e., classification “ground truth”) for the analysis. There were
few XDR-TB cases (245 isolates) in our dataset due to the high
percentage of missing labels, hence XDR-TB was not considered
in our study. MLRF predicts labels for all considered drugs
simultaneously and also can rank all associatedmutations that are
important in drug resistance prediction. Such analysis can also
help to find mutations associated with resistance co-occurrence.
In a substudy, the models were retrained (and the classification
performance was recalculated) on a subset of ranked features
instead of using all available features; this substudy allows us
to evaluate the influence of selected highly-ranked features on
the classification performance (as might be useful in creating a
lightweight system for use in real-time, in practice).

In summary, to date, RF-based studies for drug resistance
prediction have only considered each drug individually (Farhat
et al., 2016; Kouchaki et al., 2019). However, greater power may
be obtained with RFs through multi-label analysis incorporating
information from all drugs to include the co-occurrence of
drug resistance and epistasis. Being an ensemble method, the
MLRF also has advantages considering that there are fewer
resistant examples available than susceptible isolates (i.e., datasets
are highly imbalanced) that are common in the study of TB
genomics. We focus on comparing MLRFs and SLRFs in terms
of classification performance, mutation ranking, and the effect of
feature selection on the performance.

2. MATERIALS AND METHODS

We studied a diverse and large dataset collected from 16 countries
across six continents.

2.1. Whole Genome Sequencing
Details of DNA sequencing and our data source (including the
European Nucleotide Archive/Sequence Read Archive accession
numbers) are presented in Walker et al. (2015) and CRyPTIC
Consortium and the 100,000 Genomes Project (2018) and
Supplementary I. Sequenced reads were aligned to the reference
MTB strain, and nucleotide bases were filtered based on the
sequencing and alignment quality, and per-base coverage. Low
confidence nucleotide bases were denoted as null calls. There
are several ways to treat a null call in an isolate: (i) removing
the sample completely from the analysis, which greatly reduces
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the sample size (since 34% of isolates have one or more null
calls in the genetic regions of interest) and generalisability; (ii)
considering the null calls as no variants (i.e., mutation presence
= 0), which is a conservative option and means that performance
will be an underestimate of true performance if all variants were
known; (iii) considering null values as missing and impute their
values, on either a single or multiple basis. We chose the second
option (assuming absence of variant) because the total number
of variant positions across the genetic regions of interest (5919
positions) and across all isolates (13402) with null calls was
very small (0.19%); and because of the complexity of multiple
imputation models that would be needed for (iii), based on the
5919 positions. This approach is effectively a “single” hard (i.e.,
conservative) imputation.

2.2. Data Description
The dataset used in this paper contains 13402 isolates collected
from across the world. In this study, we followed previous work
in which 23 genes (Table S1) were targeted containing known
resistance-associated mutations (Walker et al., 2015). For each
isolate, the presence/absence of a variant was represented by
a binary variable, with 1 indicating presence and 0 indicating
absence. Across the 23 candidate genes, in total, 5919 variants
were found across isolates, including multiple variants at the
same position. The mean number of variants per isolate was 14,
ranging between 1 and 132. Hence, a binary vector of length 5919
was formed for each isolate, and considered to be our feature
space (i.e., set of input variables). For each drug and isolate,
a binary label of resistance/susceptible was considered. The
“ground truth” phenotypic information was available for up to 11
anti-TB drugs using culture and confirmed selective culturing on
Lowenstein-Jensen media. Not all samples were tested against all
drugs with missing values, especially for second-line drugs where
missingness of the phenotypical label was substantial. There were
only a few XDR-TB cases (245 isolates) in our dataset due to the
high percentage of missing labels and hence XDR-TB was not
considered in our study.

For the four first-line drugs, more isolates were susceptible
than were resistant. For example, more than 88% of isolates
tested for EMB and PZA and 75% for INH and RIF were
susceptible. Moreover, there were several isolates with multiple
drug resistance considering the four first-line drugs (Figure 1).

2.3. Predicting TB Drug Resistance From
Sequence
Existing methods predominantly classify drug resistance as
present or absent based on a library of predetermined variants
from the literature. These methods, here denoted direct
association (DA), use a logical “OR” rule to classify an isolate
against a given drug: the isolate is labeled as resistant if any of
its mutations is a previously-known resistant variant. Otherwise,
it is classified as susceptible (i.e., if only susceptible variants exist
in the isolate). The library described by Walker et al. (2015) was
used throughout the classification comparison here.

2.4. MLRF for TB Classification
The RF is an ensemble method that is based on building several
independent decision tree classifiers on different subsets of the
dataset. It considers the combination (often the average) of the
output of each independent classifier to improve performance in
producing overall predictions.

Multi-label learning is a supervised problem in which several
labels are learned simultaneously. In the TB data, there are
many cases of MDR-TB, as shown in Figure 1 (World Health
Organization, 2017). Using multi-labels (i.e., all phenotypes
simultaneously, rather than considering each independently)
can reduce the training time as only one model is learned,
and predictive performance can be increased (Evgeniou and
Pontil, 2004) due to learning correlation between inputs and the
multiple outputs. The RF model can be extended to learn and
predict multiple drugs simultaneously considering a joint score
(Gini index) across all considered drugs (Faddoul et al., 2012).
Specifically in each decision tree, for each pair (f , x) of a feature
f (mutation) and a value x (isolate) with a label y (resistance
phenotype) at node (t):

Gini index, GIJ(t, f , x) =
∑

y∈Y

GIy(t, f , x) (1)

where Y is the number of labels (two for MDR-TB and four for
FDR-TB) and GIJ andGIy are the joint and per-label Gini indices,
respectively. The objective is to minimize Equation (1) and hence
(f , x) is selected to best separate (defined by a lower joint Gini
index) the data at each node in the tree. Hence, during training,
it can compute the importance of each feature by averaging the
impurity decrease associated with each mutation.

Figure S1 shows a sample decision tree from a forest learned
by MLRF for the four first-line drugs (EMB, INH, RIF, and PZA).
In comparison, a tree learned by SLRF for EMB is shown in
Figure S2. The tree grows in the best-node-first fashion (defined
by impurity reduction1).

katG_S315T, rpoB_S450L, embB_M306V, embB_Q497R, and
embB_M306I are common mutations in both trees. katG_S315T
was the most highly-ranked feature in both trees, but other
rankings of features vary between models. A feature (mutation)
that results in the lowest Gini index is selected to best split
the data at each node. The MLRF learns a joint Gini index
(Equation 1), and hence finds that feature that best splits the data
considering all drugs. In contrast, the SLRF only considers the
Gini index based on one drug at each node (e.g., EMB). After
the node split, another feature is selected that further reduces the
Gini index. Building various trees on different subsets of the data
can then automatically pick important features. Consequently,
MLRF ranks mutations to best classify resistance to all drugs.
Hence, it also helps the model learn mutations associated with
resistance co-occurrence. Conversely, SLRF ranks mutations to
best classify an individual drug ignoring any co-occurrence. The
SLRF also ranks some mutations from other drugs as being
important as seen in Supplementary B, which effectively reflects
underlying interaction between phenotypes. After building the

1A node split decreases the gini impurity criterion for the two descendent nodes.
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FIGURE 1 | The phenotypic profile of first-line drugs; (A) each row shows the number of isolates that are resistant to at least the indicated drugs combination and (B)

heatmap quantifying the number of instances of resistance co-occurrence between drugs. Off-diagonal elements show resistance co-occurrence between different

drugs and diagonal elements show resistant to a single drug.

models, samples traverse each tree by starting at the root node,
reaching a leaf node. The classification is calculated at the leaf
node by majority vote and the final classification is obtained by
averaging results across trees.

2.5. Multi-Label Stratification
Stratified sampling (i.e., taking an equal proportion from each
class) is especially important in TB analysis due to the imbalanced
nature of the data and the co-occurrence of drug resistance for
different drugs, with some resistance patterns being much rarer
than others (Table S4). Hence, an iterative algorithm termed
multi-label stratified cross-validation (Sechidis et al., 2011) was
considered here to avoid the use of subsets without any examples
of rare labels. Multi-label stratified cross-validation starts with
a label combination that has the fewest samples. Considering
rare label combinations before more frequent combinations
increases the chance of distributing these rare examples evenly
among prediction of the data between training and test sets.
In each iteration, one sample from the most rare combination
is selected and added to a partition depending on the number
of samples with that label already in each partition. Then, the
partitioning continues with another sample with the same label
if any remain; otherwise, a sample from the second-most rare
label combination is considered. This process continues until all
samples are assigned to a subset.

2.6. Feature Spaces
To evaluate the performance of our model and to obtain feature
rankings, five feature sets were considered: [F1] the baseline
feature space of all variants found within 23 candidate genes (N
= 5,918); [F2] as a subset of feature set F1 includes only drug-
associated genes for a particular drug (N = 3,366 that obtained
by only considering the variants within the genes that are known
to be associated with the first line drugs, Supplementary A); [F3]

known variants from (Walker et al., 2015) for all first-line drugs
(N = 1874); [F4] and [F5] are obtained by dropping isolates with
any known resistance-associated mutations from feature sets F1
and F2, respectively — that is, feature sets F4 and F5 allow us
to investigate whether phenotypically resistant isolates without
well-known resistance mutations can be identified from other
sequence variations (N = 4,755 and 2,417, respectively). Feature
set F1 includes all variants spaces, which is preferable for less-
studied drugs. For well-studied drugs, using the known catalog of
resistance-associated mutations has been shown to perform well.

2.7. Training and Testing
For all experiments, model construction and evaluation was
performed over 10 iterations of five-fold multi-label stratified
cross-validation. In each iteration, 20% of the dataset was used
as the test set and the remaining 80% of the data as the training
set. Here, the “internal” cross-validation on the 80% training
dataset was used to select a decision threshold that maximizes
the accuracy; this threshold was then used for prediction in the
test set. Moreover, we considered fixed RF hyper-parameters for
both techniques (50 estimators with maximum depth of two and
maximum features as the square root of input variants). The
performance in terms of accuracy, sensitivity, specificity, and
area-under-the-ROC-curve (AUC) was calculated for the test set
(for reporting final “hold-out” results).

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN
, Specificity =

TN

TN + FP
.

(2)

where TP, TN, FP, and FN are true positive, true negative, false
positive, and false negative, respectively, and where P and N are
resistance and susceptible samples, respectively. The output of
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the models is a probability estimate P(C1|X) of the posterior
probability of input feature vector X belonging to class C1

(resistant). We then define a threshold k on P(C1|X), such that
a classification of X 7→ C1 (i.e., resistant) is made if P > k,
and a classification of X 7→ C0 (i.e., susceptible) if P ≤ k.
Varying threshold k results in different TP, FP, FN, and TN rates
and thus sensitivity and specificity vary according to the value
of k ∈ [0, 1]. However, AUC is calculated over all value of k,
and is therefore insensitive to any particular choice of decision
threshold k. The workflow of examined classifiers can be seen in
Supplementary C.

3. RESULTS

3.1. Comparison of Top Performing
Classifier and DA
Table 1 compares the performance of DA and the best
performing model considering feature sets F1-F5 for INH, EMB,
RIF, PZA, MDR-TB, and FDR-TB. Our results show that the
MLRF is the best performing model for all drugs except for PZA.
feature set F3 was the best feature set for INH, RIF, and MDR-
TB, while feature F1 was the best feature set for EMB, PZA,
and FDR-TB all in terms of AUC. DA showed higher specificity
in comparison with the best performing model, but had lower
sensitivity and AUC in all cases.

3.2. Detailed Comparison of MLRF, SLRF,
and DA
Supplementary D provides further details of the classification
results. In terms of classification performance, both SLRF and
MLRF perform fairly similarly with slight improvements in AUC
and sensitivity considering MLRF especially for INH and RIF
(p < 0.01). Compared to DA, sensitivity increased for all drugs
(considering feature sets F1 and F3) and for all drugs except
RIF when considering feature set F2. Both MLRF and SLRF had
higher AUC than DA considering feature sets F1-F3 for EMB,
considering feature set F3 for INH and RIF, considering feature
sets F1 and F3 for MDR-TB and considering all feature sets for
PZA and FDR-TB.

3.3. Mutation Ranking
The 10 most important mutations based onMLRF and SLRF and
feature sets F1-F5 is shown in Supplementary E. In summary:

• There were several known mutations that were commonly
ranked as being important for the purpose of prediction,
regardless of model (MLRF and SLRF) and drug: (i)
katG_S315T, rpoB_S450L and embB_M306V for feature set F1;
and (ii) the latter three mutations along with embB_M306I
for feature sets F2-F3. These are the most common known
resistance mutations associated with INH, RIF, and EMB,
respectively (Walker et al., 2015). However, each of these
highly-related mutations had different importance values and
resulted in different classification performance across various
MLRFs and SLRFs trained on different feature sets.

• Analysis using feature set F4 identified several important
mutations from other genes related to second-line drugs (e.g.,
rrs_G349A and eis_C-12T).

• There was considerable overlap between mutations ranked
for all first-line drugs and FDR-TB. In other words, SLRF
ranking for a given drug indicated multiple mutations that are
associated with other drugs.

• Several mutations selected as being important were not in
the DA library and were not lineage defining. Some of these
mutations occurred within genes associated with a given first-
line drug. Detailed information of their occurrence in isolates
is shown in Supplementary F.

• Considering (i) feature set F1, (ii) all variants in drug-
associated genes for a given drug from feature set F2, and
(iii) known drug-resistant variants for a given drug extracted
from feature set F3, resulted in identifying a list of candidate
mutations that are important for resistance prediction or are
related to resistance co-occurrence (Supplementary G).

3.4. MLRF and SLRF Performance on a
Subset of Important Features
As described earlier, a substudy introduced retraining models
on a subset of ranked features (instead of using feature sets
F1-F5). Table 2 and Figures 2, 3 summarize the performance
of the different classifiers when the feature set is restricted to
that subset of mutations in feature sets F1-F3 ranked above
importance thresholds of {0.05, 0.01, 0.005, and 0.001} (details
in Supplementary E). In summary:

• The best model for each drug (Table 2) still performs better
than DA even when using a subset of important mutations
(16–37 mutations) for INH, EMB, PZA, MDR-TB, and FDR-
TB in terms of AUC and sensitivity (p < 0.01).

• Considering only 16–37 features rather than the larger feature
sets F1-F5 resulted in better performance for EMB and FDR-
TB and very similar performance for others (Table 2).

• The SLRF performed better for EMB, PZA, and FDR-TB when
restricted to using highly-related mutations in this way.

• Increasing the number of features (i.e., decreasing the
threshold on feature importance used to select features in
this substudy) did not always improve the performance (e.g.,
FDR-TB).

• Increasing the number of features usually increased sensitivity
while reducing specificity.

4. DISCUSSION

Our analysis demonstrates that machine learning methods,
specifically MLRF (considering feature sets F1-F3), had higher
sensitivity but lower specificity compared with DA (at their
points of higher accuracy). Sensitivity and AUC increased
substantially for PZA and FDR-TB when using MLRFs.
There may be several reasons for this finding, including (i)
the existence of additional resistance-associated mutations to
those reported in the literature; (ii) the existence of certain
combinational patterns of resistance-related and epistasis and
lineage-related mutations; and (iii) co-occurrence of resistance
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TABLE 1 | Performance of the best machine learning classifier and DA considering INH, EMB, RIF, PZA, MDR-TB, and FDR-TB.

DA Best method

Drugs Sensitivity Specificity AUC Feature set + Classifier Sensitivity Specificity AUC

INH 91.15 ± 1.19 98.96 ± 0.25 95.05 ± 0.60 F3 + MLRF 93.76∗ ± 0.80 97.79 ± 0.35 96.01∗ ± 0.47

EMB 85.10 ± 1.79 94.91 ± 0.38 90.00 ± 0.97 F1 + MLRF 91.75∗ ± 1.81 91.58∗ ± 0.77 91.70∗ ± 0.75

RIF 91.52 ± 1.34 98.68 ± 0.21 95.10 ± 0.65 F3 + MLRF 93.16∗ ± 0.80 98.02 ± 0.32 96.00∗ ± 0.40

PZA 43.21 ± 2.72 98.58 ± 0.23 70.89 ± 1.35 F1 + SLRF 87.27∗ ± 1.74 90.71∗ ± 0.72 88.99∗ ± 0.84

FDR-TB 37.34 ± 3.97 98.59 ± 0.22 67.96 ± 1.99 F1 + MLRF 87.58∗ ± 2.79 92.98∗ ± 0.45 90.28∗ ± 1.23

MDR-TB 89.84 ± 1.34 99.12 ± 0.178 94.48 ± 0.69 F3 + MLRF 93.70∗ ± 0.76 97.45 ± 0.36 95.58∗ ± 0.41

Sensitivity, specificity and AUC (mean ± standard error) were reported. The Wilcoxon signed-rank test was used to calculate the p-value of each method compared with the DA and
∗p < 0.01 vs. DA.

TABLE 2 | Performance of best models restricting to only important mutations for classification.

Drug INH EMB RIF PZA FDR-TB MDR-TB

Best model IF3 (0.001) + MLRF IF3 (0.005) + SLRF IF3 (0.001) + MLRF IF1 (0.001) + SLRF IF3 (0.01) + SLRF IF3 (0.001) + MLRF

Number of mutations 37 17 37 32 16 37

Sensitivity 92.88 (↓ 0.28) ± 0.93 91.10 (↓ 0.65) ± 1.76 92.19 (↓ 0.07) ± 1.10 84.73 (↓ 2.54) ± 2.49 91.74 (↑ 4.16) ± 3.37 93.76 (↑ 0.06) ± 1.33

Specificity 97.88 (↑ 0.09) ± 0.31 92.70 (↑ 1.12) ± 0.51 97.77 (↓ 0.22) ± 0.52 92.83 (↓ 2.12) ± 0.52 90.06 (↓ 2.92) ± 0.61 97.38 (↓ 0.07) ± 0.49

AUC 95.48 (↓ 0.53) ± 0.40 91.90 (↑ 0.20) ± 0.82 94.98 (↓ 1.02) ± 0.53 88.78 (↓ 0.21) ± 1.17 90.90 (↑ 0.62) ± 1.56 95.47 (↓ 0.11) ± 0.62

The number of mutations used for the classification, best model and performance for INH, EMB, RIF, PZA, MDR-TB, and FDR-TB are shown. Increase/decrease in performance in

comparison with the best model in Table 1 are indicated with up/down arrows, respectively. “I” prefix refers to our substudy.

FIGURE 2 | AUC (%) comparison considering MLRF and four thresholds {0.05, 0.01, 0.005, and 0.001} for feature selection. “I” prefix refers to our substudy.

(for the 23 genes considered in this paper). Supplementary G

provides a list of possible candidates for (i) and (iii). Lower
specificity could be due to the existence of several isolates with
resistance-associated mutations that were incorrectly labeled
as susceptible. It could be because of limitations in the
routine phenotyping relating to dichotomous thresholds of
“resistant” vs. “susceptible” applied to a continuous measure of
the minimum inhibitory concentration, as is well-known for
M306V for example (Khan et al., 2019). This could also have

some additional negative effects on prediction of co-occurring
resistance. Another reason could be the threshold setting for
obtaining sensitivity and specificity. There is a trade-off between
sensitivity and specificity in which increasing one can result
in decreasing the other. The use of feature sets F4 and F5
resulted in lower prediction performance then other feature sets
mainly because of very low numbers of resistant isolates left
after dropping those with known resistant-associated mutations
(Supplementary H).
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FIGURE 3 | AUC (%) comparison considering SLRF and four thresholds {0.05, 0.01, 0.005, and 0.001} for feature selection. “I” prefix refers to our substudy.

The best method based on MLRF had only slightly higher
sensitivity and AUC compared to SLRF for most drugs
(Supplementary D), possibly because of several common MDR-
TB mutations, i.e. katG_315 being a strong resistance-conferring
variant, as in Hazbón et al. (2006). As the feature space is the
same for MLRF and SLRF models, both techniques can take
advantage of using the occurrence of mutations that is more
likely to occur inmulti-drug resistant samples. However, learning
one model for all labels as in MLRF makes better use of such
mutations as it learns all drugs simultaneously. Consequently,
MLRF also enhances performance for single drugs by using
existing resistance co-occurrence. PZA was a notable exception,
potentially due to the existence of many less strong variants
related to PZA resistance. Another reason for the very close AUC
between MLRF and SLRF could be that we fixed the RF hyper-
parameters (number of decision trees, maximum number of
variant for each decision tree,...) for both techniques. Future work
introducing a separate parameter optimization could possibly
increase the difference in performance.

Our results confirmed the importance of several known
mutations with resistance co-occurrence (e.g., katG_S315T,
rpoB_S450L, and embB_M306V). Feature set F3 was the best
feature set for well-studied drugs (INH, RIF, and MDR-TB)
but feature F1 was better for others. This shows that there are
additional mutations that are not within the current library
of known mutations (used for DA) but which are important
in classifying resistance; additional co-occurrence patterns of
mutations may exist, as might weak interactions between
mutations that may have joint effects. Classification based on
MLRF and feature sets F1 and F2 mainly identified known
resistance-associated mutations as being important. This builds
confidence in our approach. However, after removing isolates
with any known variants, several mutations were ranked as
being important (i) from other genes (e.g., related to second-line
drugs); (ii) from known lineage-defining variants; and (iii)
that were not in the library and were not lineage-defining

(by checking if they occurred in more than one lineage,
Supplementary F, G). Our results thereby confirm the possibility
of additional important mutations (for prediction) to those
already known to be important for TB resistance classification.
We note that the tree depth was not limited for the learning
procedure. Consequently, as we go deeper in the trees learned
based on feature set F1, all other features can be seen. However,
in TB there are a few strong mutations with high importance
values (e.g., katG_S350L) which result in very low importance
values for other mutations. Removing the impact of such highly
important mutations as in feature sets F4 and F5 would allow
investigation of whether or not phenotypically resistant isolates
without well-known resistance mutations can be identified from
other sequence variations. In other words, although a deeper tree
can see wider spectrum of mutations, feature sets F4 and F5 can
zoom in other sequence variations by avoiding the impact of
highly important mutations.

Considering only the top-ranked mutations (as in our
substudy) resulted in higher AUC compared to DA for all drugs
except RIF (Table 2). Thus a small number (16-37) of important
features are generally sufficient for RF-based classification.
Similar to considering the whole feature set, IF1 and IF3
outperformed IF2, IF4 and IF5 (where “I” prefix refers to our
substudy). However, the MLRF only performed better then the
SLRF for INH, RIF, andMDR-TB. Considering IF1-IF5, the SLRF
was trained on important mutations for each drug and not on
the highest-ranking mutations based on MLRF. Hence, different
feature sets were used for SLRF and MLRF training. SLRF based
on only important features for PZA, FDR-TB, and EMB had
better performance compared with the common features based
on MLRF. The MLRF was better for INH, RIF, and MDR-TB,
possibly because the variants related to these drugs were stronger
predictors, while those of PZA and FDR-TB reflect a potential
combination effect between variants that are individually weak
prediction of resistance. That is, the pattern of resistance for
INH, RIF, and MDR-TB dominates the multi label learning,
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while the other can be captured by the SLRF. Moreover, errors
in routine phenotypes of individual drugs impact MLRF more
than SLRF. One limitation of the SLRF model is that it ranked
highly many weak variants that are lineage-related mutations
(Supplementary D). We need to note that lineage defining
mutations might be helpful where resistance is over-represented
in one lineage (e.g.,MDR-TB in lineage 2). Figure 2 demonstrates
that increasing the number of features by reducing the feature
selection threshold usually increases AUC, but this is not always
the case; e.g., IF1 and IF2 for FDR-TB (Figure 2). Consequently,
our results indicate the importance of feature ranking to reduce
the effect of unrelated mutations in the learning process. Another
important conclusion of our work is that by increasing the
number of features used, sensitivity improved at the expense of
related specificity, confirming that a smaller feature set better
predicts susceptible samples while there is a need to have more
features to better predict resistant samples (Supplementary E).
A trade-off typically exists between sensitivity and specificity.

We note there are several limitations regarding our analysis.
An assumption of feature ranking should be that the input
features are independent; if there are some highly correlated
features, any of them could be selected as an important feature.
In other words, machine learning techniques, including RF, aim
to identify patterns in the data that contribute to predictions.
After selecting one such feature, the importance of other
correlated features is decreased considering the classification
performance. From a classification point of view, it is actually
useful to do this as it removes the features whose effect is already
described by other closely-related features. Hence, SLRF and
MLRF are typically based on correlation and not causation,
which means that lineage associate mutations, in addition to
mutations conferring resistance to other drugs, can be used in
the learning. However, ranking such mutations as important is
a limitation of existing machine learning techniques in general.
This mainly impacts performance in local settings, where the
level of resistance co-occurrence between first- and second-line
drugs is different, or where such mutations are completely absent
or very abundant. Considering population level structure and
cluster effect in the learning will be considered as a future work.
For feature selection, an additional step might be helpful to
indicate the correlated variants. Such effects can be decreased
by random selection of features but they cannot be removed
completely.

Random selection may also affect the selection of rare but
important mutations.We note that the dataset in our application,
which reflects the imbalance encountered in clinical practice,
with (for example) a high percentage of samples resistant to
INH + RIF that can bias feature ranking in favor of those more
common labels. Finally, other limitations include any errors in
phenotypes that may exist; considering equal importance for all
mutations; and ignoring data with missing labels.

5. CONCLUSION

MLRF and SLRF classifiers were investigated for TB resistance
classification and mutation ranking considering different subsets
of extracted variants. Several common mutations were identified

as important which could confirm the existence of several
MDR- and FDR-TB associated patterns. Furthermore, restricting
analysis to the 16–37 top-ranked mutations might be useful
in creating a lightweight system for use in practice. The main
advantage of machine learning methods, especially in our
application with a large number of features, is hence capturing
any association between the feature space and the prediction
of resistance, in addition to learning potentially new mutations
associated with MDR-TB and FDR-TB (rather than simply
predicting resistance to independent drugs).
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