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Pulmonary fibrosis is a deadly lung disease, wherein normal lung tissue is progressively
replaced with fibrotic scar tissue. An aspect of this process can be recreated in vitro by
embedding fibroblasts into a collagen matrix and providing a fibrotic stimulus. This work
expands upon a previously described method to print microscale cell-laden collagen
gels and combines it with live cell imaging and automated image analysis to enable high-
throughput analysis of the kinetics of cell-mediated contraction of this collagen matrix.
The image analysis method utilizes a plugin for FIJI, built around Waikato Environment
for Knowledge Analysis (WEKA) Segmentation. After cross-validation of this automated
image analysis with manual shape tracing, the assay was applied to primary human
lung fibroblasts including cells isolated from idiopathic pulmonary fibrosis patients. In
the absence of any exogenous stimuli, the analysis showed significantly faster and
more extensive contraction of the diseased cells compared to the healthy ones. Upon
stimulation with transforming growth factor beta 1 (TGF-β1), fibroblasts from the healthy
donor showed significantly more contraction throughout the observation period while
differences in the response of diseased cells was subtle and could only be detected
during a smaller window of time. Finally, dose-response curves for the inhibition of
collagen gel contraction were determined for 3 small molecules including the only 2
FDA-approved drugs for idiopathic pulmonary fibrosis.

Keywords: pulmonary fibrosis, collagen contraction, fibroblasts, phenotypic assay, aqueous two-phase systems,
machine learning

INTRODUCTION

Pulmonary fibrosis is a deadly lung disease, characterized by an aberrant wound healing response
(Ahluwalia et al., 2014). Healthy lung parenchyma is progressively replaced with fibrotic scar
tissue, reducing patients’ lung capacity and often leading to death. Although progress has been
made in understanding disease mechanisms, treatment options are limited to merely slowing the
decline of lung function (Maher and Strek, 2019). Part of the difficulty in studying pulmonary
fibrosis arises from the complex interplay between different cell types, mechanics, genetics, and the
microenvironment (Ahluwalia et al., 2014; Barkauskas and Noble, 2014; Borensztajn et al., 2014;
Betensley et al., 2016). Phenotypic assays, which can measure more holistic responses than gene
or protein expression assays, are an important, complementary set of tools to understand cell and
tissue processes (Yamanishi et al., 2019).

One of the classic phenotypic assays for pulmonary fibrosis is the collagen gel contraction
assay (Bell et al., 1979). In this assay, fibroblasts are embedded into a collagen gel, which
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is detached from the surface of its container – usually a
microplate well. Activated fibroblasts remodel the collagen gel,
macroscopically shrinking the gel in a process similar to wound
closure. Despite the assay’s utility and reliability in cell lines,
the behavior of primary lung fibroblasts can be more subtle
and difficult to detect (Campbell et al., 2012; Cui et al., 2016;
Jin et al., 2019). These differences arise, as primary cells have
variable initial states and sensitivities to stimulation. Primary
cells present additional challenges, as they have limited growth
capacity. Furthermore, the throughput has previously been low,
as the collagen gel contraction assay traditionally requires the
user to manually detach each gel from the edges of the well with
a pipet tip (Bell et al., 1979). Measurement of the contracting
area has also been manual, with pictures taken daily and images
traced by hand (Figure 1A). While some collagen contraction
assays have been adapted to a 96-well format (Kondo et al., 2004;
Mohan and Bargagna-Mohan, 2016; Zhang et al., 2019), these
higher-throughput assays have not been universally adopted
due to challenges of manual detachment and image analysis.
While several techniques have been developed for automated
segmentation of label-free spheroid images (Rodday et al., 2011;
Chen et al., 2014), these multicellular structures generally have
high contrast compared to the media; cell-laden hydrogels
have lower contrast, thereby requiring more modern image
analysis algorithms.

To address these issues, we explore methods to increase the
throughput of the assay and incorporate high frequency imaging.
Our lab has previously developed a high-throughput collagen
microgel bioprinting technique that does not require manual
gel detachment and demonstrated its effectiveness with cell lines
(Moraes et al., 2013). In this assay, evaporation of the small
microgel during the gelation process is prevented by mixing the
collagen and cells with an aqueous solution of dextran (DEX),
which forms an aqueous two-phase system (ATPS) with an
aqueous solution of polyethylene glycol (PEG). Collagen mostly
remains within the DEX phase as it gels (Singh and Tavana, 2018),
while the PEG phase provides an aqueous buffer, containing
the collagen and limiting evaporation. This approach may be
applicable to a variety of other hydrogel systems, however, our
work here focuses on collagen. In this study, we extend the ATPS
collagen bioprinting technique through automated imaging and
image analysis (Figure 1B) to examine contraction kinetics of
normal vs. diseased primary human lung fibroblasts, particularly
in the context of anti-fibrotic drugs. Furthermore, this high
frequency of sampling aids in distinguishing the more subtle
differences in primary cells, compared to the cell lines used in our
initial proof of concept study (Moraes et al., 2013).

MATERIALS AND METHODS

Cell Culture
Normal human lung fibroblasts (NHLF, lot 0000655309, 56
year-old male) and idiopathic pulmonary fibrosis human
lung fibroblasts (IPF, lot 0000627840, 52 year-old male) were
purchased from Lonza (Walkersville, MD). These primary cells
were cultured in complete Fibroblast Growth Medium (FGM-2,

Lonza) and used from passages 2–5. For collagen gel contraction
assays, cells were passaged into FGM-2, without serum (FGM-
SF), then seeded into collagen gels the following day where they
were collected at∼75% confluence.

Collagen Microgel Contraction Assay
Collagen microgel contraction assays were seeded as previously
described (Moraes et al., 2013). 96-well round bottom
microplates were filled with 100 µL per well of 6% (w/w)
PEG, MW 35,000 (Sigma) dissolved in serum-free DMEM
(Gibco) with 10% distilled water (Gibco) to adjust for osmotic
pressure. This plate was warmed to 37◦C in a 5% CO2
incubator. A collagen-dextran mixture was prepared on ice,
consisting of 6% (w/w) DEX T500 (Sigma), 2 mg/mL Type
I bovine skin collagen (Advanced Biomatrix), and 5 mM
NaOH (Sigma) to neutralize the collagen. This mixture
was mixed by pipetting up and down on ice, with care
taken to avoid introducing bubbles. The mixture was kept
on ice while cells were prepared for seeding. Cells were
washed with PBS (Gibco), then trypsinized with 0.05%
Trypsin (Gibco). After the cells lifted, they were quickly
diluted in FGM-SF and centrifuged at 200 × g, 5 min, room
temperature. After aspirating the supernatant, cells were
resuspended in 1 mL FGM-SF and counted. Appropriate
volumes of resuspended cells were centrifuged again and
resuspended in DMEM. The cells were then mixed 1:1
with the collagen mixture to generate a 1 mg/mL collagen,
3% DEX solution. The collagen-DEX-cell suspension was
transferred to a 96-well plate for seeding, where the DEX-cell
suspension would be seeded into the wells containing PEG, as
in Figure 1B.

Liquid Handling and Imaging
As in our previous publication (Moraes et al., 2013), a Cybio
FeliX liquid handler (Analytik Jena) was used to prepare
collagen microgel plates (see Supplementary File for liquid
handler script).

Collagen microgels were incubated and imaged using an
Incucyte S3 (Sartorious) in-incubator microscope system. The
Incucyte S3 performs auto-focus on each well of the microplate.
4x brightfield images were acquired at 1 h intervals for 2 days,
then at 6 h intervals for the next 6 days.

Drug Response Studies
Cell-laden collagen microgels were stimulated with or without
10 ng/mL TGF-β1 (R&D Systems) and anti-fibrotic drugs:
nintedanib (Selleck Chem), pirfenidone (Selleck Chem), and the
focal adhesion kinase inhibitor PF 431396 (Tocris) at specified
concentrations. These collagen microgels were imaged over 8
days to monitor contraction. To determine the half maximal
inhibitory concentration (IC50), the area under the curve (AUC)
of the area over time graph was calculated for each individual
gel as a parameter of overall contractility. These values were
normalized, such that a gel with no contraction would have a
normalized AUC of 100%. These contraction responses were fit
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FIGURE 1 | Comparison of standard collagen contraction assay with high-throughput ATPS method presented here. (A) Overview of traditional collagen contraction
assay in a 24-well plate. After seeding fibroblasts in a collagen matrix, the gels are individually detached from the well and imaged at discrete time intervals. (B) In the
ATPS collagen contraction assay, DEX and collagen droplets containing fibroblasts are mixed with PEG and media in 96-well plates. This creates a microgel in the
center of the well, thereby eliminating the need for individual gel removal from the wall. The PEG and DEX solutions are then washed out, and then imaged every 2 h
with an Incucyte microscope.

to sigmoidal curves using the scipy module in python (Virtanen
et al., 2020), using Eq. 1:

Response = A+
100− A

1+ 10(log(x)−log(C))∗B (1)

where A is the extent of contraction in the control condition, B is
the Hill Coefficient, and C is the IC50.

Image Processing
Collagen microgel areas were quantified using three methods:
manual, Incucyte, and trainable WEKA segmentation. For
manual quantification, gel perimeters were traced using ImageJ
and areas were measured. For Incucyte quantification, images
were segmented using the built-in Incucyte 2019A segmentation
software from the Spheroid Module. In the trainable WEKA
segmentation plugin from FIJI (ImageJ) (Arganda-Carreras et al.,
2017), 1–10 representative microgel images were annotated
and used to train the classifier. We wrote a new plugin (see
Supplementary File) to iterate through a folder of images
exported from the Incucyte 2019A software, apply the WEKA
classifier, run quality checks, measure areas, and generate a
.csv file containing areas, well positions, and times. Further
analyses were performed using the pandas module in python
(McKinney, 2010).

Statistical Analysis
For the comparison between manual and algorithm
measurements of gel areas, the Pearsons correlation coefficient
was calculated. The differences between gel contraction for +/−
TGF-β1 conditions at the indicated time points were analyzed

using multiple t-tests with a Bonferroni correction and a 95%
confidence interval. Lastly, standard deviations for parameter
estimates of the IC50 values in the drug dose response studies
were acquired from the covariance matrix of the model fit
(scipy.optimize.curve_fit module in Python).

RESULTS

Validation and Optimization of Machine
Learning Image Processing
To quantify collagen microgel area, we initially examined the
built-in Incucyte segmentation software. However, the software
performed poorly with microplate imperfections (i.e., – plate
scratches) and gels at early time points, when they are relatively
translucent (data not shown). We next examined WEKA
Trainable Segmentation, a machine learning plugin included
in the open source image processing program, FIJI (ImageJ).
Figure 2 shows the process for training the WEKA Segmentation
classifier. After loading an image sequence into FIJI and selecting
Trainable WEKA Segmentation, the background area is manually
identified with the cursor and marked as Class 1. Gel areas are
similarly marked as Class 2. After training a classifier, additional
annotations can be added to revise the classifier until it performs
adequately. Once a satisfactory classifier has been found, it is
saved for future use (Figures 2A–C).

To analyze large sets of images exported from the
Incucyte in-incubator microscope, a FIJI plugin was written
(Supplementary File). This plugin uses the built-in Trainable
WEKA Segmentation plugin to apply the saved classifier to each

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 September 2020 | Volume 8 | Article 582602

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-582602 September 17, 2020 Time: 19:14 # 4

Yamanishi et al. Kinetic Analysis of Collagen Contraction

FIGURE 2 | Overview of WEKA segmentation. (A) First, the training set of ∼10 images is annotated, clearly indicating the collagen gel and microwell plate
background. (B) The classifier is retrained until it performs adequately. (C) After ensuring appropriate performance, the classifier is saved. (D) Approximately 10,000
images are acquired from the Incucyte microscopy system. (E) Images are loaded into FIJI and (F) the classifier created in (A–C) is applied. (G) The images are
converted to binary and (H) particles are selected. (I) Finally, the area of each gel is measured and recorded. (J) Correlation plot of WEKA Segmentation and manual
area annotation, showing a linear relationship.

image in a directory, as in Figures 2D–I. Following classification,
the image was converted to binary and the largest particle was
found using the built-in particles function. Areas and metadata
were then recorded.

During initial testing on an IntelTM Core R© i7-7700 CPU
at 3.60 GHz, classification of a single image took 15 s.
Further exploration revealed that smaller training sets enabled
faster classification. The iterative training process in Figure 2
allowed for fine-tuning small training sets to achieve accurate
segmentation without sacrificing speed.

To validate the automated image analysis algorithm, 300
images of microgels from early and late time points were
manually annotated for comparison of area measurements.

A strong correlation of 0.990 (Pearsons) with manual area
measurements was achieved (Figure 2J).

Collagen Microgel Contractions Kinetics
We examined the performance of the ATPS collagen microgel
contraction assay with NHLF and IPF responses to TGF-β1
stimulation at a high dose (10 ng/mL) using our automated
seeding, washing, and image processing system. The NHLF had
both slower baseline contraction and slower TGF-β1 activated
contraction compared to IPF, as expected. However, we only
tested cells from one patient of each category, so conclusions
about biological differences between patients are not justified
from this study alone. TGF-β1 induced a moderate increase in
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FIGURE 3 | Collagen microgel contraction kinetics and use of an aggregate statistic to distinguish contraction behavior depending on imaging timepoint.
(A) Normalized area of collagen gels over time for NHLF and (B) IPF cells. Each line represents an individual gel. Orange curves are for control samples, and black
curves are for cells stimulated with 10 ng/ml TFG-β1. (C) Contraction of NHLF and (D) IPF cells in response to stimulation with 10 ng/mL TGF-β1. The ability to
discern a difference in response depends on the timepoint at which measurements are made. However, the area under the curve more readily and consistently
reflects these differences. n = 15 per condition. *p < 0.05 between the +/− TGF-β1 conditions on multiple t-tests with a Bonferroni correction.

the rate of contraction for both cell types, as shown in Figure 3.
Figures 3A,B show the area of each collagen gel (NHLF and IPF,
respectively) as it contracts over time, normalized to that gel’s
initial area. The same data is shown again in Figures 3C,D, but
with violin plots to convey the distribution. For the NHLF cells,
multiple t-tests with Bonferroni correction indicated significant
differences with a 95% confidence interval between groups
(presence or absence of TGF-β1) at each of the selected time
points – 25, 52, 100, and 175 h, as well as using the area under
the curve aggregated data. However, the IPF cells only showed
significantly different responses to TGF-β1 at the early time
points (25 and 52 h) and with the area under the curve.

Examination of Anti-fibrotic Drugs
We next assessed the ability of known anti-fibrotic drugs to
inhibit contraction of collagen microgels. Using a concentration
range of 32 nM to 500 µM, we analyzed the dynamic contraction
of collagen microgels with NHLF and IPF cells, both with
and without 10 ng/mL TGF-β1. For these studies, we selected
the two FDA-approved fibrosis therapeutics, nintedanib (pan-
kinase inhibitor) and pirfenidone (mechanism still unclear).
Additionally, we examined the focal adhesion kinase (FAK)

inhibitor, PF 431396 (Figures 4A–D and Supplementary
Figures 1–3).

Dose response curves were fit for normalized area
measurements at each time point (Supplementary Figure 4). In
comparison to the high variance seen at individual time points,
dose response curves for area under the curve measurements
incorporated kinetic data, generating narrower standard
deviations of the parameter estimate for IC50, as seen in
Figure 4E. The IC50 values for each drug and cell condition
are shown for AUC measurements in Figure 4E and for each
individual time point in Supplementary Figure 4. The IC50
values for AUC measurements are also listed in Supplementary
Table 1. Both the FAK inhibitor (PF 431396) and nintedanib
showed efficacy across the cell and stimulation type, while
pirfenidone did not achieve 50% effect within the range of
concentrations tested.

DISCUSSION

In this work, we added automated image acquisition and analysis
to our group’s prior development of an ATPS collagen microgel
contraction assay (Moraes et al., 2013). We also analyzed normal
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FIGURE 4 | Effect of anti-fibrotic drugs (nintedanib and pirfenidone) and focal adhesion kinase inhibitor (PF 431396) on collagen contraction of NHLF cells without
(A) and with (B) 10 ng/mL TGF-β1, and IPF cells without (C) and with (D) 10 ng/mL TGF-β1. The fitted parameters for IC50 are plotted in (E). Error bars are the
standard deviation of the parameter estimate.

and diseased primary human lung fibroblasts, whereas we had
previously analyzed only fibroblast immortalized cell lines. Our
previous work focused on the miniaturization of the ATPS
collagen microgel contraction assay, opening the possibility for
more effective mass transport of agonists and antagonists to the
cells (Moraes et al., 2013). The addition of automated imaging
and subsequent analysis in this report enabled higher throughput,

as well as kinetic analysis of the collagen microgel contraction.
Due to the translucent properties of the collagen microgels,
the built-in image analysis software in the Incucyte was unable
to accurately detect the collagen gels. This shortcoming was
addressed by implementing WEKA Segmentation through a
custom Jython plugin for FIJI. The WEKA Segmentation reliably
yielded measurements matching those found by manually tracing
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the outlines of the collagen gels, indicating that the WEKA
Segmentation was a sufficient tool for image processing. The
automated image acquisition and analysis enabled an order
of magnitude higher frequency of imaging compared to the
standard daily measurement. This temporal analysis unveiled the
rapid initial contraction seen in IPF-sourced fibroblasts.

For downstream analysis, it is useful to aggregate the data
from an individual contraction time course into a single metric.
Although some individual time points are useful to detect the
increased contraction in response to TGF-β1, much of the kinetic
information is lost. Therefore, we used the area under the curve
to aggregate the rate of contraction for each individual gel into
a single metric.

Consistent with literature reports (Jin et al., 2019), pirfenidone
has little effect below 500 µM, but mildly inhibits contraction at
500 µM in all conditions (Supplementary Figure 1). Previous
examinations of pirfenidone to modulate fibroblast behavior
in vitro have required concentrations of 500 µM or higher to
see statistically significant suppression of α-SMA and collagen
(Nakayama et al., 2008; Conte et al., 2014). However, 500 µM
was selected as the high concentration for these studies due to
the requirement for high concentrations of dimethyl sulfoxide
(DMSO) necessary to achieve pirfenidone concentrations above
500 µM. In this study, the DMSO concentration was kept at 0.1%.
None of the concentrations of pirfenidone tested in this study
produced a half maximal inhibition of contraction (Figure 4).

In contrast, nintedanib exhibits a dose-dependent inhibition
of contraction in all cell conditions tested (Supplementary
Figure 2). Areas of collagen microgels were normalized to their
initial area. Interestingly, the inhibition of microgel contraction
was largely independent of TGF-β1 for both NHLF and IPF.
After a rapid initial contraction, the area reduction dramatically
slowed after ∼1 day in culture for both cell types (Rangarajan
et al., 2016). Our study is the only in vitro study to obtain
IC50 values for nintedanib in NHLF and IPF cells with and
without TGF-β1 in side-by-side studies. We do note that in
the few in vitro studies that do report IC50, that those values
were lower – 144 nM for inhibition of α-SMA in IPF cells
(Wollin et al., 2014) and a conference abstract that notes 73
nM for inhibition of PDGF-stimulated collagen gel contraction
with NHLF (Wollin et al., 2016). IC50, however, is not a
fundamental constant but rather a convenient, assay-specific
measure of potency. Thus, comparison of values across different
experiments must be made with caution (Kalliokoski et al.,
2013).

Lastly, the focal adhesion kinase (FAK) inhibitor, PF 431396,
inhibited contraction at concentrations above 4 µM for all cell
types, as shown in Supplementary Figure 3. Although FAK
inhibition is not a widely used drug target due to many off-
target effects, this experiment does corroborate previous reports
indicating that NHLF contraction of collagen gels requires FAK
stimulation (Liu et al., 2010; Epa et al., 2015).

These are, to our knowledge, the first reports of dose response
for inhibition of TGF-β1 stimulated collagen gel contraction of
primary human fibroblasts by pirfenidone, nintedanib, and PF
431396. While these results nicely demonstrate the technical
capabilities, this proof-of-concept drug comparison study is

limited with regards to biological conclusions by the small
number of replicates and cells from just two donors.

CONCLUSION

We have extended the ATPS microgel contraction assay with
live-cell imaging to uncover differential phenotypic behavior of
primary cells, whereas our previous methods were limited to
cell lines. Because contraction is a time-dependent process, a
higher sampling frequency (e.g., every hour vs. the more common
every 12–24 h) can provide richer information. We assessed and
optimized an automated image segmentation algorithm using
WEKA machine learning to measure the areas of 10,000 collagen
gel images with high temporal resolution. The assay provides
added convenience and throughput, making it appropriate for
secondary screening assays and dose response studies. Lastly,
we report dose response characteristics for two FDA approved
drugs: nintedanib, pirfenidone, as well as the FAK inhibitor, PF
431396 with healthy and diseased primary human fibroblasts,
each with and without TGF-β1 activation. The calculated IC50
values confirm previous reports of lower potency for pirfenidone
relative to nintedanib. This assay could provide useful phenotypic
data to aid secondary and tertiary drug screens, as well as high-
throughput information about primary cell behavior in basic
research on fibroblast contraction.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CY and ST conceptualized the project idea. CY performed
experiments. All authors contributed to writing the manuscript.

FUNDING

This work was supported by the NIH (R21AG061687,
R01HL136141) and NSF (EBICS CBET 0939511). This material
was also based upon work supported by the National Science
Foundation Graduate Research Fellowship Program to EP (Grant
No. DGE-1650044).

ACKNOWLEDGMENTS

We thank Prof. Louise Hecker for helpful discussions.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2020.
582602/full#supplementary-material

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 September 2020 | Volume 8 | Article 582602

https://www.frontiersin.org/articles/10.3389/fbioe.2020.582602/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2020.582602/full#supplementary-material
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-582602 September 17, 2020 Time: 19:14 # 8

Yamanishi et al. Kinetic Analysis of Collagen Contraction

REFERENCES
Ahluwalia, N., Shea, B. S., and Tager, A. M. (2014). New therapeutic targets

in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing
responses. Am. J. Respir. Crit. Care Med. 190, 867–878. doi: 10.1164/rccm.
201403-0509PP

Arganda-Carreras, I., Kaynig, V., Rueden, C., Eliceiri, K. W., Schindelin, J.,
Cardona, A., et al. (2017). Trainable weka segmentation: a machine learning
tool for microscopy pixel classification. Bioinformatics 33, 2424–2426. doi: 10.
1093/bioinformatics/btx180

Barkauskas, C. E., and Noble, P. W. (2014). Cellular mechanisms of tissue fibrosis.
7. New insights into the cellular mechanisms of pulmonary fibrosis. Am. J.
Physiol. Cell Physiol. 306, C987–C996. doi: 10.1152/ajpcell.00321.2013

Bell, E., Ivarsson, B., and Merrill, C. (1979). Production of a tissue-like structure
by contraction of collagen lattices by human fibroblasts of different proliferative
potential in vitro. Proc. Natl. Acad. Sci. U.S.A. 76, 1274–1278. doi: 10.1073/pnas.
76.3.1274

Betensley, A., Sharif, R., and Karamichos, D. (2016). A systematic review of the role
of dysfunctional wound healing in the pathogenesis and treatment of idiopathic
pulmonary fibrosis. J. Clin. Med. 6:2. doi: 10.3390/jcm6010002

Borensztajn, K., Crestani, B., and Kolb, M. (2014). Idiopathic pulmonary fibrosis:
from epithelial injury to biomarkers-insights from the bench side. Respiration
86, 441–452. doi: 10.1159/000357598

Campbell, J. D., McDonough, J. E., Zeskind, J. E., Hackett, T. L., Pechkovsky, D. V.,
Brandsma, C. A., et al. (2012). A gene expression signature of emphysema-
related lung destruction and its reversal by the tripeptide GHK. Genome Med.
4:67. doi: 10.1186/gm367

Chen, W., Wong, C., Vosburgh, E., Levine, A. J., Foran, D. J., and Xu, E. Y. (2014).
High-throughput image analysis of tumor spheroids: A user-friendly software
application to measure the size of spheroids automatically and accurately. J. Vis.
Exp. e51639. doi: 10.3791/51639

Conte, E., Gili, E., Fagone, E., Fruciano, M., Iemmolo, M., and Vancheri,
C. (2014). Effect of pirfenidone on proliferation, TGF-β-induced
myofibroblast differentiation and fibrogenic activity of primary human
lung fibroblasts. Eur. J. Pharm. Sci. 58, 13–19. doi: 10.1016/j.ejps.2014.
02.014

Cui, H., Banerjee, S., Xie, N., Ge, J., Liu, R. M., Matalon, S., et al. (2016). MicroRNA-
27a-3p is a negative regulator of lung fibrosis by targeting myofibroblast
differentiation. Am. J. Respir. Cell Mol. Biol. 54, 843–852. doi: 10.1165/rcmb.
2015-0205OC

Epa, A. P., Thatcher, T. H., Pollock, S. J., Wahl, L. A., Lyda, E., Kottmann, R. M.,
et al. (2015). Normal human lung epithelial cells inhibit transforming growth
factor-β induced myofibroblast differentiation via prostaglandin E2. PLoS One
10:e0135266. doi: 10.1371/journal.pone.0135266

Jin, J., Togo, S., Kadoya, K., Tulafu, M., Namba, Y., Iwai, M., et al. (2019).
Pirfenidone attenuates lung fibrotic fibroblast responses to transforming
growth factor-β1. Respir. Res. 20, 1–14. doi: 10.1186/s12931-019-
1093-z

Kalliokoski, T., Kramer, C., Vulpetti, A., and Gedeck, P. (2013). Comparability of
mixed IC50 Data - a statistical analysis. PLoSOne 8:e61007. doi: 10.1371/journal.
pone.0061007

Kondo, S., Kagami, S., Urushihara, M., Kitamura, A., Shimizu, M., Strutz,
F., et al. (2004). Transforming growth factor-β1 stimulates collagen matrix
remodeling through increased adhesive and contractive potential by human
renal fibroblasts. Biochim. Biophys. Acta Mol. Cell Res. 1693, 91–100. doi: 10.
1016/j.bbamcr.2004.05.005

Liu, F., Mih, J. D., Shea, B. S., Kho, A. T., Sharif, A. S., Tager, A. M., et al.
(2010). Feedback amplification of fibrosis through matrix stiffening and COX-2
suppression. J. Cell Biol. 190, 693–706. doi: 10.1083/jcb.201004082

Maher, T. M., and Strek, M. E. (2019). Antifibrotic therapy for idiopathic
pulmonary fibrosis: time to treat. Respir. Res. 20:205. doi: 10.1186/s12931-019-
1161-4

McKinney, W. (2010). “Data structures for statistical computing in python,” in
Proceedings of the. 9th Python Scicence, Vol. 445, Austin, TX, 51–56. doi: 10.
25080/Majora-92bf1922-00a

Mohan, R., and Bargagna-Mohan, P. (2016). The Use of Withaferin A to Study
Intermediate Filaments, 1st Edn. Amsterdam: Elsevier Inc.

Moraes, C., Simon, A. B., Putnam, A. J., and Takayama, S. (2013). Aqueous two-
phase printing of cell-containing contractile collagen microgels. Biomaterials
34, 9623–9631. doi: 10.1016/j.biomaterials.2013.08.046

Nakayama, S., Mukae, H., Sakamoto, N., Kakugawa, T., Yoshioka, S., Soda, H., et al.
(2008). Pirfenidone inhibits the expression of HSP47 in TGF-β1-stimulated
human lung fibroblasts. Life Sci. 82, 210–217. doi: 10.1016/j.lfs.2007.11.003

Rangarajan, S., Kurundkar, A., Kurundkar, D., Bernard, K., Sanders, Y. Y., Ding,
Q., et al. (2016). Novel mechanisms for the antifibrotic action of nintedanib.
Am. J. Respir. Cell Mol. Biol. 54, 51–59. doi: 10.1165/rcmb.2014-0445OC

Rodday, B., Hirschhaeuser, F., Walenta, S., and Mueller-Klieser, W. (2011).
Semiautomatic growth analysis of multicellular tumor spheroids. J. Biomol.
Screen. 16, 1119–1124. doi: 10.1177/1087057111419501

Singh, S., and Tavana, H. (2018). Collagen partition in polymeric aqueous two-
phase systems for tissue engineering. Front. Chem. 6:379. doi: 10.3389/fchem.
2018.00379

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Wollin, L., Maillet, I., Quesniaux, V., Holweg, A., and Ryffel, B. (2014). Antifibrotic
and anti-inflammatory activity of the tyrosine kinase inhibitor nintedanib in
experimental models of lung fibrosiss. J. Pharmacol. Exp. Ther. 349, 209–220.
doi: 10.1124/jpet.113.208223

Wollin, L., Schuett, J., Ostermann, A., and Herrmann, F. (2016). “The effect of
nintedanib on platelet derived growth factor-stimulated contraction of human
primary lung fibroblasts,” in Proceedings of the American Thoracic Society
International Conference Abstracts A73. LUNG FIBROSIS: NEW DIRECTIONS
TO INFORM THE FUTURE, (New York, NY: American Thoracic Society).

Yamanishi, C., Robinson, S., and Takayama, S. (2019). Biofabrication of phenotypic
pulmonary fibrosis assays. Biofabrication 11:032005. doi: 10.1088/1758-5090/
ab2286

Zhang, T., Day, J. H., Su, X., Guadarrama, A. G., Sandbo, N. K., Esnault, S.,
et al. (2019). Investigating fibroblast-induced collagen gel contraction using a
dynamic microscale platform. Front. Bioeng. Biotechnol. 7:196. doi: 10.3389/
fbioe.2019.00196

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Yamanishi, Parigoris and Takayama. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 8 September 2020 | Volume 8 | Article 582602

https://doi.org/10.1164/rccm.201403-0509PP
https://doi.org/10.1164/rccm.201403-0509PP
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1093/bioinformatics/btx180
https://doi.org/10.1152/ajpcell.00321.2013
https://doi.org/10.1073/pnas.76.3.1274
https://doi.org/10.1073/pnas.76.3.1274
https://doi.org/10.3390/jcm6010002
https://doi.org/10.1159/000357598
https://doi.org/10.1186/gm367
https://doi.org/10.3791/51639
https://doi.org/10.1016/j.ejps.2014.02.014
https://doi.org/10.1016/j.ejps.2014.02.014
https://doi.org/10.1165/rcmb.2015-0205OC
https://doi.org/10.1165/rcmb.2015-0205OC
https://doi.org/10.1371/journal.pone.0135266
https://doi.org/10.1186/s12931-019-1093-z
https://doi.org/10.1186/s12931-019-1093-z
https://doi.org/10.1371/journal.pone.0061007
https://doi.org/10.1371/journal.pone.0061007
https://doi.org/10.1016/j.bbamcr.2004.05.005
https://doi.org/10.1016/j.bbamcr.2004.05.005
https://doi.org/10.1083/jcb.201004082
https://doi.org/10.1186/s12931-019-1161-4
https://doi.org/10.1186/s12931-019-1161-4
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.biomaterials.2013.08.046
https://doi.org/10.1016/j.lfs.2007.11.003
https://doi.org/10.1165/rcmb.2014-0445OC
https://doi.org/10.1177/1087057111419501
https://doi.org/10.3389/fchem.2018.00379
https://doi.org/10.3389/fchem.2018.00379
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1124/jpet.113.208223
https://doi.org/10.1088/1758-5090/ab2286
https://doi.org/10.1088/1758-5090/ab2286
https://doi.org/10.3389/fbioe.2019.00196
https://doi.org/10.3389/fbioe.2019.00196
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Kinetic Analysis of Label-Free Microscale Collagen Gel Contraction Using Machine Learning-Aided Image Analysis
	Introduction
	Materials and Methods
	Cell Culture
	Collagen Microgel Contraction Assay
	Liquid Handling and Imaging
	Drug Response Studies
	Image Processing
	Statistical Analysis

	Results
	Validation and Optimization of Machine Learning Image Processing
	Collagen Microgel Contractions Kinetics
	Examination of Anti-fibrotic Drugs

	Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


