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Abstract

The key to generating the best deep learning model for predicting molecular property is to test and apply various
optimization methods. While individual optimization methods from different past works outside the pharmaceutical
domain each succeeded in improving the model performance, better improvement may be achieved when specific
combinations of these methods and practices are applied. In this work, three high-performance optimization methods in
the literature that have been shown to dramatically improve model performance from other fields are used and discussed,
eventually resulting in a general procedure for generating optimized CNN models on different properties of molecules. The
three techniques are the dynamic batch size strategy for different enumeration ratios of the SMILES representation of
compounds, Bayesian optimization for selecting the hyperparameters of a model and feature learning using chemical
features obtained by a feedforward neural network, which are concatenated with the learned molecular feature vector. A
total of seven different molecular properties (water solubility, lipophilicity, hydration energy, electronic properties, blood–
brain barrier permeability and inhibition) are used. We demonstrate how each of the three techniques can affect the model
and how the best model can generally benefit from using Bayesian optimization combined with dynamic batch size tuning.
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Introduction

Deep learning has demonstrated its power in a wide range
of application fields and has achieved breakthrough results,
especially in computer vision [1, 2], video understanding [3, 4]
and natural language processing [5, 6]. Such success has led
to attempts to apply deep learning to other fields, including
pharmaceutical domains. The continuing increase in chemical
data and databases, especially those in the public domain, has
also stimulated concurrent growth in deep learning methods in
pharmaceutical research [7].

Although directly applying existing deep learning models can
achieve fair performance, there are many optimization methods
that can help to boost the performance and truly demonstrate
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the true power of learning. These optimization methods are
presented in different works for different scenarios, and each
method was shown to improve the performance of the models.
It is possible that they have the potential to improve the learning
results for the data commonly seen in pharmaceutical research.

Among those optimization methods, some methods are
established technologies whose effectiveness has been verified
and has been widely used in many fields. For example,
ensemble methods [8], which combine the predictions of
multiple independently trained models, have been proven to
generally produce more accurate predictions than nonensemble
models. Coley et al. [9] used a graph-based convolutional neural
network (CNN) for molecular embedding to predict aqueous
solubility, octanol solubility, melting point and toxicity. Fivefold
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cross-validation was used to build five models, and the
predictions were made by the consensus of all five models,
weighted by the performance on the internal validation dataset.
The ensemble model in this work achieved generally better
prediction than individual models. Lusci et al. [10] used an
ensemble of recursive neural networks associated with all
possible vertex-centered acyclic orientations of the molecular
graph on aqueous solubility and tested them on four benchmark
datasets. Additionally, 20 models with a different number of
hidden units and features were used as the ensemble.

Another common practice is using data augmentation [11]
to increase the amount of data using information only from
the given data as regularization to achieve better performances.
Kimber et al. [12] demonstrated the synergistic effect between
CNNs and the multiplicity of the simplified molecular-input
line-entry system (SMILES) on a total of 18 datasets (9 datasets
for the regression tasks and 9 datasets for the classification
tasks). They increased the SMILES notation by 10 times and
25 times, allowing their model to learn more about the global
structure of molecules. Their best results were obtained when
augmentation on both the training and testing sets was imple-
mented. Schwaller et al. [13] treated chemical reaction prediction
as a machine translation problem between SMILES strings of
reactants, reagents and their products. This work doubled the
training data by generating a copy of every reaction in the train-
ing set, and they found that SMILES data augmentation leads to
a significant increase in accuracy.

Hyperparameter optimization [14] is the other common opti-
mization approach, which heavily influences the behavior of
the learned model and is crucial for the success of neural net-
work architectures. Wang et al. [15] proposed a multichannel
substructure-graph gated recurrent unit architecture for molec-
ular property prediction and used grid search for hyperparam-
eter optimization. Duvenaud et al. [16] introduced a CNN that
operates directly on graphs, generalizing standard molecular
feature extraction methods based on circular fingerprints. Duve-
naud et al. compared the performance of standard circular fin-
gerprints on a variety of domains, including solubility, drug
efficacy and organic photovoltaic efficiency. In their studies, a
random search algorithm to optimize hyperparameters by 50
trials for each cross-validation fold was used.

Last, transfer learning [17] trains a neural network on a larger
database and uses it to aid learning on a smaller dataset. Hu
et al. [18] pretrained an expressive model at the level of indi-
vidual nodes as well as entire graphs. Their pretraining strat-
egy avoids negative transfer and improves generalization for
molecular property prediction and protein function prediction,
giving significantly better predictive performance than nonpre-
trained models. Goh et al. [19] used rule-based knowledge to train
their model, which learns in a weakly supervised manner from
large unlabeled chemical databases and is a transferable and
generalizable deep neural network for chemical property pre-
diction. This transfer method works effectively across network
architectures and data modalities.

In this work, three high-performance optimization methods
developed in the past decade that are relevant to the above estab-
lished optimization methods were selected and analyzed. First,
augmented data by the enumeration of SMILES representation
of each compound gives the characteristic of redundancy, which
helps to maintain the generalization performance as the small
batch size while enjoying the benefit of a large batch size. We
analyzed the effect of a dynamic batch size for optimized enu-
meration ratios of the SMILES representation of the compounds.
This technique was proposed by Hoffer et al. [20], who performed

batch augmentation on image classification tasks with a larger
batch composed of original samples in batches augmented with
different transforms. They found that using larger augmented
batches, computational resources can be better utilized without
the cost of additional input and output (I/O). It is even possible
to achieve a better generalization accuracy while incorporating
existing learning rate schedules. We did not find related work in
the chemistry field that applies this method.

Second, in hyperparameter optimization, engineers are often
faced with myriad choices that are often complex and high
dimensional, with interactions that are difficult to understand.
This overwhelming number of design choices must be tuned
manually, which is too vast for anyone to effectively navigate.
In the past, the most widely used strategies for hyperparameter
optimization were grid search and random selection. Bayesian
optimization has emerged as a powerful solution for these varied
design problems and promises greater automation to increase
both product quality and human productivity [21]. In particular,
Bayesian optimization prescribes a prior belief over the possible
objective functions and then sequentially refines this model by
Bayesian posterior updating as data are observed. The Bayesian
posterior represents the updated beliefs on the likely objective
function on which the model is optimized. Goh et al. [22] built a
deep recurrent neural network (RNN) that automatically learns
features from SMILES to predict chemical properties. They used
a Bayesian optimizer to optimize the hyperparameters related
to the neural network topology. Schwaller et al. [23] cast the
reaction prediction task as a translation problem by introducing
a template-free sequence-to-sequence model. They performed
Bayesian hyperparameter optimization by a gradient-boosted-
tree regression tree search, training 100 models for 30 epochs.
The best model was further trained to 80 epochs to improve its
final accuracy.

Finally, transfer learning is used. Transfer learning has been
proposed to pass the knowledge from a related task that has
been learned. For the same reasons, encoding relevant domain-
specific information into the model can be used to bootstrap
the training of a deep neural network and increase the overall
model accuracy. It is likely that the additional representations
helped, providing chemical information that is not discernible
from raw representation, and some of that information appears
to be related to the prediction target. Additionally, incorporating
relevant domain-specific information does not need to learn
the representations for these basic features but instead will
be able to direct more of its learning capacity. We review the
model leveraging multiple molecular representations as input.
Paul et al. [24] utilized a vector input in the form of molecular
fingerprints and a sequence input in the form of SMILES strings
to develop neural networks for predicting chemical properties
and found that it outperformed other deep learning models.
Yang et al. [25] incorporated global molecular features into their
model concatenated with the features learned from molecular
graphs. They found that it is highly dataset dependent and
can be further optimized by selecting different features more
relevant to the task of interest. We tested these two kinds of
hybrid representations.

While individual optimization methods from different past
works outside the pharmaceutical domain each succeeded in
improving the model performance, better improvement may be
achieved with optimized combinations of these methods and
practices. Compared to existing studies, there was no work that
analyzed these optimization methods in detail. Most of the
works applied these methods as an addition, while the complete
practice procedures and the configurations of the optimization
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methods are unknown. Unfortunately, without careful config-
urations and examinations, these optimization methods might
even reduce the performance of the model.

For the dynamic batch size method, the Hoffer et al.’s
approach simply augments the batch size by the ratio of the
augmented data, while our experiment suggests that the smaller
augmentation ratio for the batch size is better. For the hyperpa-
rameter optimization method, both Goh et al.’s and Schwaller
et al.’s work did not provide practical protocol to follow. We did
find that the work by Yang et al. [25] used the hyperparameter
optimization method to determine the hyperparameters. In the
work, 20 iterations of Bayesian optimization on 10 randomly
seeded data were split to determine the best hyperparameters
based on validation set performance. When we tried to repeat
the protocol, we found the performance of the different seeded
data splits is similar to each other. It was hard to determine
whether the results benefit from the hyperparameters or due to
different splitting of data. We therefore modified the approaches
with same data splits and randomly seeded on the Bayesian
optimization framework. For the hybrid representations, the
Paul et al.’s work reported dramatic performance increasement
with the hybrid representations, while Yang et al. reported
the effect on performance was dataset dependent. Since both
groups used different additional representations with the raw
representations, here we tested the representations, molecular
fingerprints and features and their effects on performance.

We aim to thoroughly analyze the detailed configurations
of the optimization methods and their combination effects,
providing a general optimization protocol for others to directly
apply. Our experiments show that the best model can benefit
from using Bayesian optimization combined with dynamic batch
size tuning.

The rest of this article is organized as follows: FRAMEWORK
describes the overview of the procedure for employing the opti-
mization methods to the model. METHODS explains the detailed
configuration and implementation of the optimization methods
we used in this work. EXPERIMENTS compares the performance
of different combinations of the different optimization meth-
ods. DISCUSSION AND CONCLUSION discusses the findings and
advantages of the optimization methods in this work.

Methods
ConvS2S model

This work is based on the fully convolutional sequence-to-
sequence (ConvS2S) deep learning model illustrated in [26],
and we refer readers to the original publication [27] for its
architectural details.

Briefly, the model encodes the input molecule as an encoded
representation, and an attention mechanism in the decoder
network was used, which results in dot products between
decoder context representations and encoded representations.
The model is based entirely on CNN.

The overall processing flow of the model is shown in the
first branch of Figure 1. The SMILES notation is transformed to
numeric by a count-based dictionary, and then, it will be mapped
to embedding vectors. The encoder network consists of repeated
blocks, including a convolution network, gated linear units and
a fully connected network used for mapping. An encoded rep-
resentation for the input SMILES notation is generated at the
end of the encoder network. The decoding network has a similar
structure to that of the encoding network except that it has
an attention mechanism, and the initial input is redundant

data. The decoded result in the decoder network layer first uses
the dot product of the encoded representation to obtain the
attention map, and the layer output is computed by a multiple
encoded representation, which is augmented by adding position
embedding to the attention map. The output of the final decoder
network layer will go through some mapping to generate the
final prediction. Note that the residual nets are employed in both
the encoder and decoder networks to forward the result from the
previous layer.

Dynamic batch size

We used the default batch size setting 4000 tokens as the base
batch size. In [20], Hoffer et al. performed batch augmentation
on image classification tasks that augmented the data size in
each batch by the augmentation ratio. Specifically, for weight wt

at epoch t, learning rate η, batch size B, M instances of the same
input sample by applying the transformation Ti, the learning rule
can be denoted as follows:

wt+1 = wt − η
1

M· B

M∑
i=1

∑
n∈B(k(t))

∇w�
(
wt, Ti (xn) , yn

)

where �
(
w, xn, yn

)
is the loss function,

{
xn, yn

}N

n=1
is a dataset of

N sample-target pairs and ∇w is the gradient of weights. For
simplicity, it is assumed that B divides N, k(t) is sampled from[
N/B

] � {
1, . . . , N/B

}
and B(k) is the set of samples in batch k.

Note that the subscript i ∈ [
M

]
of Ti highlights the fact that the

samples are different from one another.
Due to the large default batch size, we doubled the batch

size by 10 times the SMILES enumeration ratio; i.e. the batch
token sizes are 8000 and 16 000 for 10× and 100× enumerations,
respectively. We slightly modified the rule denoted above:

wt+1 = wt − η
1

rlog R· B

rlog R∑
i=1

∑
n∈B(k(t))

∇w�
(
wt, Ti (xn) , yn

)

where R is the SMILES enumeration ratio, r is the ratio for batch
size augmenting and k(t) here is sampled from the augmented
dataset. The batch size at each step uses a larger size rlog R· B.

Bayesian optimization

We perform hyperparameter optimization by Bayesian optimiza-
tion using the Hyperopt [28] Python library. Specifically, we fol-
low the practice in [25], using 20 iterations of Bayesian optimiza-
tion on 10 random seeds to determine the best hyperparameters
and selecting hyperparameters based on the performance of the
validation set.

The criterion to be optimized in Bayesian optimization is the
expected improvement (EI), which can be expressed as:

EIy∗(x) =
∫ ∞

−∞
max

(
y∗ − y, 0

)
pM

(
y|x)

dy

where y∗ is the best value found after observing H: y∗ = min{f (xi),
1≤i≤n} and pM is the posterior model of H, for which we used
the tree-structured Parzen estimator [29] in this work. Unlike the
Gaussian process–based approach that models p(y|x) directly, the
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Figure 1. Detailed framework of the deep learning model. Two branches of representation learning are employed in the model. One branch uses raw input as the SMILES

notation for the CNN encoder and CNN decoder to learn representations. The other branch uses computed molecular features with a fully connected network to learn

the representations. These two branches of representation are concatenated, and another fully connected network is used to make the prediction.

Table 1. Bayesian optimization ranges for hyperparameter tuning

Hyperparameter Configuration

Embedding size 8, 16, 32, 64, 128, 256
Convolution size 32, 64, 128, 256, 512
Number of encoder layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Number of decoder layers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Notes: Four hyperparameters, namely, the embedding size, convolution size,
number of encoder layers and number of decoder layers, are automatically
tuned. The batch size is also tuned in some configurations

tree-structured Parzen estimator model p(x|y) is as follows:

p
(
x|y) =

{
�(x) if y < y∗

g(x) if y ≥ y∗

where �(x) is the density formed by using sets of hyperparameter
values associated with the smallest loss function values and g(x)
is the density formed by the remaining hyperparameter values.
By the above model, we can derive the EI:

EIy∗(x) ∝ �(x)
g(x)

which means that to maximize improvement, we would like
points x with high probability under �(x) and low probability
under g(x). The hyperparameters tuned for the model are shown
in Table 1. We tuned four parameters, namely, the embedding
size, convolution size, number of encoder layers and number
of decoder layers. The embedding size is the vector size that
embeds each token in the SMILES notation. The convolution size
is the size of the vector for each input position in the CNN. The
numbers of encoder and decoder layers are the layer counts in
each network.

Hybrid representation

We introduced the hybrid representation to the model, which is
shown in Figure 1. The first branch of representation is learned
from the raw input of the SMILES notation by the CNN encoder
and CNN decoder. The decoded representation can be utilized
directly to predict the classification results. Another branch of
representation is employed in the model, and it is concatenated
with the decoded representation to perform the final prediction.
This branch of representation can be learned from the molecular
fingerprint or molecular features. More concretely, we modify
the readout phase of the CNN model to apply fully connected

network f to the concatenation of the learned molecule fea-
ture vector h and the computed molecular features hf : y = f
(concatenate (h, hf )).

We analyzed the hybrid representation of the maximum
auto and cross-correlation (MACC) molecular fingerprint and
200 molecular features computed by RDKit. The 200 molecular
features we used are the same as [25]. We transform all the
features by quantile transformation to ensure that the differing
magnitudes of different features do not cause certain features
with large ranges dominating smaller ranged features, as well
as putting all features into the same distribution.

Experimental procedure

The overall framework is shown in Figure 2. The dynamic batch
technique is employed on the enumerated dataset. The enu-
merated dataset is input into the model with different batch
sizes determined by its enumeration ratio in the training pro-
cess. For hyperparameter optimization, we employed a Bayesian
optimization technique to automatically tune the hyperparam-
eters within a given range by the history of the optimization to
make the search efficient. Another branch of the fully connected
network with molecular features is introduced in the model. This
branch of the model is concatenated with the learned molecule
feature to make the final prediction.

The combinations of the three methods and different set-
tings are tested, and the results of which are shown in Table 2.
We first analyzed the enumeration strategy for the regression
datasets and classification dataset denoted as ‘Enu’. Then, since
a larger batch size can reduce the training time, we investigated
the better setting for the dynamic batch size, which was built
upon the ‘Enu’ methods and is denoted as ‘Enu_DB’. Afterwards,
we performed Bayesian optimization to optimize the hyperpa-
rameters of the model. We tested several cases to identify the
best practice and denoted it as Enu_DB_BO. Finally, we compared
the model performance with that of two kinds of additional
features, i.e. a simpler MACC molecular fingerprint (MA) and
complex RDKit-computed molecular features (RD), which are
denoted as Enu_DB_BO_MA and Enu_DB_BO_RD.

Experiments
We utilized optimization methods to analyze the impact on
the performance of the model. The analysis was performed
using PyTorch 1.8.1. We employed the Nesterov optimizer [30]
for early stopping, and we followed the default configuration
setting learning rate shrink factor with 0.1, learning rate 0.25
and minimum learning rate with 10−5. All the reported models
and configurations were trained 10 times and reported with 95%
confidence intervals by t-tests.
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Figure 2. The optimization framework. The data preprocessing step prepares a batch of samples used at each step for gradient computation. The deep learning

model, whose performance greatly depends on the hyperparameters, is trained on the data to make the prediction. Three optimization techniques were employed in

the framework. The dynamic batch size strategy sets the batch size depending on the enumeration ratio. Bayesian optimization is used for hyperparameter tuning.

Another branch of representation learning is performed by computed molecular features.

Table 2. The evaluated combinations of the optimization methods

Optimization methods Notation Configuration

Enumeration Enu Original dataset (1×)
10×
100×
1000×

Dynamic batch size DB Enu_DB(2x)
Enu_DB(Fix2x)

Bayesian optimization BO Enu_DB_BO(1x)
Enu_DB_BO(Enu)

Hybrid representation MA (MACC fingerprint) Enu_DB_BO_MA
Enu_DB_BO(MA)_MA

RD (RDKit features) Enu_DB_BO_RD
Enu_DB_BO(RD)_RD

Notes: The combinations of enumeration (Enu), dynamic batch size (DB), Bayesian optimization (BO), hybrid representation with the MACC fingerprint (MA) and hybrid
representation with 200 RDKit features (RD) are tested. The best configuration of the optimization methods is denoted by its notation in further analysis. The condition
each optimization method performs under is denoted in the parentheses

Dataset

We selected four datasets from all the categories (quantum
mechanics, physical chemistry, biophysics and physiology) in
MoleculeNet [31] to find the best optimization configuration. The
four datasets are ESOL, QM7, BBBP and HIV, where ESOL and QM7
are regression tasks, and BBBP and HIV are classification tasks.
Three more datasets are tested for the comparison. The three
datasets are FreeSolv, Lipophilicity and BACE, where FreeSolv
and Lipophilicity are regression tasks, and BACE is classification
tasks. Since the DeepChem project [32] has integrated Molecu-
leNet as part of the package, we used the project to generate the
datasets.

By testing the performance of the baseline model GraphCon-
vModel [16] provided by DeepChem, we found that there is a large
discrepancy between the performance of the baseline model
in different versions of DeepChem, which is shown in Table 3.
The baseline models are trained over 1000 epochs. The data
generated by the two versions of DeepChem are the same in the

datasets, and the discrepancies result from the implementation
of the split methods. We used the latest version 2.5 of DeepChem
to generate the dataset and build the baseline model in our
experiments.

After finding the best optimization configuration, we further
introduce the state-of-the-art model GCN [33] and random forest
[34] to compare with our model, and the three more datasets are
tested in the comparison.

For quantum mechanics, the QM7 dataset is a subset of the
GDB-13 database, providing electronic properties given stable
conformational coordinates. For physical chemistry, ESOL is a
small dataset consisting of water solubility data for 1128 com-
pounds. For biophysics, the HIV dataset tests the ability of over
40 000 compounds to inhibit HIV replication. For physiology, the
blood–brain barrier penetration (BBBP) dataset models barrier
permeability. Three more datasets for comprehensive compar-
ison are the FreeSolv, Lipophilicity and BACE datasets. FreeSolv
is the Free Solvation Database that provides experimental and
calculated hydration free energy of small molecules in water.
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Table 3. The model performance of GraphConv on two DeepChem versions 2.3 and 2.5 with the same split methods and dataset

DeepChem version ESOL (RMSE) QM7 (MAE) BBBP (ROC-AUC) HIV (ROC-AUC)

2.5 1.178 191.4 0.687 0.732
2.3 0.483 85.0 0.895 0.747

Table 4. Descriptions of the public dataset from MoleculeNet

Category Dataset Type Compounds Rec – split Rec – metric

Quantum mechanics QM7 Regression 7165 Stratified RMSE
Physical chemistry ESOL Regression 1128 Scaffold MAE
Biophysics HIV Classification 41 127 Scaffold ROC-AUC
Physiology BBBP Classification 2039 Scaffold ROC-AUC
Physical chemistry FreeSolv Regression 642 Random RMSE
Physical chemistry Lipophilicity Regression 4200 Scaffold RMSE
Biophysics BACE Classification 1513 Scaffold ROC-AUC

Notes: We tested all dataset categories by the recommended split from DeepChem and metric from MoleculeNet. Two datasets are selected for both regression type
and classification type. Three more datasets, FreeSolv, Lipophilicity and BACE, are added for comparison with other related works

Lipophilicity is an important feature of drug molecules that
affects both membrane permeability and solubility. The BACE
dataset provides quantitative and qualitative binding results for
a set of inhibitors of humanβ-secretase 1.

We split these datasets into training, validation and test
subsets following a 80/10/10 ratio by using the split method rec-
ommended by DeepChem, and we evaluate them by the metrics
recommended by MoleculeNet, which are shown in Table 4.

The classification datasets suffer from imbalanced data; for
example, the HIV dataset is highly imbalanced, having only 3%
active data. To address the negative effect of an imbalanced
training dataset, sampling techniques are used widely in the
context of machine learning models. One of the easiest and most
effective methods is resampling (e.g. undersampling majority
data and oversampling minority data). In [35], oversampling
methods outperformed undersampling methods. Therefore, we
utilized oversampling in this work.

For the enumerated dataset, we left out molecules that could
not be parsed by RDKit [36]. The oversampling method was used
to increase the amount of minority data in each dataset split
so that the amount of minority data equaled the amount of
majority data. To maintain the distribution of the minority class,
we equally oversampled the compounds.

We comprehensively evaluated different combinations of the
optimization methods by the ESOL, QM7, BBBP and HIV datasets
and determined the best practice for the methods. Then, we used
the best practice on all the datasets for our model to evaluate
whether the best optimization methods applied on datasets can
perform better than other related works.

Loss function and metric

We evaluate the regression performance for prediction using
common metrics based on root mean squared error (RMSE),
which for a given dataset of n samples is defined as:

RMSE =
√√√√ 1

n

n∑
i=1

(
Yi − Ŷi

)2

where Yi is the predicted value and Ŷi is the measured value.

We evaluated the classification performance using common
metrics based on the negative log-likelihood L:

L = − log(y)

where y is the target class. The evaluation metric reported in
our paper is the area under the receiver operating characteristic
curve (ROC-AUC).

The best SMILES enumeration ratios are different in
regression and classification datasets

In the field of chemical science, the common practice of data
augmentation is SMILES enumeration, which randomizes atom
ordering to enumerate the SMILES notations [37, 38].

We used the tool developed by Bjerrum [38], which generates
different SMILES notations by converting the SMILES notations
to a Molfile format and randomly changing the atom order.
Then, the SMILES notation is generated using RDKit. The process
restricts the SMILES notations by prioritizing the sidechains
when traversing a ring and preventing SMILES substrings such as
c1cc(c(cc1)) since the SMILES notation with unrestricted random
atom order has worse performance for the model than restricted
order [37].

From [26], with a higher enumeration ratio of the regression
dataset, more improvement in the performance of the model can
be obtained. We enumerated all the molecules in all the data
split. For datasets in both the regression and classification types,
we tried the original dataset and the enumerated datasets with
three enumeration ratios, i.e. 10×, 100× and 1000×; the results
are shown in Table 5.

For regression tasks, we observed the same results where the
best performances were obtained by a 1000× enumeration ratio.
However, for classification tasks, the best models were trained
by the dataset with a 10× enumeration ratio. We performed
oversampling on the minority data in the classification tasks to
address the imbalanced data issues, and the minority data were
augmented. In the enumeration process, the minority data are
augmented one more time, causing the model to focus on minor-
ity data and cannot be generalized well to test data. We used
a 1000× enumeration ratio for regression datasets and a 10×
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Table 5. Comparisons of the model performance on the ESOL, QM7, BBBP and HIV datasets with enumeration ratios of 10×, 100× and 1000× of
the dataset

Enumeration ratio ESOL (RMSE) QM7 (MAE) BBBP(ROC-AUC) HIV (ROC-AUC)

Original dataset 2.130 ± 0.195 182.1 ± 1.0 0.686 ± 0.005 0.712 ± 0.019
10× 1.203 ± 0.167 175.3 ± 0.6 0.690 ± 0.008 0.731 ± 0.015
100× 0.989 ± 0.052 169.3 ± 4.0 0.683 ± 0.009 0.725 ± 0.010
1000× 0.930 ± 0.020 159.7 ± 2.8 0.677 ± 0.011 0.685∗

Note: The results marked with a single asterisk are averaged over three runs

enumeration ratio for classification datasets in the remaining
experiments and denoted this setting as ‘Enu’.

Since the training overhead is very large for the HIV dataset
with a large enumeration ratio and the same trend can be
observed in the 100× enumeration ratio case, we reported the
average results over three iterations of the 1000× enumeration
ratio case.

The evaluated combinations of the
optimization methods

We comprehensively tested the combinations of dynamic batch
size (DB), Bayesian optimization (BO), hybrid representation with
MACC fingerprint (MA) and hybrid representation with 200 RDKit
features (RD).

We first tested the effect of dynamic batch size with
two configurations. One configuration doubles the batch
size when the enumeration ratio is multiplied by 10 times,
denoted as Enu_DB(2x). Another configuration always uses
the doubled batch size for the enumerated dataset, denoted
as Enu_DB(Fix2x). The best configuration is denoted as DB in
further analysis.

Since the overhead of Bayesian optimization on a larger
dataset is very large, we also tested whether the hyperparam-
eters found by BO on a 1× dataset can be applied to an enumer-
ated dataset. We denote the condition BO optimized on in the
brackets. The conditions Enu_DB_BO(1x) and Enu_DB_BO(Enu)
are tested in this case. The best configuration is denoted as BO
in further analysis.

There are two kinds of hybrid representations that we tested
in this work with the following conditions: Enu_DB_BO_MA and
Enu_DB_BO_RD. To find the best hyperparameters in hybrid rep-
resentation cases, Enu_DB_BO(MA)_MA and Enu_DB_BO(RD)_RD
were also analyzed.

Results
Dynamic batch size has to be carefully configured

Table 6 demonstrates the performance of different configura-
tions of the dynamic batch size. In the Enu_DB(2x) cases, all the
model performances of the classification datasets BBBP and HIV
were improved. This shows that increasing the batch size can
benefit the model training in the enumeration dataset. However,
the model performances of the regression datasets ESOL and
QM7 were decreased. Since the enumeration ratio in regression
datasets is 1000× and the batch sizes are enlarged eight times,
we conjectured that the batch should be carefully increased
instead of being simply proportional to the enumeration ratio.

We tested the Enu_DB(Fix2x) configuration that simply uses
the doubled batch size for the dataset enumerated by a 1000×
ratio. The results showed that the model performance for the

ESOL dataset increased in this configuration. The model per-
formance of the QM7 dataset was still decreased, which may
result from the default batch size already being too large for
the QM7 dataset. In the classification cases, since the selected
enumeration ratio is 10×, the dynamic batch size configuration
Enu_DB(Fix2x) is the same as Enu_DB(2x). By the above observa-
tion, we selected DB(Fix2x) as the default DB configuration.

We also tried to identify how large the batch size would yield
worse results for ESOL and QM7 datasets. The results are shown
in Table 7. For the ESOL dataset, other than the batch size 8000
(Fix2x) and 32 000 (2×), we also tested other five batch size
configurations: 4000, 6000, 10 000, 12 000 and 16 000. The best
performance is still obtained with the configuration of the batch
size 8000. For the QM7 dataset, we searched the best batch size
setting on the original dataset from batch size 500 to 8000. Then,
we compared the same batch size range on the enumeration
dataset. The best configuration of the batch size on the original
dataset is 500, and the best batch size on the enumeration
dataset is 1000, which again demonstrate that the Enu_DB(Fix2x)
obtained the best performance.

Bayesian optimization must be performed
on the same enumerated dataset

Table 8 gives the performance of different configurations of
the Bayesian optimization. In the Enu_DB_BO(Enu) configura-
tion cases, the model performances for the QM7, BBBP and
HIV datasets were improved. The model performance for the
ESOL dataset was slightly decreased, indicating that the default
hyperparameters are already good enough for the dataset. The
default hyperparameters of the model were originally tailored
for the ESOL dataset [26].

Since the overhead is large when conducting Bayesian opti-
mization on the enumerated dataset, we tried to generalize the
hyperparameters from the original dataset to the enumerated
dataset. In the Enu_DB_BO(1x) cases, unfortunately, all the mod-
els cannot achieve better performance than the Enu_DB_BO(Enu)
case. The results showed that the hyperparameters of the model
obtained from the original dataset cannot be generalized to the
enumerated dataset, and the optimized hyperparameters are
specific to the dataset configuration.

The metric for the classification dataset in this work is the
ROC-AUC, which is not differentiable, and Bayesian optimiza-
tion may be advantageous for this. We tried Bayesian optimiza-
tion for the ROC-AUC on the original dataset 1x_BO(1x_AUC),
and the results show that performing Bayesian optimization
on the ROC-AUC for the classification dataset seems to help
in selecting hyperparameters. Based on the observation, we
further tested Bayesian optimization for the ROC-AUC on the
Enu_DB_BO(Enu_AUC) enumerated dataset. For the BBBP dataset
case, the hyperparameters found happen to be the same as
Enu_DB_BO(Enu). For the HIV dataset case, the hyperparameters
found cannot perform better than the Enu_DB_BO(Enu) case.
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Table 6. Comparison of the model performances on the ESOL, QM7, BBBP and HIV datasets with two dynamic batch size strategies Enu_DB(2x)
and Enu_DB(Fix2x)

Configuration ESOL (RMSE) QM7 (MAE) BBBP(ROC-AUC) HIV (ROC-AUC)

Enu 0.930 ± 0.020 159.7 ± 2.8 0.690 ± 0.008 0.731 ± 0.015
Enu_DB(2x) Batch size 32 000 32 000 8000 8000

Result 0.989 ± 0.057 161.0 ± 2.9 0.691 ± 0.005 0.745 ± 0.019
Enu_DB(Fix2x) Batch size 8000 8000 8000 8000

Result 0.908 ± 0.017 163.2 ± 3.1 0.691 ± 0.005 0.745 ± 0.019

Table 7. Performance comparison of the different batch size on (a) ESOL and (b) QM7 dataset

(a) ESOL (RMSE)

Batch size 4000 6000 8000 10 000 12 000 16 000 32 000
1000× 0.930 ± 0.020 0.915 ± 0.026 0.908 ± 0.017 0.928 ± 0.029 0.945 ± 0.03 0.999 ± 0.061 0.989 ± 0.057

(b) QM7 (MAE)

Batch size 500 1000 2000 4000 8000
Original
dataset

180.6 ± 3.0 187.1 ± 6.9 185.5 ± 4.2 182.1 ± 1.0 275.4 ± 90.7

1000× 166.8 ± 8.9 155.8 ± 1.3 158.0 ± 3.0 159.7 ± 2.8 163.2 ± 3.1

Notes: The best performance in each dataset is highlighted with boldface. The batch sizes from 4000 to 32 000 are tested on the ESOL dataset, while the batch sizes
from 500 to 8000 are tested on the QM7 dataset

Table 8. Comparison of the model performance on the ESOL, QM7, BBBP and HIV datasets with four Bayesian optimization strategies:
Enu_DB_BO(1x), Enu_DB_BO(Enu), 1x_BO(1x_AUC) and Enu_DB_BO(Enu_AUC)

Configuration ESOL (RMSE) QM7 (MAE) BBBP (ROC-AUC) HIV (ROC-AUC)

Enu_DB 0.908 ± 0.017 163.2 ± 3.1 0.691 ± 0.005 0.745 ± 0.019
Enu_DB_BO(1x) 0.937 ± 0.042 172.1 ± 2.8 0.691 ± 0.004 0.734 ± 0.016
Enu_DB_BO(Enu) 0.917 ± 0.011 154.2 ± 2.3 0.694 ± 0.004 0.749 ± 0.012
1x_BO(1x_AUC) 0.694 ± 0.013 0.733 ± 0.015
Enu_DB_BO(Enu_AUC) 0.694 ± 0.004 0.742 ± 0.011

This could be caused by the loss cross entropy we used in the
training process, which is different in nature from the ROC-
AUC. Some other differentiable loss functions are closer to the
ROC-AUC [39]; we left these for future work. The best practice
we found for Bayesian optimization is Enu_DB_BO(Enu), and we
used this configuration as the default Bayesian optimization
setting BO.

The effects of hybrid representation
are dataset dependent

Table 9 demonstrates the performances of different configu-
rations of the hybrid representation. Both the Enu_DB_BO_MA
and Enu_DB_BO_RD configurations increased the model perfor-
mance in the BBBP dataset while decreasing the model perfor-
mance in the ESOL, QM7 and HIV datasets.

We further performed Bayesian optimization on all datasets
to find the best hyperparameters in the hybrid represen-
tation setting. The results of the Enu_DB_BO(MA)_MA and
Enu_DB_BO(RD)_RD configurations showed that the model
performance of the BBBP and HIV datasets benefited from the
setting while the ESOL and QM7 datasets did not vary by much.

Other configuration effects on model performance seem to
be dataset dependent. The Enu_DB_BO(RD)_RD configuration
achieves better performance on the HIV dataset and the
Enu_DB_BO(MA)_MA on the BBBP dataset, while they both
have worse performance in another configuration. Observed

from the performed experiment, Enu_DB_BO is the most stable
configuration to optimize the model, which we used as the final
evaluation configuration.

Discussion and Conclusion
Enumeration cannot be replaced
by an optimization technique

Table 10 demonstrates the minimal configuration required to
apply the optimization techniques. For example, to apply the
dynamic batch size technique, the dataset has to be enumerated
at least 10 times. Compared with the simplest model not apply-
ing optimization techniques, the performances of the model
applying optimization techniques are better in some cases.

In the dynamic batch size case, the model that applied the
technique on the BBBP and HIV datasets outperformed the base-
line model. In the Bayesian optimization case, the model that
applied the technique on the ESOL, QM7 and HIV datasets out-
performed the simple model. In the hybrid representation case,
the model that applied the technique on the ESOL and HIV
datasets outperformed the simple model. However, none of the
three techniques can replace the benefit of the enumeration,
and a good strategy to integrate these optimization techniques
into the enumerated dataset is crucial to increase the model
performance.
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Table 9. Comparison of the model performances on the ESOL, QM7, BBBP and HIV datasets with four hybrid representation strategies:
Enu_DB_BO_MA, Enu_DB_BO_RD, Enu_DB_BO(MA)_MA and Enu_DB_BO(RD)_RD

Configuration ESOL (RMSE) QM7 (MAE) BBBP(ROC-AUC) HIV (ROC-AUC)

Enu_DB_BO(Enu) 0.917 ± 0.011 154.2 ± 2.3 0.694 ± 0.004 0.749 ± 0.012
Enu_DB_BO_MA 1.222 ± 0.166 312.8 ± 4.0 0.695 ± 0.006 0.727 ± 0.012
Enu_DB_BO_RD 1.243 ± 0.041 303.0 ± 8.6 0.695 ± 0.007 0.724 ± 0.011
Enu_DB_BO(MA)_MA 1.119 ± 0.049 308.6 ± 5.5 0.703 ± 0.004 0.746 ± 0.013
Enu_DB_BO(RD)_RD 1.250 ± 0.045 344.7 ± 34.1 0.692 ± 0.006 0.749 ± 0.013

Table 10. Comparison of the model performances on the ESOL, QM7, BBBP and HIV datasets with four optimization techniques, i.e. 10x_DB(2x),
1x_BO(1x), 1x_MA and 1x_RD, to examine if enumeration can be replaced

Configuration ESOL (RMSE) QM7 (MAE) BBBP(ROC-AUC) HIV (ROC-AUC)

Original dataset 2.130 ± 0.195 182.1 ± 1.0 0.686 ± 0.005 0.712 ± 0.019
10× 1.203 ± 0.167 175.3 ± 0.6 0.690 ± 0.008 0.731 ± 0.015
10x_DB(2x) 1.764 ± 0.126 175.3 ± 1.3 0.691 ± 0.005 0.745 ± 0.019
1x_BO(1x) 1.902 ± 0.248 180.1 ± 2.0 0.675 ± 0.01 0.725 ± 0.011
1x_MA 2.061 ± 0.065 285.5 ± 54.3 0.680 ± 0.006 0.726 ± 0.008
1x_RD 2.069 ± 0.029 293.8 ± 27.4 0.669 ± 0.017 0.714 ± 0.010

Figure 3. Boxplot depicting the performance of the original model and the

models employing the optimization methods with 10 random seeds on the

ESOL dataset. The x-axis shows the optimization techniques, and the y-axis

represents the RMSE. The green triangles are the average of the performance

for the configurations.

To test the effectiveness of these three modules, we per-
formed the ablation experiments on ESOL dataset and BBBP
dataset, and the results are shown in Figures 3 and 4. In Figure 3,
the hybrid representations always reduced the performance on
the ESOL dataset. The Bayesian optimization may reduce perfor-
mance in some cases (Enu and Enu_BO), while benefit the model
performance in other cases. The dynamic batch cannot benefit
the model in some cases (Enu_BO_RD and Enu_DB_BO_RD), but
it also benefits the model performances in other cases. The
best performance is obtained by the Enu_DB_BO configuration.
In Figure 4, all the optimization methods benefit the model
performance (Enu, Enu_DB, Enu_BO and Enu_RD). Among all
the combination cases from two optimization methods, only
the Enu_DB_BO configuration can be beneficial (Enu_DB and
Enu_DB_BO). Although the configurations with all the optimiza-
tion methods achieved the best performance, this is not true
when using molecular fingerprint as the hybrid representation.
Also, the hybrid representation with molecular features on the

Figure 4. Boxplot depicting the performance of the original model and the

models employing the optimization methods with 10 random seeds on the BBBP

dataset. The x-axis shows the optimization techniques, and the y-axis represents

the ROC AUC. The green triangles are the average of the performance for the

configurations.

BBBP dataset did not achieve better performance in the combi-
nation cases from two optimization methods; therefore, the best
configuration should still be the Enu_DB_BO.

Optimization techniques must be carefully integrated
with enumeration

In light of dynamic batch size, although the redundancy of the
enumerated dataset can be employed to enlarge the batch size,
excessively enlarging the batch size leads to poorer performance,
such as the model on the ESOL and QM7 datasets. To mitigate the
negative effect caused by a large batch size, we limit the batch
augmentation with the same ratio regardless of the enumeration
ratio of the dataset, and the results of the Enu_DB(Fix2x) config-
urations demonstrated better performance than the Enu_DB(2x)
cases.

Since the size of each dataset is different, the base batch size
should also be dynamically adjusted, and Bayesian optimization
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Table 11. Comparison of the molecular data statuses in the ESOL, QM7, BBBP and HIV datasets

Symbol properties ESOL QM7 BBBP HIV

Average 22.58 33.38 47.09 52.02
Max 98 49 233 405
Min 2 2 4 3

Note: The average, max and min token sizes of the molecules in the datasets are reported

Figure 5. Boxplot of model performances on Enu, Enu_DB and Enu_DB_BO configurations and baseline model GraphConv. The green triangles are the average of the

performance for the configurations.

can be a direction to find the right batch size of the base batch
size for the original dataset and the augmentation batch size
for the enumerated dataset. We leave this extension to future
work to find the relation between model performance and the
optimized batch size.

An advantage of the dynamic batch size strategy is reducing
the training time, allowing the model to have a larger budget to
try different designs and hyperparameter configurations. There-
fore, we employed this technique first, and other optimization
techniques can build on top of it.

For Bayesian optimization, we tried to generalize the opti-
mized hyperparameters of the model on the original dataset to
the model on the enumerated dataset but in vain. The results
showed that the optimized hyperparameters have to be found on
the same configurations, including the enumeration ratio of the
dataset. The overhead for finding new hyperparameters on the

enumerated dataset is unavoidable, and the benefits are worth
the cost.

Molecular features benefit the model
in certain situations

We examined the effect of the hybrid representation on the
enumerated dataset. The hybrid representation of the molecular
features leverages both the advantages of automatic feature
extraction and classical molecular representation, which have
been reported to improve the performance of the model in some
studies [24, 25].

We analyzed two kinds of features, a simpler MACC molec-
ular fingerprint and complex RDKit-computed molecular fea-
tures, and a hybrid representation that incorporates each of
the classical molecular representations cannot perform better
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Table 12. Performance comparison of the related works GraphConv, GCN and random forest on both the (a) regression and (b) classification
type datasets

(a) Regression datasets

Model ESOL (RMSE) QM7 (MAE) FreeSolv (RMSE) Lipophilicity(RMSE)
GraphConv 1.178 ± 0.028 191.4 ± 2.9 1.249 ± 0.053 0.777 ± 0.013∗∗
GCN 1.122 ± 0.105∗∗ 196.6 ± 7.3 0.701 ± 0.114∗ 0.907 ± 0.035
Random forest 1.696 ± 0.014 178.6 ± 0.3∗∗ 1.379 ± 0.018 0.963 ± 0.004
This work 0.917 ± 0.011∗ 154.2 ± 2.3∗ 1.126 ± 0.047∗∗ 0.740 ± 0.003∗

(b) Classification datasets

Model BBBP (ROC-AUC) HIV (ROC-AUC) BACE (ROC-AUC)
GraphConv 0.687 ± 0.011 0.732 ± 0.008 0.803 ± 0.012∗∗
GCN 0.689 ± 0.013 0.715 ± 0.014 0.759 ± 0.026
Random forest 0.706 ± 0.008∗ 0.774 ± 0.010∗ 0.860 ± 0.006∗
This work 0.694 ± 0.004∗∗ 0.749 ± 0.012∗∗ 0.786 ± 0.017

Note: The best performance of all the models in each dataset is marked with a single asterisk, and the second-best performance is marked with a double asterisk

than the simpler setup on ESOL and QM7 datasets. Interestingly,
the effect of adding features to the BBBP and HIV datasets
is positive in the Enu_DB_BO(MA)_MA and Enu_DB_BO(RD)_RD
configurations.

We examined the molecular data in each dataset, which
are shown in Table 11. The BBBP and HIV datasets have larger
average token lengths of 47 and 52 of all the molecules, and the
maximum lengths of the molecules in the dataset are 233 and
405, which are much larger than the ESOL and QM7 datasets with
98 and 49.

There are limitations when utilizing only raw representations
to develop models. One limitation is that the models are unable
to learn to identify and extract all the features of a molecule due
to little training data, and they are susceptible to overfitting to
artifacts in the data. We have already addressed this limitation
by SMILES notation enumeration.

The other limitation is that the encoding processes can cap-
ture only local information and result in a molecular represen-
tation that is fundamentally local rather than global in nature,
making them struggle to predict properties that depend heavily
on the global features. We hypothesize that this is the main
reason hybrid representation can achieve better performance on
the BBBP and HIV datasets.

Additionally, if relevant domain-specific information were
to be provided to the neural network, it would not need to
learn the representations for these basic features but instead
would be able to direct more of its learning capacity to develop
more sophisticated representations and improve its accuracy for
predicting complex chemical properties. Although this point of
view is not clear from our experimental results, the results of the
Enu_DB_BO(RD)_RD configurations on the BBBP dataset perform
better than the best optimization configuration Enu_DB_BO,
demonstrating the possibility.

The model employing the best optimization
methods achieved the best performance compared
to related work

We compared the baseline GraphConv model to the model
with the Enu, Enu_DB and Enu_DB_BO configurations shown
in Figure 5. The ESOL, QM7 and HIV datasets were significantly
better than the GraphConv model evaluated by t-test. The
GraphConv model on the BBBP dataset has larger variance and
has less mean performance than our model. The results also
showed marked improvement with optimization techniques.

Figure 6. Boxplot of model performances on Enu, Enu_DB and Enu_DB_BO

configurations and baseline model GraphConv on the HIV dataset. The x-axis

shows the optimization techniques, and the y-axis represents the PRC AUC.

The Enu_DB_BO configuration not only improved the model
performance but also largely reduced the variance in the
prediction. With the dynamic batch size techniques, the training
time is also doubled compared to the Enu configurations.

The Enu_DB and Enu_DB_BO models with the HIV dataset
have larger variance than the GraphConv model. The variance
may increase when the model tries to reduce the generaliza-
tion gap, since the model has to struggle with the imbalanced
dataset. We also observed that the precision–recall plot is more
informative than the ROC plot when evaluating on imbalanced
datasets [40]. Therefore, we also reported the results of the PRC-
AUC metric, which is shown in Figure 6. The variance of the
proposed models in PRC-AUC metrics is largely reduced, and the
performance is much better than the GraphConv model, which
strengthened our confidence on the proposed optimization pro-
tocol.

We compared the model employing the best optimization
methods to related work such as GraphConv, GCN [33] and
random forest [34] on the same dataset and split, and we found
that we achieved the best performance. The results are reported
in Table 12, where the best performance of all the models in each
dataset is marked with a single asterisk and the second-best
performance is marked with a double asterisk. In addition to the
ESOL, QM7, BBBP and HIV datasets, we also compared the model
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performances on three other datasets, FreeSolv, Lipophilicity
and BACE.

Among all the models, random forest performed best on the
classification datasets; however, it cannot perform well on the
regression datasets. The GCN model performed well on some
regression datasets such as ESOL and FreeSolv. The GraphConv
model performs moderately on both the regression and classifi-
cation datasets.

Compared to the models from related work, our model
achieves the top 2 in six out of seven datasets, demonstrating
that our model can succeed on a wide range of datasets. After
applying the best optimized method, our model performance is
dramatically improved and can achieve the lowest RMSE on the
regression tasks and the comparable ROC-AUC on classification
tasks. We observed that other models can perform well in one
type of task but not in the other. Our model can perform well in
both types of tasks.

Key Points
• Different enumeration ratios must be applied to clas-

sification tasks (10×) and regression tasks (1000×).
• Three techniques, namely, the dynamic batch size

strategy for different enumeration ratios of the SMILES
representation of the compounds, Bayesian optimiza-
tion to select the hyperparameters of the model and
hybrid representation, could benefit the deep learning
model.

• The best model could benefit from a simple optimized
combination Enu_DB_BO rather than a combination of
all techniques at the same time.

• The proposed model can succeed on a wide range of
datasets and can perform well in both regression and
classification types of tasks.

Associated content

The full datasets and code are available at https://github.co
m/titanda/Learn-it-all/tree/ready_classification_feature.
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